Quantum Physics

Previous months:
2007 - 0702(8) - 0703(11) - 0705(1) - 0708(1) - 0711(1)
2008 - 0802(1) - 0804(6) - 0807(1) - 0812(1)
2009 - 0903(1) - 0907(10) - 0908(9) - 0909(4) - 0910(6) - 0911(4) - 0912(4)
2010 - 1001(5) - 1002(3) - 1003(29) - 1004(9) - 1005(7) - 1006(5) - 1007(5) - 1008(4) - 1009(3) - 1011(1) - 1012(1)
2011 - 1101(5) - 1102(3) - 1103(6) - 1104(7) - 1105(3) - 1106(8) - 1107(9) - 1108(7) - 1109(11) - 1110(10) - 1111(11) - 1112(9)
2012 - 1201(1) - 1202(3) - 1203(11) - 1204(5) - 1205(8) - 1206(6) - 1207(4) - 1208(9) - 1209(8) - 1210(11) - 1211(12) - 1212(7)
2013 - 1301(16) - 1302(10) - 1303(6) - 1304(8) - 1305(16) - 1306(19) - 1307(16) - 1308(10) - 1309(15) - 1310(2) - 1311(11) - 1312(25)
2014 - 1401(9) - 1402(7) - 1403(19) - 1404(14) - 1405(13) - 1406(20) - 1407(22) - 1408(17) - 1409(19) - 1410(15) - 1411(22) - 1412(16)
2015 - 1501(8) - 1502(20) - 1503(18) - 1504(14) - 1505(27) - 1506(26) - 1507(27) - 1508(31) - 1509(26) - 1510(27) - 1511(31) - 1512(33)
2016 - 1601(24) - 1602(23) - 1603(46) - 1604(56) - 1605(37) - 1606(40) - 1607(52) - 1608(28) - 1609(46)

Recent submissions

Any replacements are listed further down

[1294] viXra:1609.0408 [pdf] submitted on 2016-09-28 08:16:34

Manipulate the Wave Function of Electron

Authors: George Rajna
Comments: 29 Pages.

Scientists have, for the first time, identified a method of visualizing the quantum behaviour of electrons on a surface. The findings present a promising step forward towards being able to manipulate and control the behaviour of high energy, or 'hot', electrons. [18] Physicists have proposed what they believe to be the first method to control the transport of energy at the level of single energy quanta (which are mostly phonons). They show that it's theoretically possible to control the flow of single energy quanta through a quantum magnet using lasers with carefully controlled frequencies and intensities. [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1293] viXra:1609.0403 [pdf] submitted on 2016-09-28 04:35:23

Quantum Photonic Circuit

Authors: George Rajna
Comments: 25 Pages.

For the first time, scientists now have succeeded in placing a complete quantum optical structure on a chip, as outlined Nature Photonics. This fulfills one condition for the use of photonic circuits in optical quantum computers. [15] The intricately sculpted device made by Paul Barclay and his team of physicists is so tiny it can only be seen under a microscope. But their diamond microdisk could lead to huge advances in computing, telecommunications, and other fields. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1292] viXra:1609.0402 [pdf] submitted on 2016-09-28 04:41:16

Controlling Quantum Computing

Authors: George Rajna
Comments: 27 Pages.

Now, a team of scientists in Japan may have overcome this obstacle. Using laser light, they have developed a precise, continuous control technology giving 60 times more success than previous efforts in sustaining the lifetime of "qubits," the unit that quantum computers encode. [16] Physicists at the Australian National University (ANU) have brought quantum computing a step closer to reality by stopping light in a new experiment. [15] The intricately sculpted device made by Paul Barclay and his team of physicists is so tiny it can only be seen under a microscope. But their diamond microdisk could lead to huge advances in computing, telecommunications, and other fields. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1291] viXra:1609.0400 [pdf] submitted on 2016-09-27 14:04:00

Quantum Computing by Stopping Light

Authors: George Rajna
Comments: 25 Pages.

Physicists at the Australian National University (ANU) have brought quantum computing a step closer to reality by stopping light in a new experiment. [15] The intricately sculpted device made by Paul Barclay and his team of physicists is so tiny it can only be seen under a microscope. But their diamond microdisk could lead to huge advances in computing, telecommunications, and other fields. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode,
Category: Quantum Physics

[1290] viXra:1609.0397 [pdf] submitted on 2016-09-27 16:38:02

Einstein Rebooted, Bell's Theorem Refuted, Etc.

Authors: Gordon Watson
Comments: 8 Pages.

Rebooting Einstein's ideas about local-causality, an engineer brings local-causality to quantum theory via operators and variables in 3-space. Taking realism to be the view that external reality exists and has definite properties, his core principle is common-sense local realism (CLR): the union of local-causality (no causal influence propagates superluminally) and physical-realism (some physical properties change interactively). Endorsing Einstein-separability — system X is independent of what is done with system Y that is spatially separated from X — Bell's famous mission is advanced. That is, by means of parameters λ, a more complete specification of EPRB's physics is successful. A consequent locally-causal refutation of Bell's theorem allows EPRB correlations to be explained in a classical way, in line with Einstein's ideas, without reference to Hilbert space, quantum states, etc. Conclusion: Bell's theorem is based on a mathematical error; an error in reduction is inconsistent with Bell's opening assumptions.
Category: Quantum Physics

[1289] viXra:1609.0389 [pdf] submitted on 2016-09-27 06:09:15

Quantum Nanophotonics

Authors: George Rajna
Comments: 24 Pages.

The intricately sculpted device made by Paul Barclay and his team of physicists is so tiny it can only be seen under a microscope. But their diamond microdisk could lead to huge advances in computing, telecommunications, and other fields. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1288] viXra:1609.0381 [pdf] submitted on 2016-09-26 13:36:04

Twisting Photons

Authors: George Rajna
Comments: 23 Pages.

Measurement of the twisting force, or torque, generated by light on a silicon chip holds promise for applications such as miniaturized gyroscopes and sensors to measure magnetic field, which can have significant industrial and consumer impact. [14] A new technique detects spatial coherence in light at smaller scales than had been possible. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1287] viXra:1609.0378 [pdf] submitted on 2016-09-26 10:52:00

Quantum Radar

Authors: George Rajna
Comments: 30 Pages.

Chinese Quantum Physics Breakthrough Enables New Radar Capable of Detecting 'Invisible' Targets 100 Kilometers Distant. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13]
Category: Quantum Physics

[1286] viXra:1609.0371 [pdf] submitted on 2016-09-26 06:39:35

Nanoscale Mirror

Authors: George Rajna
Comments: 29 Pages.

In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been “squeezed” to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1285] viXra:1609.0350 [pdf] submitted on 2016-09-25 06:38:55

Photon Carries 10 Bits

Authors: George Rajna
Comments: 26 Pages.

Physicists have smashed the record for the amount of information a single photon can carry. Their experiment has immediate implications for quantum cryptography. [16] Engineers in the US have developed a chip that can convert visible light into infrared and back again, while preserving the quantum state of the original photons. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1284] viXra:1609.0345 [pdf] submitted on 2016-09-24 08:39:22

Deterministic Quantum Theory

Authors: George Rajna
Comments: 33 Pages.

Quantum measurements are often inherently unpredictable, yet the usual way in which quantum theory accounts for unpredictability has long been viewed as somewhat unsatisfactory. In a new study, University of Oxford physicist Chiara Marletto has developed an alternative way to account for the unpredictability observed in quantum measurements by using the recently proposed theory of superinformation—a theory that is inherently non-probabilistic. The new perspective may lead to new possibilities in the search for a successor to quantum theory. [21] Scientists have known for a long time that an atom or molecule can also be in two different states at once. Now researchers at the Stanford PULSE Institute and the Department of Energy's SLAC National Accelerator Laboratory have exploited this Schrödinger's Cat behavior to create X-ray movies of atomic motion with much more detail than ever before. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14]
Category: Quantum Physics

[1283] viXra:1609.0338 [pdf] submitted on 2016-09-23 13:38:56

Magnetic Monopoles

Authors: George Rajna
Comments: 28 Pages.

If you chop a magnet in half, you end up with two smaller magnets. Both the original and the new magnets have "north" and "south" poles. But what if single north and south poles exist, just like positive and negative electric charges? These hypothetical beasts, known as "magnetic monopoles," are an important prediction in several theories. [16] A new study by researchers at the U.S. Department of Energy’s Argonne National Laboratory determined that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball getting deflected by air. [15] Researchers at Aalto University and Lawrence Berkeley National Laboratory have demonstrated that polaron formation also occurs in a system of magnetic charges, and not just in a system of electric charges. Being able to control the transport properties of such charges could enable new devices based on magnetic rather than electric charges, for example computer memories. [14] The electronic energy states allowed by quantum mechanics determine whether a solid is an insulator or whether it conducts electric current as a metal. Researchers at ETH have now theoretically predicted a novel material whose energy states exhibit a hitherto unknown peculiarity. [13] Quantum magnetism, in which – unlike magnetism in macroscopic-scale materials, where electron spin orientation is random – atomic spins self-organize into one-dimensional rows that can be simulated using cold atoms trapped along a physical structure that guides optical spectrum electromagnetic waves known as a photonic crystal waveguide. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1282] viXra:1609.0334 [pdf] submitted on 2016-09-23 07:27:55

Superconductive Energy Transmission

Authors: George Rajna
Comments: 15 Pages.

The first practical proposal was formulated 50 years ago by the American physicist Richard Garwin. He proposed that a transmission line of 1000 km, transporting 100 Gigawatt (at that time, all the energy produced in the U.S.) could be transmitted through a single underground superconductive cable, just a mere 30 cm wide, including its cooling system. The drawback was that cooling the wire down to a few degrees above absolute zero would have been too costly. [27], and collaborators have produced the first direct evidence of a state of electronic matter first predicted by theorists in 1964. The discovery, described in a paper published online April 13, 2016, in Nature, may provide key insights into the workings of high-temperature superconductors. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1281] viXra:1609.0331 [pdf] submitted on 2016-09-23 06:37:57

Photon-Qubits Frequency Conversion

Authors: George Rajna
Comments: 24 Pages.

Engineers in the US have developed a chip that can convert visible light into infrared and back again, while preserving the quantum state of the original photons. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1280] viXra:1609.0322 [pdf] submitted on 2016-09-22 05:04:48

Schrödinger's Cat Molecules

Authors: George Rajna
Comments: 30 Pages.

Scientists have known for a long time that an atom or molecule can also be in two different states at once. Now researchers at the Stanford PULSE Institute and the Department of Energy's SLAC National Accelerator Laboratory have exploited this Schrödinger's Cat behavior to create X-ray movies of atomic motion with much more detail than ever before. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been “squeezed” to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1279] viXra:1609.0321 [pdf] submitted on 2016-09-22 05:44:02

Magnetic Skyrmions

Authors: George Rajna
Comments: 26 Pages.

A new study by researchers at the U.S. Department of Energy’s Argonne National Laboratory determined that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball getting deflected by air. [15] Researchers at Aalto University and Lawrence Berkeley National Laboratory have demonstrated that polaron formation also occurs in a system of magnetic charges, and not just in a system of electric charges. Being able to control the transport properties of such charges could enable new devices based on magnetic rather than electric charges, for example computer memories. [14] The electronic energy states allowed by quantum mechanics determine whether a solid is an insulator or whether it conducts electric current as a metal. Researchers at ETH have now theoretically predicted a novel material whose energy states exhibit a hitherto unknown peculiarity. [13] Quantum magnetism, in which – unlike magnetism in macroscopic-scale materials, where electron spin orientation is random – atomic spins self-organize into one-dimensional rows that can be simulated using cold atoms trapped along a physical structure that guides optical spectrum electromagnetic waves known as a photonic crystal waveguide. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1278] viXra:1609.0308 [pdf] submitted on 2016-09-21 06:26:37

Acoustic Superconducting Resonator

Authors: George Rajna
Comments: 15 Pages.

Yale researchers have developed a high-frequency version of a device known as an acoustic resonator that could advance the field of quantum computing and information processing. [29] Scientists at the National University of Singapore (NUS) have demonstrated a new way of controlling electrons by confining them in a device made out of atomically thin materials, and applying external electric and magnetic fields. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[1277] viXra:1609.0306 [pdf] submitted on 2016-09-21 03:22:21

Quantum Internet

Authors: George Rajna
Comments: 25 Pages.

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1276] viXra:1609.0301 [pdf] submitted on 2016-09-20 10:25:17

Generation and Transmutation of Metals from 2D Atomic Systems.

Authors: Royan Rosche
Comments: 4 Pages.

A new theory combining ancient and modern thought for the generation and transmutation of metals from a 2D matter wave state, a quantum version of thermonuclear fusion.
Category: Quantum Physics

[1275] viXra:1609.0297 [pdf] submitted on 2016-09-20 09:37:28

Nucleon Quantum Phase Transition

Authors: George Rajna
Comments: 24 Pages.

Research led by North Carolina State University sheds new light on the ways in which protons and neutrons can bind and even undergo a quantum phase transition. The work has implications for understanding the connections between nuclear interactions and nuclear structure found in nature. [15] For the first time, researchers at the University of Basel in Switzerland have coupled the nuclear spins of distant atoms using just a single electron. [14] Experiments using inelastic neutron scattering at the Australian Centre for Neutron Scattering have found indications of a possible new quantum spin state in a novel antiferromagnetic material barium ytterbium zinc oxide (Ba3Yb2Zn5O11) which provides both a challenge and validation of the third law of thermodynamics. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1274] viXra:1609.0296 [pdf] submitted on 2016-09-20 05:21:48

Randomness for Computer Security

Authors: George Rajna
Comments: 26 Pages.

Randomness is vital for computer security, making possible secure encryption that allows people to communicate secretly even if an adversary sees all coded messages. Surprisingly, it even allows security to be maintained if the adversary also knows the key used to the encode the messages. [15] Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that's far shorter than the message—the first time that has ever been done. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1273] viXra:1609.0292 [pdf] submitted on 2016-09-20 04:06:22

On the Quantum Mechanics

Authors: José Francisco García Juliá
Comments: 4 Pages.

There are two supposed equivalent versions of the quantum mechanics: the matrix mechanics and the wave mechanics. I think that both would be false.
Category: Quantum Physics

[1272] viXra:1609.0286 [pdf] submitted on 2016-09-19 15:20:52

On the Possibility of Constructing a Spatial Diagram of Feynman

Authors: Aleksandr Tsybin
Comments: 2 Pages.

Richard Feynman in his famous lectures on physics and popular 4 lectures on quantum electrodynamics (QED), use arrows of different lengths rotating in the plane.I have already mentioned that all these processes are described on the plane, butactually they come in 3-dimensional space.
Category: Quantum Physics

[1271] viXra:1609.0283 [pdf] submitted on 2016-09-19 12:50:05

Quantum Entanglement Measurement

Authors: George Rajna
Comments: 25 Pages.

The fact that it is possible to retrieve this lost information reveals new insight into the fundamental nature of quantum measurements, mainly by supporting the idea that quantum measurements contain both quantum and classical components. [14] Researchers blur the line between classical and quantum physics by connecting chaos and entanglement. [13] Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information. [12] Using lasers to make data storage faster than ever. [11] Some three-dimensional materials can exhibit exotic properties that only exist in "lower" dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, electrons can separate into three distinct entities, each carrying information about just one aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries information about electron spin, has been known to control magnetism in certain insulating materials whose electron spins can point in any direction and easily flip direction. Now, a new study just published in Science reveals that spinons are also present in a metallic material in which the orbital movement of electrons around the atomic nucleus is the driving force behind the material's strong magnetism. [10] Currently studying entanglement in condensed matter systems is of great interest. This interest stems from the fact that some behaviors of such systems can only be explained with the aid of entanglement. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1270] viXra:1609.0278 [pdf] submitted on 2016-09-19 03:08:25

Violation of no-Signaling Via Local Quantum Measurement Discrimination

Authors: Youbang Zhzn
Comments: 14 Pages.

The discrimination of quantum measurements is an important subject of quantum information processes. In this paper we present a novel protocol for local quantum measurement discrimination (LQMD) with multi-qubit entanglement systems. It is shown that, for two space-like separated parties, the local discrimination of two different kinds of measurement can be completed via numerous eight-qubit GHZ entangled states and selective projective measurements without help of classical information. This means that no-signaling constraint can be violated by the LQMD.
Category: Quantum Physics

[1269] viXra:1609.0248 [pdf] submitted on 2016-09-16 13:12:21

Degree of Light Coherence

Authors: George Rajna
Comments: 21 Pages.

A new technique detects spatial coherence in light at smaller scales than had been possible. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1268] viXra:1609.0244 [pdf] submitted on 2016-09-16 10:16:10

On the Local Discrimination of Quantum Measurements

Authors: Youbang Zhan
Comments: 14 Pages.

The discrimination of quantum measurements is an important subject of quantum information processes. In this paper we present a novel protocol for local quantum measurement discrimination (LQMD) with multi-qubit entanglement systems. It is shown that, if both two observers (Alice and Bob) agreed in advance that one of them (e.g. Alice) should measure her qubits before an appointed time t, the local discrimination of two different kinds of measurement can be completed via numerous eight-qubit GHZ entangled states and selective projective measurements without help of classical information.
Category: Quantum Physics

[1267] viXra:1609.0241 [pdf] submitted on 2016-09-16 09:20:23

Researchers See Individual Atoms

Authors: George Rajna
Comments: 29 Pages.

Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12]
Category: Quantum Physics

[1266] viXra:1609.0237 [pdf] submitted on 2016-09-15 23:24:11

Experiment Data Indicates Quantum Entanglement May not Exist

Authors: Krishan Vats
Comments: 8 Pages.

Till date, all experiments prove existence of quantum entanglement by analyzing overall statistical correlations and demonstrating that Bell’s inequality is violated. No detailed data analysis has been published yet. This article presents a first of its kind experimental analysis and it indicates that there is a real chance that entanglement may not be real. This is a huge claim by any means. But it is necessary to make such claim due to two reasons – 1) Due to the tremendous amount of hype around entanglement – Experiments are conducted even today that attempt to prove entanglement. 2) It is necessary to make such dramatic claim so that the QM community makes a fair attempt to analyze detailed data to scrutinize the reality of entanglement. Due to large amount of data involved, experimentalists only look at data in an easily computable manner and do not scrutinize the raw data in full detail. When data of this experiment was analyzed at detail level, it was observed that existence of entanglement can not be settled until this kind of analysis is completed on data from multiple such experiments. The natural and prompt reaction from many may be to point out flaws with this analysis without presenting the evidence that such analysis has already been completed. Obviously, the observation is subtle, but it is odd enough to be probed. This article does not claim “classical mechanics” to be the solution, but it presents an intuitive mechanism that can explain statistical correlations without entanglement being necessary, or entanglement being defined in a different way then it currently is. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope. Moreover anti correlation can easily be explained as a direct consequence of conservation laws. This is a statistical analysis of the experimental data used in a recent paper [M. Giustina et al, Phys. Rev. Lett. 115, 250401 (2015)]. The data for this analysis was graciously made available by the authors as a private communication. This analysis gives an indication that the outcomes may not be totally probabilistic and so, entanglement may not exists in theist currently claimed form.
Category: Quantum Physics

[1265] viXra:1609.0234 [pdf] submitted on 2016-09-15 09:15:48

One-Dimensional Quantum Effects

Authors: George Rajna
Comments: 29 Pages.

Researchers have observed quantum effects in electrons by squeezing them into one-dimensional 'quantum wires' and observing the interactions between them. The results could be used to aid in the development of quantum technologies, including quantum computing. [19] Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them. [18] An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17] To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1264] viXra:1609.0232 [pdf] submitted on 2016-09-15 12:59:40

Optically Levitated Nanoparticle

Authors: George Rajna
Comments: 26 Pages.

Researchers characterize the rotational jiggling of an optically levitated nanoparticle, showing how this motion could be cooled to its quantum ground state. [19] Researchers have created quantum states of light whose noise level has been “squeezed” to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1263] viXra:1609.0149 [pdf] submitted on 2016-09-11 23:27:42

Soliton as a Quantum of Radiation

Authors: Etkin V.A.
Comments: 5 Pages. In Russian

The new view on process of radiation as a result of braking of orbiting electrons by an external force field is offered. The substantiation of the Planck’s radiation law without hypotheses and postulates of quantum- mechanical nature is given. The sense of a constant of Planck is opened and is shown that the true quantum of radiation is the soliton.
Category: Quantum Physics

[1262] viXra:1609.0135 [pdf] submitted on 2016-09-10 10:13:45

Collapse of Wave Nature – One Specific Example

Authors: Krishan Vats
Comments: 1 Page.

7373 Fallenleaf Lane #33
Category: Quantum Physics

[1261] viXra:1609.0129 [pdf] submitted on 2016-09-10 08:33:32

A Classical System for Producing “Quantum Correlations”

Authors: Robert H. McEachern
Comments: 9 Pages.

It is almost universally supposed, that “Quantum Correlations”, as discussed in connection with Bell’s Inequality Theorem, cannot be produced by any classical, macroscopic system. Nevertheless, this paper demonstrates the actual construction of just such a system. It then discusses why this peculiar type of classical system, unlike any other, behaves in this “weird” fashion. The reason illuminates the Physics Community’s profound misunderstanding of exactly what a single, classical “bit” is, in the context of Shannon’s Information Theory, and the resulting misinterpretation of the Heisenberg Uncertainty Principle and the EPR paradox.
Category: Quantum Physics

[1260] viXra:1609.0117 [pdf] submitted on 2016-09-09 10:40:20

Time Crystals

Authors: George Rajna
Comments: 16 Pages.

Are time crystals just a mathematical curiosity, or could they actually physically exist? Physicists have been debating this question since 2012, when Nobel laureate Frank Wilczek first proposed the idea of time crystals. He argued that these hypothetical objects can exhibit periodic motion, such as moving in a circular orbit, in their state of lowest energy, or their "ground state." [28] Researchers from the Foundation for Fundamental Research on Matter and the University of Amsterdam (the Netherlands), together with researchers from the Institute for Materials Science in Tsukuba (Japan), have discovered an exceptional new quantum state within a superconducting material. This exceptional quantum state is characterised by a broken rotational symmetry – in other words, if you turn the material in a magnetic field, the superconductivity isn't the same everywhere in the material. [27], and collaborators have produced the first direct evidence of a state of electronic matter first predicted by theorists in 1964. The discovery, described in a paper published online April 13, 2016, in Nature, may provide key insights into the workings of high-temperature superconductors. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1259] viXra:1609.0114 [pdf] submitted on 2016-09-09 04:35:44

Electrons Fingerprint

Authors: George Rajna
Comments: 18 Pages.

Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1258] viXra:1609.0111 [pdf] submitted on 2016-09-09 06:51:41

Smoke Rings of Laser Light

Authors: George Rajna
Comments: 19 Pages.

Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1257] viXra:1609.0104 [pdf] submitted on 2016-09-08 15:20:04

Photonic Integrated Circuit

Authors: George Rajna
Comments: 25 Pages.

Random number generators are crucial to the encryption that protects our privacy and security when engaging in digital transactions such as buying products online or withdrawing cash from an ATM. For the first time, engineers have developed a fast random number generator based on a quantum mechanical process that could deliver the world's most secure encryption keys in a package tiny enough to use in a mobile device. [15] Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that's far shorter than the message—the first time that has ever been done. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they’ve done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that - surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch - the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1256] viXra:1609.0077 [pdf] submitted on 2016-09-07 03:55:27

Enigma Machine Quantum Leap

Authors: George Rajna
Comments: 23 Pages.

Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that's far shorter than the message—the first time that has ever been done. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1255] viXra:1609.0075 [pdf] submitted on 2016-09-06 13:47:51

Quantum Squeeze

Authors: George Rajna
Comments: 25 Pages.

Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape,
Category: Quantum Physics

[1254] viXra:1609.0070 [pdf] submitted on 2016-09-06 09:29:09

Quantum Rayleigh Criterion

Authors: George Rajna
Comments: 23 Pages.

A team of researchers with the National University of Singapore has found a way to get around what they describe as 'Rayleigh's curse'—a phenomenon that happens when two light sources appear to coalesce as they grow closer together, limiting the ability to measure the distance between them. In their paper published in the journal Physical Review Letters, the team describes how they applied a quantum mechanics technique to solve the problem. [14] Quantum mechanics wreaks even more havoc with conventional ideas of causality than some have suspected – according to a team of researchers based in Australia, with collaborators in Scotland and Germany. They have shown that even allowing causality to be nonlocal – so that an event in one place can have an influence on another, distant place – is not enough to explain how quantum objects behave. [13] A research team led by a Heriot-Watt scientist has shown that the universe is even weirder than had previously been thought. Quantum correlations do not imply instant causation. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1253] viXra:1609.0051 [pdf] submitted on 2016-09-04 16:36:37

Spatial Locality is the Hidden Variable in Entanglement Experiments

Authors: Ramzi suleiman
Comments: 6 Pages. relevant also to relativity

In a recent Nature article, Hensen et al. reported that they have accomplished a "loophole-free" test of Bell's theorem. The authors speculated that further improvements in their experimental design could settle an 80 years debate in favor of quantum theory's stance that entanglement is "action at a distance". We direct attention to a spatial aspect of locality, not considered by Bell's Theorem nor by any of its experimental tests. We refer to the possibility that two particles distancing from each other could remain spatially disconnected, even when they have distanced enough to ensure that information between them was transmitted faster than the velocity of light. We show that any local-deterministic relativity theory which violates Lorentz's contraction for distancing bodies can maintain spatial locality. We briefly note that the recently proposed Information Relativity Theory satisfies the aforementioned condition, and that it predicts and explains several quantum phenomena, despite being local and deterministic. We conclude by arguing that quantum entanglement is not nonlocal and that the unnoticed spatial dimension of locality is in fact the hidden variable conjectured in the seminal EPR paper.
Category: Quantum Physics

[1252] viXra:1609.0049 [pdf] submitted on 2016-09-04 20:24:40

Optimal Eavesdropping in Quantum Cryptography: Choice of Interaction Is Unique up to a Rotation of the Underlying Basis

Authors: Atanu Acharyya
Comments: 22 Pages.

A general framework of optimal eavesdropping on BB84 protocol was provided by Fuchs et al. in 1997. An upper bound on mutual information was derived in their work, which could be achieved by a specific type of interaction and the corresponding measurement. However, uniqueness of an optimal interaction was left as an open problem there. We resolve this problem here and establish the uniqueness. Nevertheless, the description of an optimal interaction changes as the basis of description gets rotated. The specific choice of optimal interaction by Fuchs et al. is shown to be a special case of the form provided in our work.
Category: Quantum Physics

[1251] viXra:1609.0020 [pdf] submitted on 2016-09-02 05:08:43

Quantum Nonlocal Causality

Authors: George Rajna
Comments: 22 Pages.

Quantum mechanics wreaks even more havoc with conventional ideas of causality than some have suspected – according to a team of researchers based in Australia, with collaborators in Scotland and Germany. They have shown that even allowing causality to be nonlocal – so that an event in one place can have an influence on another, distant place – is not enough to explain how quantum objects behave. [13] A research team led by a Heriot-Watt scientist has shown that the universe is even weirder than had previously been thought. Quantum correlations do not imply instant causation. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1250] viXra:1609.0016 [pdf] submitted on 2016-09-02 01:39:54

Quantum Entanglement a Possibility of Balancing Mechanism

Authors: Krishan Vats
Comments: 7 Pages.

This article presents analysis of experimental data. The data was acquired from a recently published experiment, the url is http://arxiv.org/pdf/1511.03190v2.pdf. The data analysis gives an indication that the outcomes may not be totally probabilistic and may be guided by some other mechanism. This article only presents an independent observation and is not meant in any way to comment on the originally published findings of the referred experiment from which the data was acquired. This article also does not dispute any quantum mechanics quantitative predictions. It only presents the observation made so that more experiments/analysis may be conducted if deemed necessary. As such, the observation pointed out is minor and its magnitude can be attributed to independent probability. But the same bias direction and trend in all four setup combinations is something that would be hard to attribute to probability alone. Also, the accumulated bias cleared for all four setups exactly at the same time. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope.
Category: Quantum Physics

[1249] viXra:1609.0015 [pdf] submitted on 2016-09-02 01:57:18

Optical Quantum Computing

Authors: George Rajna
Comments: 22 Pages.

A debate that has been raging for 20 years about whether a certain interaction between photons can be used in quantum computing has taken a new twist, thanks to two physicists in Canada. The researchers have shown that it should be possible to use "cross-Kerr nonlinearities" to create a cross-phase (CPHASE) quantum gate. Such a gate has two photons as its input and outputs them in an entangled state. CPHASE gates could play an important role in optical quantum computers of the future. [16] Researchers at Aalto University have demonstrated the suitability of microwave signals in the coding of information for quantum computing. Previous development of the field has been focusing on optical systems. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1248] viXra:1608.0442 [pdf] submitted on 2016-08-30 13:54:32

Diamonds and Quantum Information

Authors: George Rajna
Comments: 23 Pages.

A City College of New York led-team headed by physicist Dr. Carlos Meriles has successfully demonstrated charge transport between Nitrogen-Vacancy color centers in diamond. The team developed a novel multi-color scanning microscopy technique to visualize the charge transport. The breakthrough experiment could potentially lead to room-temperature quantum information processing in diamond and optical data storage in three dimensions. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1247] viXra:1608.0440 [pdf] submitted on 2016-08-30 14:16:24

Alternative Approach to Quantum Computing

Authors: George Rajna
Comments: 20 Pages.

Researchers at Aalto University have demonstrated the suitability of microwave signals in the coding of information for quantum computing. Previous development of the field has been focusing on optical systems. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1246] viXra:1608.0414 [pdf] submitted on 2016-08-31 13:28:50

Quantum Magnetism Control Spin Interactions

Authors: George Rajna
Comments: 21 Pages.

Quantum magnetism, in which – unlike magnetism in macroscopic-scale materials, where electron spin orientation is random – atomic spins self-organize into one-dimensional rows that can be simulated using cold atoms trapped along a physical structure that guides optical spectrum electromagnetic waves known as a photonic crystal waveguide. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1245] viXra:1608.0408 [pdf] submitted on 2016-08-30 09:45:19

Quantum Dots Manipulate Light

Authors: George Rajna
Comments: 28 Pages.

Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, this has only been accomplished with actual atoms. It is an important step toward light-based quantum technology. [18] In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom-for this reason, such electron prisons are often called "artificial atoms". [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1244] viXra:1608.0396 [pdf] submitted on 2016-08-29 09:47:01

Control a Single Quanta of Energy

Authors: George Rajna
Comments: 28 Pages.

Physicists have proposed what they believe to be the first method to control the transport of energy at the level of single energy quanta (which are mostly phonons). They show that it's theoretically possible to control the flow of single energy quanta through a quantum magnet using lasers with carefully controlled frequencies and intensities. [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1243] viXra:1608.0361 [pdf] submitted on 2016-08-27 03:57:52

Thousand Times Bigger Diatomic Molecules

Authors: George Rajna
Comments: 28 Pages.

Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules. [18] In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom-for this reason, such electron prisons are often called "artificial atoms". [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1242] viXra:1608.0352 [pdf] submitted on 2016-08-25 13:26:18

Single-Photon Microwave Source

Authors: George Rajna
Comments: 28 Pages.

A collaboration including researchers at the National Physical Laboratory (NPL) has developed a tuneable, high-efficiency, single-photon microwave source. The technology has great potential for applications in quantum computing and quantum information technology, as well as in studying the fundamental reactions between light and matter in quantum circuits. [19] Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them. [18] An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17] To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]
Category: Quantum Physics

[1241] viXra:1608.0350 [pdf] submitted on 2016-08-25 11:49:07

The Collapse of the Wave Function

Authors: Joseph Palazzo
Comments: 14 Pages.

In the interpretation of Quantum Mechanics, there were four major mistakes done at different levels: (1)A misinterpretation of Bell’s theorem in which the original intent did not include non-locality, but as a test to see whether or not a particle has a certain property that can be measured. (2)A misinterpretation of the disagreement between Einstein and Bohr. Einstein’s objection to the collapse of the wave function implied a spooky action at a distance, while Bohr insisted on the instantaneous collapse of the wave function which he mistook to be a real wave. (3)A misinterpretation that the wave function represents a real wave when in actuality it represents the possible states of a quantum system before a measurement. (4)When Bell’s theorem was violated by a quantum system, those violations were misinterpreted as evidence of an instantaneous collapse of the wave function and non-locality. We will argue: there is no collapse of the wave function. Bell’s theorem is not about non-locality. There is no spooky action at a distance. And Quantum Mechanics is about measuring quantities at the microscopic scales and in doing so, these quantities are altered. So what we get is partial knowledge. But in spite of that obstacle, we still get a theory of reality with considerable success.
Category: Quantum Physics

[1240] viXra:1608.0314 [pdf] submitted on 2016-08-24 10:21:25

Atomic Gyroscope

Authors: George Rajna
Comments: 15 Pages.

The NIST team has demonstrated a compact atomic gyroscope design that could, with further development, be portable, low power, and accurate enough to be used for navigation. Gyroscopes, traditionally based on mechanical components that spin or vibrate, are common in navigation applications and are increasingly used in consumer electronics such as smartphones. The new NIST device might find uses in applications requiring ultra-precise navigation with extreme size, weight and power limits, such as on spacecraft or submarines. [9] A proposal for a gravitational-wave detector made of two space-based atomic clocks has been unveiled by physicists in the US. [8] The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. [7] A team of researchers with the University of Lisbon has created simulations that indicate that the gravitational waves detected by researchers with the LIGO project, and which are believed to have come about due to two black holes colliding, could just have easily come from another object such as a gravaster (objects which are believed to have their insides made of dark energy) or even a wormhole. In their paper published in Physical Review Letters, the team describes the simulations they created, what was seen and what they are hoping to find in the future. [6] In a landmark discovery for physics and astronomy, international scientists said Thursday they have glimpsed the first direct evidence of gravitational waves, or ripples in space-time, which Albert Einstein predicted a century ago. [5] Scientists at the National Institute for Space Research in Brazil say an undiscovered type of matter could be found in neutron stars (illustration shown). Here matter is so dense that it could be 'squashed' into strange matter. This would create an entire 'strange star'-unlike anything we have seen. [4] The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the electromagnetic inertia, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1239] viXra:1608.0312 [pdf] submitted on 2016-08-24 12:44:16

Challenges in Separating of Free Electrons (Persian Language)

Authors: Hosein Majlesi
Comments: 15 Pages. Persian language,Patent:139350140003006698,Tuesday,September16,2014

This present paper studied about the challenge in separating of free electrons and history of experiment in Persian language, This present paper is only for Persian readers that want to know more information about the history of experiment and challenges in the theory and experiment by free electrons.
Category: Quantum Physics

[1238] viXra:1608.0311 [pdf] submitted on 2016-08-24 09:37:57

Proton Quantum Tunneling

Authors: George Rajna
Comments: 16 Pages.

A discovery by a research team led by Northeastern's Paul Champion upends the understanding held for centuries of protons' behavior. The researchers— using an ultrafast pulsed laser system designed at Northeastern—have revealed that protons actually tunnel through thermodynamic barriers rather than travel over them. [12] Scientists have discovered an anomaly in the properties of ice at very cold temperatures near 20 K, which they believe can be explained by the quantum tunneling of multiple protons simultaneously. The finding is a rare instance of quantum phenomena emerging on the macroscopic scale, and is even more unusual because it is only the second time—the first being superconductivity— that macroscopic quantum phenomena have been observed in a system that is based on fermions, which include protons, electrons, and all other matter particles. Other systems exhibiting macroscopic quantum phenomena have been based on photons, a type of boson, which mediate the forces between matter. [11] Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. [10] An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process. The new theory could lead to faster and smaller electronic components, for which quantum tunneling is a significant factor. It will also lead to a better understanding of diverse areas such as electron microscopy, nuclear fusion and DNA mutations. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: Quantum Physics

[1237] viXra:1608.0251 [pdf] submitted on 2016-08-23 01:22:17

Quantum Merge of Light and Matter

Authors: George Rajna
Comments: 30 Pages.

A method created at Rice University closes the gap between light and matter and may help advance technologies like quantum computers and communications. [18] Constructing quantum computers and other quantum devices requires the ability to leverage quantum properties such as superposition and entanglement – but these effects are fragile and therefore hard to maintain. Recently, scientists at Ecole Normale Supérieure in Paris demonstrated a novel method for controlling the quantum properties of light by probing a superconducting circuit in a cavity with microwave photons to control the energy levels that photon quanta can occupy. [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1236] viXra:1608.0243 [pdf] submitted on 2016-08-22 11:23:27

Artificial Atom

Authors: George Rajna
Comments: 27 Pages.

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom-for this reason, such electron prisons are often called "artificial atoms". [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1235] viXra:1608.0239 [pdf] submitted on 2016-08-22 05:05:24

Quantum Properties of Light

Authors: George Rajna
Comments: 28 Pages.

Constructing quantum computers and other quantum devices requires the ability to leverage quantum properties such as superposition and entanglement – but these effects are fragile and therefore hard to maintain. Recently, scientists at Ecole Normale Supérieure in Paris demonstrated a novel method for controlling the quantum properties of light by probing a superconducting circuit in a cavity with microwave photons to control the energy levels that photon quanta can occupy. [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1234] viXra:1608.0234 [pdf] submitted on 2016-08-21 23:46:45

Infinitudinal Complexification

Authors: Jonathan Tooker
Comments: 13 Pages. Five figures

To the undoubted displeasure of very many detractors, this research program has heretofore focused on aspects of physics so fundamental that many of said detractors do not even acknowledge the program as physics. This paper responds to detractors' criticisms by continuing the program in the same direction and style as earlier work. We present one new quantitative result regarding the big bang and we find a particularly nice topic from fluid dynamics for qualitative treatment. A few other topics are discussed and we present quantitative results regarding the fine structure constant and the differential operator form of $\hat{M}^3$. This paper is somewhat reiterative as it calls attention to directions for further inquiry and continues to leave the hashing out of certain details to either a later effort or the eventual publication of results by those who have already hashed it out, possibly several years ago by now.
Category: Quantum Physics

[1233] viXra:1608.0214 [pdf] submitted on 2016-08-19 09:28:23

Quantum Network of Atomic Clocks

Authors: George Rajna
Comments: 25 Pages.

Physicists have proposed a method for entangling hundreds of atoms, and then entangling a dozen or so groups of these hundreds of atoms, resulting in a quantum network of thousands of entangled atoms. Since small bundles of these entangled groups can function as atomic clocks, this design is the first detailed proposal for a quantum network of atomic clocks. [16] RMIT quantum computing researchers have developed and demonstrated a method capable of efficiently detecting high-dimensional entanglement. [15] More than 200 beryllium ions have been entangled in a record-breaking experiment done by researchers at NIST in the US. [14] Experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection. [13] Now, researchers have come up with a rather simple scheme for providing quantum error controls: entangle atoms from two different elements so that manipulating won't affect the second. Not only is this highly effective, the researchers show that they can construct quantum logic gates with the setup. And while they were at it, they demonstrate the quantum nature of entanglement with a precision that's 40 standard deviations away from classic physical behavior. [12] A team of quantum physicists from Harvard University measured a property called entanglement entropy, which quantifies the apparent randomness that comes with observing just a portion of an entangled whole. Markus Greiner and colleagues used lasers to create an optical cage with four compartments, each of which held a rubidium atom chilled to nearly absolute zero. The researchers could tweak the laser settings to adjust the height of the walls between compartments. If the walls were low enough, atoms could exploit their strange quantum ability to occupy multiple compartments at once. As the four atoms jumped around, they interacted and established a state of entanglement. [11] Physicists in the US and Serbia have created an entangled quantum state of nearly 3000 ultracold atoms using just one photon. This is the largest number of atoms ever to be entangled in the lab, and the researchers say that the technique could be used to boost the precision of atomic clocks. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1232] viXra:1608.0163 [pdf] submitted on 2016-08-16 08:30:46

Observed Quantum Effects of Hawking Radiation

Authors: George Rajna
Comments: 9 Pages.

Jeff Steinhauer, a physicist at the Israel Institute of Technology, has published a paper in the journal Nature Physics describing experiments in which he attempted to create a virtual black hole in the lab in order to prove that Stephen Hawking's theory of radiation emanating from black holes is correct —though his experiments are based on sound, rather than light. In his paper, he claims to have observed the quantum effects of Hawking radiation in his lab as part of a virtual black hole—which, if proven to be true, will be the first time it has ever been achieved. New Research Mathematically Proves Quantum Effects Stop the Formation of Black Holes. By merging two seemingly conflicting theories, Laura Mersini-Houghton, a physics professor at UNC-Chapel Hill in the College of Arts and Sciences, has proven, mathematically, that black holes can never come into being in the first place. The works not only forces scientists to reimagining the fabric of space-time, but also rethink the origins of the universe. Considering the positive logarithmic values as the measure of entropy and the negative logarithmic values as the measure of information we get the Information – Entropy Theory of Physics, used first as the model of the computer chess program built in the Hungarian Academy of Sciences. Applying this model to physics we have an understanding of the perturbation theory of the QED and QCD as the Information measure of Physics. We have an insight to the current research of Quantum Information Science. The generalization of the Weak Interaction shows the arrow of time in the associate research fields of the biophysics and others. We discuss also the event horizon of the Black Holes, closing the information inside.
Category: Quantum Physics

[1231] viXra:1608.0150 [pdf] submitted on 2016-08-14 18:45:11

Consciousness-Based Subquantum Information Storage and Transport Influences All Physical Events and Objects

Authors: Robert Neil Boyd, Adrian Klein
Comments: 31 Pages.

We discuss recent developments in Quantum cosmology which are relevant to understanding life on this planet and Consciousness. We eliminate relativity theory from all cosmological consideration, which results in a stable infinite-duration infinite-volume universe, where creation is a localized and continuous process. Creation is not originating from some physically impossible and purely fictitious ecclesiastical “dot of origination” with some sort of subsequent fantasized “bang” and an equally fictional “inflation”. Instead, we point out how the Vedic concepts of Brahma (localized physical creation), Vishnu (localized maintenance and sustenance of physical form), and Shiva (localized aging and destruction of the physical) are actually physical principles that are inherent in the physical processes of the Continuous Creation of all things by the harmonious designs of an Intelligent Universe. We support the removal of relativistic considerations from cosmology as being due to an accumulation of 70 years of negative results in the search for imaginary “gravity waves”, by increasingly sophisticated technologies. We point out that decades of accumulated experimental data prove that “gravity waves” do not exist, with a data base equivalent to the accumulations of experimental evidence which was used to prove and verify Quantum Mechanics. LIGO results prove that distance is an absolute. That means volume is absolute, which means that space cannot “bend”, as has been proven by 70 years of accumulated evidence. We discuss the experimental evidence of the Force due to Time, bringing out that time in inherent in the same SubQuantum aether fluxes that are the actual cause of gravitation. The force due to time is orders of magnitude smaller than the force due to gravitation which is orders of magnitude smaller than the force due to an Electric field. The fact that these forces originate in aether fluxes allows for control of the temporal parameters of physical processes, such as reaction rates. We discuss the action-reaction forces which are due to information, Consciousness, and personality (uniqueness), which are due to the intentions, attentions, and emotional states of various forms of Consciousness, an understanding already inherent in the Schrodinger equations. Experimental support of these understandings is included. We then begin to address the vast numbers of varieties of quasi-physical forms of Consciousness, using physical records of physical evidence produced by and regarding Devic Beings, as examples. We describe how Devas are able to cause a vast array physical results, due to their being made from coherent organizations of the SubQuantum aether, which allows them direct control of all things which are originating from the SubQuantum, a vast array of potentialities. We describe the implications of these results for an improved understanding of Consciousness in all its varieties. We then explore the significance of the Golden Spiral and the phi ratio in the context of originating physical behaviors and physical forms. We bring some evidence which suggests that the rotational principle of the universe which is the origination of subatomic particle spin, spin field, the torsion field, the wrapping-rotation of Birkeland currents about themselves, the origination of the rotational helical component of transverse E/M, the origination of some forms of turbulence in fluids and gases, the origination of several types of "instabilities" in plasmas, and so on, may be originating in space itself, in the form of a space-inherent spin inducing force which is directly evolving from the Golden Spiral as a fractal force, which obviously influences the forms of living things and the behaviors of the various forces. We address the origination of time and gravitation from the SubQuantum aether plenum. We discuss in some detail the relation between mass-resonances and aether resonances. Along similar lines, we support the proposition that the DNA is an informational pattern that is inherent in space, everywhere there is a place, and that the DNA expresses itself in harmony with the environmental considerations of the given time and place. None of this is random. We include short discussions of Topological Thermodynamics and SubQuantum Kolmogorov Turbulence and the imaging of SubQuantum entities by way of instrumentation designed by Boyd and implemented by the government of Serbia. We discuss Consciousness Information Transports and the Quantum Information Field, at length, describing the importance of these factors in the Creation processes, addressing non-local quantum information field Information-flows which are arising in matter-matter, matter-energy, energy-energy, and Being-Being interactions. Mathematical treatments of infinite velocity infinitesimals allow us to perform analysis of infinite velocity SubQuantum systems. In infinite velocity systems, there are no “light cones”, nor are there any null vectors. This approach will use the Lie algebras of infinitesimals and a graded Projective Grassman vector algebra to develop essential understandings of the media and the originations and operations of Consciousness and eidetic information flows. Quantum phase-states of Stapp’s “Quantum Matter” are explored in the context of physical manifestations of forms of Consciousness. We perform an extensive discussion of the ubiquitous “force” responsible for the universal principle of Uniqueness and address some of the important facts that are resulting from this space-inherent property. Based on this, we discuss the originations of astrophysical and geological personality cells bringing out one of the decades-long Russian studies regarding cells of “land personality”. We discuss the experimental results involving local and non-local Information Storage and Transports, and some of the physical results which have obtained from information transports. We bring out the operational mechanics of Sheldrake’s “morphogenic fields” based on the physical and Consciousness-related properties of the SubQuantum aether involving interactions with the Ambient Intelligence. Finally we discuss some of the limitations of an indoctrinated and conditioned analytical mind, when trying to understand an Intelligent Universe and a localized Ambient Intelligence.
Category: Quantum Physics

[1230] viXra:1608.0117 [pdf] submitted on 2016-08-12 06:37:32

Weirder Quantum Correlations

Authors: George Rajna
Comments: 20 Pages.

A research team led by a Heriot-Watt scientist has shown that the universe is even weirder than had previously been thought. Quantum correlations do not imply instant causation. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1229] viXra:1608.0084 [pdf] submitted on 2016-08-08 13:39:05

Trapped Ion Qubits

Authors: George Rajna
Comments: 27 Pages.

Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them. [18] An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17] To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1228] viXra:1608.0080 [pdf] submitted on 2016-08-08 08:07:37

Cosmology, The Many Universes Interpretation of Quantum Mechanics and Immortality

Authors: Nick Prince
Comments: 39 Pages.

Observational evidence suggests that the universe is infinite, geometrically flat, homogeneous and isotropic on large scales. Hence we should expect to find large numbers of identical copies of any object consistent with the laws of physics including conscious identities like people. Under suitable notions of continuity of identity, This would imply that immortality of these conscious identities is a consequence of functionalism. I argue that the same conclusion can be drawn using an Everett Deutsch interpretation of quantum mechanics. I also argue why this is the correct interpretation. Lewis’s “terrifying corollary” is reviewed and I discuss how Bostrom’s simulation argument, if correct, might mitigate our futures.
Category: Quantum Physics

[1227] viXra:1608.0069 [pdf] submitted on 2016-08-07 06:56:35

Generalization of the Bernstein-Vazirani Algorithm

Authors: Koji Nagata, Tadao Nakamura
Comments: 3 pages

We present generalization of the Bernstein-Vazirani algorithm. Suppose there are many natural numbers: $a_1,a_2,a_3,\ldots,a_N$. Here, we introduce a function: $ g:{\bf N}\rightarrow \{0,1\}. $ Our goal is to determine the following values simultaneously: $ g(a_1),g(a_2),g(a_3),\ldots, g(a_N). $ The speed to determine $N$ values improves by a factor of $N$ by comparing the classical case. We obtain the Bernstein-Vazirani algorithm when $g:a_i\rightarrow a_i$.
Category: Quantum Physics

[1226] viXra:1608.0063 [pdf] submitted on 2016-08-06 03:48:03

Эффект Солошенко-Янчилина (гравитационное ускорение времени)

Authors: Soloshenko M.V., Yanchilin V.L., Kudryashov S.E.
Comments: 28 Pages. Russian is the basic language of this report

Доклад на международном конгрессе «Фундаментальные проблемы естествознания и техники», Санкт-Петербург, 25 июля Эффект Солошенко-Янчилина (The Effect of Soloshenko-Yanchilin): частота излучения атома увеличивается в поле гравитации - время ускоряется в поле гравитации в связи с уменьшением значения постоянной Планка вблизи большой массы. Эффект ускорения времени в поле гравитации (гравитационного ускорения времени) пока имеет статус гипотезы. Для его проверки учёными предложен проект эксперимента Башня Времени (www.zero-gravity-systems.com). Гипотеза о новом физическом эффекте находится в глубоком противоречии с постулатом о темпоральном процессе Общей Теории Относительности (ОТО). В то же время, эффект замедления времени в поле гравитации (гравитационного замедления времени), согласно постулату о темпоральном процессе ОТО, также не имеет прямых доказательств. За доказательство гравитационного замедления времени (согласно ОТО), в рамках официального научного конкурса, в 2014 г. объявлен приз в сто тысяч долларов. Проведение научного конкурса согласовано Российской Академией Наук. Конкурс действует до сих пор (Институт Специальных Исследований www.is-si.ru). В случае экспериментального подтверждения Эффект Солошенко-Янчилина принципиален для технологии управления гравитацией и создания теории квантовой гравитации, объединяющей квантовую механику и теорию гравитации. Источники: www.is-si.ru/timerate_eng.pdf www.is-si.ru/timerate.pdf www.is-si.ru/esy.pdf www.is-si.ru/atomic-pp.pdf International congress «Fundamental problems in natural sciences and engineering», St. Petersburg, July 25 Reporters: Soloshenko M.V., Yanchilin V.L., Kudryashov S.E. The Effect of Soloshenko-Yanchilin (gravitational time acceleration). Institute of Special Scientific Investigations (www.is-si.ru/atomic-pp.pdf): the official open scientific competition is declared - $ 100 000 prize will be paid to any expert if this expert proves the gravitational time dilation, according to the General Theory of Relativity. The Effect of Soloshenko-Yanchilin: an atomic frequency (atomic oscillation frequency) is increased in a gravitational field - time goes faster in the field of gravity and the value of Planck’s constant decreases with the increase of the absolute value of the gravitational potential. According to the Effect of Soloshenko-Yanchilin the gravitational time acceleration means that the rate of time is higher near a large mass. Till now this is a hypothesis. The scientists proposed a physical experiment (the project Time Tower) to test this hypothesis (www.zero-gravity-systems.com). This hypothesis about the new physical effect is in a very deep contradiction with the postulate about temporal process in the General Theory of Relativity (GTR). At the same time, gravitational time dilation (according to the postulate about temporal process in the GTR) also has no the direct physical evidence. In 2014 the official open scientific competition was declared. $ 100 000 prize will be paid to any expert if this expert proves the gravitational time dilation (according to the GTR). The Russian Academy of Sciences agreed the scientific competition and it is still open (www.is-si.ru Institute of Special Scientific Investigations). In case of its experimental verification (if the Effect of Soloshenko-Yanchilin is true) – this new physical effect is the fundamental theoretical basis for the gravitation control technology and it is principal for the theory of quantum gravity to unite the quantum mechanics and the theory of gravity. The sources: www.is-si.ru/timerate_eng.pdf www.is-si.ru/atomic-pp.pdf www.is-si.ru/timerate.pdf www.is-si.ru/esy.pdf
Category: Quantum Physics

[1225] viXra:1608.0052 [pdf] submitted on 2016-08-05 04:55:48

Two Atoms Absorb One Photon

Authors: George Rajna
Comments: 26 Pages.

When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1224] viXra:1608.0043 [pdf] submitted on 2016-08-05 02:39:59

Physics on the Adiabatically Changed Finslerian Manifold and Cosmology

Authors: Anton A. Lipovka
Comments: 13 Pages. technical report. Sent to a journal.

In present paper we confirm our previous result [4] that Planck constant is adiabatic invariant of electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation from cosmological parameters gives value h=6x10(-27) (erg s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that adiabatic invariant of field is ET=6x10(-27)=h. Electrodynamic equations on the Finslerian manifold are suggested. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of manifold. We consider in details two direct consequences of the equations: i) cosmological redshift of photons and ii) effects of Aharonov -- Bohm that immediately follow from equations. It is shown that quantization of system consists of electromagnetic field and baryonic components (like atoms) is obvious and has clear explanation.
Category: Quantum Physics

[1223] viXra:1608.0032 [pdf] submitted on 2016-08-03 13:21:23

Programmable Atomic Ions

Authors: George Rajna
Comments: 25 Pages.

An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17] To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1222] viXra:1608.0031 [pdf] submitted on 2016-08-03 13:38:10

Neuromorphic Cognitive Computing

Authors: George Rajna
Comments: 26 Pages.

IBM scientists have created randomly spiking neurons using phase-change materials to store and process data. This demonstration marks a significant step forward in the development of energy-efficient, ultra-dense integrated neuromorphic technologies for applications in cognitive computing. [18] An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17] To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1221] viXra:1608.0023 [pdf] submitted on 2016-08-02 11:33:02

Gravity is a Quantum Force

Authors: Alfonso Leon Guillen Gomez
Comments: 17 Pages.

The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, of the particular to the general, breaks the law of inertia of Galilei since recovers the rectilinear uniform movement but not the repose state, unless the bodies have undergone their union, although, the curved spacetime becomes flat and the curved geodesies becomes straight lines. For General Relativity is a natural law, within of a gravitational field, the uniform accelerated movement of the bodies, that leads to that a geometric curvature puts out to the bodies of the repose state for animate them of the movement of free fallen. In this paper this error of General Relativity, like generalization of the law of inertia of Galilei, is examined and it is found that it is caused by suppression of mass and force that allows conceiving acceleration like property of spacetime. This is a mathematical and non-ontological result. Indeed, mass and force are the fundament that the gravitational acceleration is a constant value for all the bodies, independently of the magnitude of mass but not of the mass and the gravitational force. The action of the gravity force, on inertial and gravitational masses of a body, produces mutual cancellation during its free fallen. In addition, by means of the third law of Newton it demonstrates that gravity is a force since weight is caused by gravity force.
Category: Quantum Physics

[1220] viXra:1608.0014 [pdf] submitted on 2016-08-02 05:28:30

Photon Fluid

Authors: George Rajna
Comments: 25 Pages.

An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump.
Category: Quantum Physics

[1219] viXra:1607.0527 [pdf] submitted on 2016-07-27 13:39:14

Chaos and Entanglement

Authors: George Rajna
Comments: 23 Pages.

Researchers blur the line between classical and quantum physics by connecting chaos and entanglement. [13] Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information. [12] Using lasers to make data storage faster than ever. [11] Some three-dimensional materials can exhibit exotic properties that only exist in "lower" dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, electrons can separate into three distinct entities, each carrying information about just one aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries information about electron spin, has been known to control magnetism in certain insulating materials whose electron spins can point in any direction and easily flip direction. Now, a new study just published in Science reveals that spinons are also present in a metallic material in which the orbital movement of electrons around the atomic nucleus is the driving force behind the material's strong magnetism. [10] Currently studying entanglement in condensed matter systems is of great interest. This interest stems from the fact that some behaviors of such systems can only be explained with the aid of entanglement. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1218] viXra:1607.0519 [pdf] submitted on 2016-07-27 05:23:14

Realizing Electron Qubits

Authors: George Rajna
Comments: 23 Pages.

To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1217] viXra:1607.0496 [pdf] submitted on 2016-07-26 19:11:55

The Planck Mass Particle Finally Discovered! The True God Particle! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 11 Pages.

In this paper we suggest that one, single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton's particle theory was very similar to that of the ancient atomists Democritus and Leucippus. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality. Although the Planck mass is enormous compared to any known sub-atomic particles, including the Higgs particle, we will explain how all known sub-atomic particles contain and are created from the Planck mass. In this paper we will show that the Planck mass is found everywhere at the subatomic level and that the Planck mass probably consists of two indivisible particles. There are good reasons to believe that the Planck mass can only exist for an instant equal to a Planck second. We show that what modern physics considers a rest mass is, in reality, ``objects`` rapidly fluctuating between their mass state and an energy state. Our new view of matter and energy seems to address a series of unsolved problems in modern physics, including the question of why we have not observed a particle with a mass close to the Planck mass, despite the fact that the Planck mass plays an important role in certain aspects of theoretical physics. We also show how our view of matter and energy is consistent with the Heisenberg's Uncertainty principle, but gives a different and more logical interpretation than the interpretation given by modern quantum mechanics. Furthermore, based on this new view of matter and energy, we can even unify electromagnetism and gravity, as basically shown by Haug 2016 already.
Category: Quantum Physics

[1216] viXra:1607.0495 [pdf] submitted on 2016-07-26 20:32:57

Time Dilation, Time and Gravity

Authors: Peter V Raktoe
Comments: 4 Pages.

Time speeds up when gravity decreases, and time slows down when gravity increases. If time wasn't affected in another situation, then Minkowski/Einstein could have been right when they concluded that time is affected by gravity. But they failed to see what it meant that time is also affected in another situation, time also slows down with an increase in speed and that means that time is not affected by gravity. Time slows down in two situations and the reason why it slows down must be the same, and that tells us that time and gravity are simultaneously affected by the same thing. And because time is not affected by gravity, we can conclude that space-time doesn't exist. And time dilation tells us something else, it tells us what the origin of time and gravity is (both are created by ether).
Category: Quantum Physics

[1215] viXra:1607.0491 [pdf] submitted on 2016-07-26 07:40:52

Qudits for Quantum Computing

Authors: George Rajna
Comments: 21 Pages.

Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1214] viXra:1607.0488 [pdf] submitted on 2016-07-26 15:03:09

Observation of a Quantum Spin Liquid

Authors: George Rajna
Comments: 21 Pages.

A novel and rare state of matter known as a quantum spin liquid has been empirically demonstrated in a monocrystal of the compound calcium-chromium oxide by team at HZB. According to conventional understanding, a quantum spin liquid should not be possible in this material. A theoretical explanation for these observations has now also been developed. The results have just been published in Nature Physics. [13] An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons-thought to be indivisible building blocks of nature-to break into pieces. [12] In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1213] viXra:1607.0482 [pdf] submitted on 2016-07-25 22:13:49

A Unified Phenomenological Description for the Magnetodynamic Origin of Mass for Leptons and for the Complete Baryon Octet and Decuplet.

Authors: Osvaldo F. Schilling
Comments: 10 pages, 2 tables and 1 figure.

The masses of the leptons and baryons are shown to be quantitatively described in terms of magnetodynamic energies considering as a fundamental feature the quantization of magnetic flux inside a zitterbewegung motion “ orbit” performed by each particle in consequence of its interaction with the vacuum background( as proposed decades ago by Barut, Jehle, and Post). As a further proof in support of the soundness of the method, we present a plot of mass against magnetic moment in which the data for the spin-3/2 decuplet particles are shifted from the data for the spin-1/2 octet by the exact numerical factor predicted from the square root of the ratio between their spin angular momenta.
Category: Quantum Physics

[1212] viXra:1607.0479 [pdf] submitted on 2016-07-25 13:35:35

Complex Frequencies

Authors: George Rajna
Comments: 30 Pages.

No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1211] viXra:1607.0473 [pdf] submitted on 2016-07-25 06:16:20

The Mach-Zehnder Interferometer Refutes the Many-Worlds Interpretation of Quantum Mechanics Everett (Everettics, the Oxford’s Interpretation)
Интерферометр Маха-Цандера опровергает многомировую интерпретацию квантовой механики Эверетта

Authors: Putenikhin P.V.
Comments: 14 Pages. rus

The EVIFM – experiment (Elitzur-Vaidman Interaction-Free Measurement) refute the Everett's many-worlds interpretation
Эксперимент БИЭВ (бесконтактные измерения Элицура – Вайдмана) опровергает многомировую интерпретацию Эверетта
Category: Quantum Physics

[1210] viXra:1607.0470 [pdf] submitted on 2016-07-25 06:43:40

Ultracold Atoms Collision

Authors: George Rajna
Comments: 21 Pages.

University of Otago physicist Niels Kjaergaard and his team have used extremely precisely controlled laser beams to confine, accelerate and gently collide ultracold atomic clouds of fermionic potassium. This allowed them to directly observe a key principle of quantum theory, the Pauli Exclusion Principle. [16] First completely scalable quantum simulation of a molecule. [15] Quantum photonic researchers start new company, Sparrow Quantum. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1209] viXra:1607.0466 [pdf] submitted on 2016-07-24 19:03:05

Variation of the Fine Structure Constant

Authors: Anton A. Lipovka, Ivan A. Cardenas
Comments: 9 Pages.

In present paper we evaluate the fine structure constant variation which should take place as the Universe is expanded and its curvature is changed adiabatically. This changing of the fine structure constant is attributed to the energy lost by physical system (consist of baryonic component and electromagnetic field) due to expansion of our Universe. Obtained ratio (d alpha)/alpha = 1. 10{-18} (per second) is only five times smaller than actually reported experimental limit on this value. For this reason this variation can probably be measured within a couple of years. To argue the correctness of our approach we calculate the Planck constant as adiabatic invariant of electromagnetic field, from geometry of our Universe in the framework of the pseudo- Riemannian geometry. Finally we discuss the double clock experiment based on Al+ and Hg+ clocks carried out by T. Rosenband et al. (Science 2008). We show that in this particular case there is an error in method and this way the fine structure constant variation can not be measured if the fine structure constant is changed adiabatically.
Category: Quantum Physics

[1208] viXra:1607.0465 [pdf] submitted on 2016-07-24 19:11:03

Topological Condensation and Conversion of "Vapour Phase" Photons into Kinetic Energy

Authors: Martin Dudziak, Matti Pitkanen
Comments: 12 Pages.

A quantum topological network model that might allow for the production of energy through the employment of vacuum electromagnetic currents form is based upon foundational principles of topological geometrodynamics (TGD) [Pitkanen, 1995a, b]. Such a production photon-factory would have the capability of drawing upon a seemingly inexhaustible supply of what in TGD formalism is a "vapour phase" of photons. Particularly in the presence of Bose-Einstein condensate photons, it is theoretically possible to convert these "vapour phase" photons into condensed photons that can then be harnessed and transformed into useful kinetic energy by more traditional means. The problem of how to control the dynamics of transferring this energy into a useful and regulatable kinetic form, such as may be employed within an ion drive or any number of alternative propulsion methods, is significant and involves issues of developing coherence and resonance among locally chaotic and asynchronous systems. This difficulty may be solvable through the adaptation of algorithms and models developed for synchronizing heterogeneous nonequilibrium oscillator networks.
Category: Quantum Physics

[1207] viXra:1607.0464 [pdf] submitted on 2016-07-24 20:50:45

How Quantum Events Can Play A Role in Coherent Biomolecular Systems

Authors: Martin Dudziak
Comments: 48 Pages. Early work, 1990s-2001

Foundational theory and models relating quantum physics and biomolecular communications (intracellular and intercellular) - solitons, biosolitons, quantum entanglement and coherence.
Category: Quantum Physics

[1206] viXra:1607.0463 [pdf] submitted on 2016-07-24 20:58:32

Quantum Dynamic Networks, Chaotic Solitons and Emergent Structures in Subcellular Processes: Possible Implications for Learning, Memory, and Cognition

Authors: Martin Dudziak
Comments: 11 Pages. Early work, @ 1994-1997

Molecular dynamics across large neural membrane and dispersed cytoskeletal structures are conjectured to provide the matrix of actions required for the emergence of coherent self- organized behavior. These patterns may be representable as non-stationary yet stable solitons, chaoitons, occurring as topological deformations at the scale of protein subchains, capable of stability over time for the storage of information, providing the basis for learning, memory, and consciousness. The problem of scalability may be addressed by examining self-similar soliton-like behavior among complexes of neurons operating within the matrix of synapto-dendritic field activity. Atomic force microscopic observation is seen as the most promising avenue toward experimental confirmation of such theoretical models.
Category: Quantum Physics

[1205] viXra:1607.0462 [pdf] submitted on 2016-07-24 21:02:46

Hydrodynamics and the Simultaneity of Local Chaos and Global Particle-Like Behavior

Authors: Martin Dudziak, Matti Pitkanen
Comments: 12 Pages.

complex system moving toward a systemic stage of chaotic behavior often returns to some near-equilibrium through a set of stabilizing processes that are themselves locally chaotic. At different systemic levels this may be perceived in meteorological phenomena (hurricanes, typhoons, and tornadoes being classic examples), certain aspects of cell division and embryonic morphogenesis, thermal inversions, and in biological populations and societies. We concentrate on one aspect of this problem and address a formulation of hydrodynamics from the perspective of topological geometrodynamics (TGD) and a many-sheeted spacetime with characteristic p-adic length scales. We apply the TGD model as a method for understanding the question of how an apparent global and finite-bounded state of a system that is inherently also open and unbounded can operate to generate a massively parallel sequence of events without some disturbing form of nonlocality. Interaction of discrete 3-spaces through a network of “wormhole-like” connection or transfer points can provide an explanation of the convergence process by which events that are on the scale of the far-from-equilibrium system chaotic and disruptive do occur in specific spacetime locales relative to the scale of the overall system. The same multiple-space, wormhole-type transfer processes may also help to predict movement of such chaotic “release” engines once initiated until they have exhausted their supply of energy, via the excess energies of the embedding system in which they exist, and thereby introduced a new level of stabilization to that embedding system. Hydrodynamic and also aerodynamic vortices such as are characteristic of hurricanes and typhoons are approached through a particle description involving increasingly larger p-adic length scales. Topologically condensed ‘fluids’ of smaller p-adic length scale particles fuse and the kinetic energy of the particle motion in this length scale would be dissipated as turbulent fluid motion in shorter length scales by the formation of vortices.
Category: Quantum Physics

[1204] viXra:1607.0461 [pdf] submitted on 2016-07-24 21:05:49

Topological Process Dynamics and Applications to Biosystems

Authors: Martin Dudziak
Comments: 61 Pages.

Development of theoretical foundations linking topological quantum space-time models to biological systems and evolution of macromolecular complex structures.
Category: Quantum Physics

[1203] viXra:1607.0442 [pdf] submitted on 2016-07-23 13:21:22

Titius-Bode Law as a Direct Manifestation of Gravitational Waves

Authors: J.R. Croca, P. Castro, M. Gatta, A. Cardoso, R. Moreira
Comments: 10 pages, 4 figures

Since its initial proposal in 1766, Titius-Bode empirical law remains a puzzling source of discomfort as it predicts the average distances from the planets to the Sun for no apparent reason. Using a framework analogous to de Broglie’s pilot wave theory and the self-organizing Principle of Eurhythmy, we claim that several main physical quantities describing the Solar System are quantified. Hence Titius-Bode Law is a direct manifestation of gravitational waves in the Solar System.
Category: Quantum Physics

[1202] viXra:1607.0438 [pdf] submitted on 2016-07-23 12:03:37

Exact Diagonalization of the D-Dimensional Spatially Confined Quantum Harmonic Oscillator

Authors: Kunle Adegoke, Adenike Olatinwo, Henry Otobrise, Funmi Akintujoye, Afees Tiamiyu
Comments: 18 Pages.

In the existing literature various numerical techniques have been developed to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy eigenvalues, such methods often involve indirect approaches such as searching for the roots of hypergeometric functions or numerically solving a differential equation. In this paper, however, we derive an explicit matrix representation for the Hamiltonian of a confined quantum harmonic oscillator in higher dimensions, thus facilitating direct diagonalization.
Category: Quantum Physics

[1201] viXra:1607.0435 [pdf] submitted on 2016-07-23 12:21:26

On Approximating the Free Harmonic Oscillator by a Particle in a Box

Authors: Kunle Adegoke, Adenike Olatinwo, Henry Otobrise, Funmi Akintujoye, Afees Tiamiyu
Comments: 11 Pages.

The main purpose of this paper is to demonstrate and illustrate, once again, the potency of the variational technique as an approximation procedure for the quantization of quantum mechanical systems. By choosing particle-in-a-box wavefunctions as trial wavefunctions, with the size of the box as the variation parameter, approximate eigenenergies and the corresponding eigenfunctions are obtained for the one dimensional free harmonic oscillator.
Category: Quantum Physics

[1200] viXra:1607.0433 [pdf] submitted on 2016-07-23 08:41:31

Macroscopic Quantum Phenomena

Authors: George Rajna
Comments: 14 Pages.

Scientists have discovered an anomaly in the properties of ice at very cold temperatures near 20 K, which they believe can be explained by the quantum tunneling of multiple protons simultaneously. The finding is a rare instance of quantum phenomena emerging on the macroscopic scale, and is even more unusual because it is only the second time—the first being superconductivity— that macroscopic quantum phenomena have been observed in a system that is based on fermions, which include protons, electrons, and all other matter particles. Other systems exhibiting macroscopic quantum phenomena have been based on photons, a type of boson, which mediate the forces between matter. [11] Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. [10] An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process. The new theory could lead to faster and smaller electronic components, for which quantum tunneling is a significant factor. It will also lead to a better understanding of diverse areas such as electron microscopy, nuclear fusion and DNA mutations. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: Quantum Physics

[1199] viXra:1607.0428 [pdf] submitted on 2016-07-23 04:23:12

Simultaneous Photon Absorption

Authors: George Rajna
Comments: 21 Pages.

Theorists show that two atoms in an optical cavity can absorb the same photon. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1198] viXra:1607.0420 [pdf] submitted on 2016-07-22 10:03:40

Quantum Error Correction

Authors: George Rajna
Comments: 21 Pages.

Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information. [12] Using lasers to make data storage faster than ever. [11] Some three-dimensional materials can exhibit exotic properties that only exist in "lower" dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, electrons can separate into three distinct entities, each carrying information about just one aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries information about electron spin, has been known to control magnetism in certain insulating materials whose electron spins can point in any direction and easily flip direction. Now, a new study just published in Science reveals that spinons are also present in a metallic material in which the orbital movement of electrons around the atomic nucleus is the driving force behind the material's strong magnetism. [10] Currently studying entanglement in condensed matter systems is of great interest. This interest stems from the fact that some behaviors of such systems can only be explained with the aid of entanglement. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1197] viXra:1607.0405 [pdf] submitted on 2016-07-22 07:10:20

Quantum Tomography

Authors: George Rajna
Comments: 24 Pages.

A breakthrough into the full characterisation of quantum states has been published today as a prestigious Editors' Suggestion in the journal Physical Review Letters. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1196] viXra:1607.0389 [pdf] submitted on 2016-07-21 04:30:38

Quantized Spin Waves

Authors: George Rajna
Comments: 21 Pages.

In a new study, University of Iowa theoretical physicist Michael Flatté proposes that a magnetic current flowing through a magnetic iron sheet will cause a current in a second, nearby magnetic iron sheet, even though the sheets aren't connected. The movement is created, Flatté and his team say, when electrons whose magnetic spin is disturbed by the current on the first sheet exert a force, through electromagnetic radiation, to create magnetic spin in the second sheet. [13] In the pursuit of material platforms for the next generation of electronics, scientists are studying new compounds such as topological insulators (TIs), which support protected electron states on the surfaces of crystals that silicon-based technologies cannot. Dramatic new physical phenomena are being realized by combining this field of TIs with the subfield of spin-based electronics known as spintronics. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1195] viXra:1607.0388 [pdf] submitted on 2016-07-20 20:06:27

Why do We Live in a Quantum World?

Authors: Craig Alan Feinstein
Comments: 2 Pages.

Anybody who has ever studied quantum mechanics knows that it is a very counter-intuitive theory, even though it has been an incredibly successful theory. This paper aims to remove this counter-intuitiveness by showing that the laws of quantum mechanics are a natural consequence of Konrad Zuse's and Edward Fredkin's digital universe hypothesis combined with classical Newtonian mechanics. We also present a possible way to test the digital universe hypothesis.
Category: Quantum Physics

[1194] viXra:1607.0383 [pdf] submitted on 2016-07-20 11:05:30

Molecule Quantum Simulation

Authors: George Rajna
Comments: 20 Pages.

First completely scalable quantum simulation of a molecule. [15] Quantum photonic researchers start new company, Sparrow Quantum. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1193] viXra:1607.0370 [pdf] submitted on 2016-07-19 13:33:34

Quantum Holography

Authors: George Rajna
Comments: 28 Pages.

Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1192] viXra:1607.0368 [pdf] submitted on 2016-07-19 10:40:13

The Rydberg Formula and Rydberg Series

Authors: Norman Graves
Comments: 7 Pages.

Consideration of the Rydberg Series leads to a model for the hydrogen atom in which the variable of quantisation is the Lorentz factor, Gamma, and not angular momentum as postulated by Niels Bohr and integral to current theories. This is consistent with an atom in which the electron is seen as an objectively real particle having deterministic position and velocity. The electron is seen to orbit at a constant radius irrespective of the energy state of the atom and so there is no change in potential energy between energy states. All of the energy changes are therefore kinetic in nature. The model also provides a simple physical explanation of the hitherto mysterious Fine Structure Constant.
Category: Quantum Physics

[1191] viXra:1607.0196 [pdf] submitted on 2016-07-16 21:43:35

Quantum Mechanics In 5-dimensional Space-time And Special Relativity Theory

Authors: XiaoLin li
Comments: 14 Pages.

Results of Special Relativity Theory can be derived out from Quantum Mechanics. Quantum Mechanics is independent integrated theory. There exist a new physics view. Real physical world is 5-dimensional space-time. Human world is 4-dimensional space-time,it’s only the projection of real physics world. Quantum Mechanical particle-wave is present in 5-dimensional space-time. So we can derive out Mass-energy equation. So we can derive out all results of Special Relativity Theory. In 5-dimensional space-time,all the particles speed is the light speed c. That is reason that the light speed c is very special. Coordinates transformation in 5-dimensional space-time,can derive out Lorentz transformation. In 5-dimensional space-time,space is relative,but time is absolute. In 5-dimensional space-time,there only exist space expansion or space contraction,not exist time expansion or time contraction. The new 5-dimensional space-time theory,not only is consistent with space-time system of Special Relativity Theory,but also can transition to space-time system in Lorentz symmetry breaking smoonthly. The new 5-dimensional space-time theory has more wide range adaptation than Special Relativity Theory.
Category: Quantum Physics

[1190] viXra:1607.0171 [pdf] submitted on 2016-07-14 11:40:51

The David Bohm Pilot-Wave Interpretation is the Best Approach to Reality of Quantum Physics

Authors: Dmitri Martila
Comments: 1 Page.

The problem with introducing the particle trajectories into Quantum Physics is the need of the violation of the Energy Conservation law. The latter law must hold, because the Noether's theorem requires it for the case of homogeneous time. Therefore, the wonder is happening, provided, that the David Bohm's theory is proved. But latter proof is there, in [M. Ringbauer et al.: Nature Physics, 2015] together with my explanation in the present manuscript. Enjoy! All rights Reserved!
Category: Quantum Physics

[1189] viXra:1607.0162 [pdf] submitted on 2016-07-14 02:40:05

Universal Quantum Gate

Authors: George Rajna
Comments: 21 Pages.

Scientists have now developed a universal quantum gate, which could become the key component in a quantum computer. [14] Using a small quantum system consisting of three superconducting qubits, researchers at UC Santa Barbara and Google have uncovered a link between aspects of classical and quantum physics thought to be unrelated: classical chaos and quantum entanglement. Their findings suggest that it would be possible to use controllable quantum systems to investigate certain fundamental aspects of nature. [13] Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1188] viXra:1607.0154 [pdf] submitted on 2016-07-13 04:47:14

Qubit Entanglement Entropy

Authors: George Rajna
Comments: 19 Pages.

Using a small quantum system consisting of three superconducting qubits, researchers at UC Santa Barbara and Google have uncovered a link between aspects of classical and quantum physics thought to be unrelated: classical chaos and quantum entanglement. Their findings suggest that it would be possible to use controllable quantum systems to investigate certain fundamental aspects of nature. [13] Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1187] viXra:1607.0147 [pdf] submitted on 2016-07-12 14:55:35

Gij Zult Modulair Construeren

Authors: J.A.J. van Leunen
Comments: 4 Pages.

Kijk om je heen en je raakt er snel van overtuigd dat alle losse objecten ofwel modules of modulaire systemen zijn. Het lijkt erop dat de schepper modulair bouwen tot zijn devies gemaakt heeft. Er bestaan echter ook continuüms en die continuüms lijken in verband te staan met de losse objecten. Als waarnemers van deze feiten proberen we deze verbanden te begrijpen.
Category: Quantum Physics

[1186] viXra:1607.0146 [pdf] submitted on 2016-07-12 15:01:42

Thou Shalt Construct in a Modular Way

Authors: J.A.J. van Leunen
Comments: 4 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment.
Category: Quantum Physics

[1185] viXra:1607.0143 [pdf] submitted on 2016-07-12 08:54:11

Ultracold Pauli Exclusion

Authors: George Rajna
Comments: 24 Pages.

University of Otago physicist Niels Kjaergaard and his team have used extremely precisely controlled laser beams to confine, accelerate and gently collide ultracold atomic clouds of fermionic potassium. [15] Scientists obtain evidence of many-body localization in a closed quantum system. [14] Experiments using inelastic neutron scattering at the Australian Centre for Neutron Scattering have found indications of a possible new quantum spin state in a novel antiferromagnetic material barium ytterbium zinc oxide (Ba3Yb2Zn5O11) which provides both a challenge and validation of the third law of thermodynamics. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1184] viXra:1607.0138 [pdf] submitted on 2016-07-11 12:50:34

On New Quantum Search Algorithms and Complexity of NP-Complete Problems

Authors: Dhananjay P. Mehendale
Comments: 14 pages

We develop three new quantum algorithms for searching the desired target state in the unstructured database of size N. The first algorithm requires Log N iterative steps. It constructs two quantum bags of equal size in terms of two quantum states, out of which exactly one quantum state will have nonzero overlap with the target state. This determination of overlap is done by taking the inner product, in Log N time [2], of the implicitly known target state with any one of these two quantum states. The second algorithm requires just one single step which uses a new suitable operator and the choice of this operator is problem dependent, i.e. it depends upon the number of qubits required to be used to represent an element in the index set. The third algorithm again requires only a single step and this algorithm makes use of a fixed (same) operator. It is known that algorithm for unstructured database search can be easily adaptable for solving NP-Complete problems. However, the computational complexity of NP-Complete problems after the adaptations of both the classical as well as quantum [1] search algorithms remains of the exponential order as the exponent for quantum [1] algorithm changes only to one-half times the exponent for classical algorithm. But for our quantum algorithms the exponent falls substantially so that our new quantum algorithms for unstructured search are capable if reducing the computational complexity of NP-Complete problems to polynomial order!
Category: Quantum Physics

[1183] viXra:1607.0137 [pdf] submitted on 2016-07-11 12:53:35

Distant Nuclear Spins Couple

Authors: George Rajna
Comments: 22 Pages.

For the first time, researchers at the University of Basel in Switzerland have coupled the nuclear spins of distant atoms using just a single electron. [14] Experiments using inelastic neutron scattering at the Australian Centre for Neutron Scattering have found indications of a possible new quantum spin state in a novel antiferromagnetic material barium ytterbium zinc oxide (Ba3Yb2Zn5O11) which provides both a challenge and validation of the third law of thermodynamics. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1182] viXra:1607.0106 [pdf] submitted on 2016-07-08 18:11:26

The Prediction And The Discovery Of The X(4500) Particle

Authors: Rodolfo A. Frino
Comments: 5 Pages.

In September 2015 I wrote a paper where I predicted the existence of a new particle with a rest mass of 4500 MeV /c2 . The particle which was discovered by CERN's scientists in 2016 seems to be a tetraquark. The particle which is known as X(4500) is a member of a family of possible tetraquarks.
Category: Quantum Physics

[1181] viXra:1607.0105 [pdf] submitted on 2016-07-08 20:43:00

Proposed Experiments to Test the Foundations of Quantum Computing

Authors: Alan M. Kadin, Steven B. Kaplan
Comments: 8 Pages. Submitted to International Conference on Rebooting Computing June 2016, to be held in San Diego CA, Oct. 2016

Quantum computing promises computational performance that is exponentially faster than any conceivable classical computer. This is due to the theoretically expected scaling of N entangled qubits, with parallel evolution of 2^N quantum states. This is in sharp contrast to classical computing, where N bits may have 2^N classical states, but only one at a time. It is widely believed that quantum superposition and entanglement have been demonstrated in several experimental systems, and that practical quantum computing can be achieved once sufficiently long quantum relaxation times are obtained. On the contrary, we suggest that there may be serious problems with quantum computing on both the macroscopic and microscopic levels, and that the experiments thus far have not proven the existence of non-classical superposition states, which are necessary for the proper functioning of qubits. In order to investigate this further, we propose new experiments in three physical systems: electron spins, single photons, and superconducting loops. We further suggest that certain more limited classes of quantum computing, such as quantum annealing, do not require quantum entanglement, and can achieve significant performance enhancements even if universal quantum computing proves to be impossible.
Category: Quantum Physics

[1180] viXra:1607.0101 [pdf] submitted on 2016-07-09 00:32:53

The Superluminal Signal in Quantum Billiard and in the Casimir Configuration

Authors: Miroslav Pardy
Comments: 6 Pages. ----

The quantum energy levels of electron inside of the box with the infinite barriers at point 0 and l is considered. The situation is then extended to the thee dimensions. Quantum mechanics of such so called quantum billiard does not involve the retarded wave functions (the retarded Green functions) and it means that the quantum pressure is instantaneous at the walls of the box. The instantaneous process is equal to the action at a distance, or to the existence of the superluminal signals inside of the quantum box. The similar situation is in case of the Casimir effect between two capacitor plates.
Category: Quantum Physics

[1179] viXra:1607.0100 [pdf] submitted on 2016-07-08 11:19:50

Many-body Localization in a Closed Quantum System

Authors: George Rajna
Comments: 23 Pages.

Scientists obtain evidence of many-body localization in a closed quantum system. [14] Experiments using inelastic neutron scattering at the Australian Centre for Neutron Scattering have found indications of a possible new quantum spin state in a novel antiferromagnetic material barium ytterbium zinc oxide (Ba3Yb2Zn5O11) which provides both a challenge and validation of the third law of thermodynamics. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1178] viXra:1607.0099 [pdf] submitted on 2016-07-08 10:50:04

Liquid-like Spin Quantum State

Authors: George Rajna
Comments: 21 Pages.

Experiments using inelastic neutron scattering at the Australian Centre for Neutron Scattering have found indications of a possible new quantum spin state in a novel antiferromagnetic material barium ytterbium zinc oxide (Ba3Yb2Zn5O11) which provides both a challenge and validation of the third law of thermodynamics. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1177] viXra:1607.0088 [pdf] submitted on 2016-07-08 02:20:37

Photodissociation

Authors: George Rajna
Comments: 25 Pages.

Photodissociation A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape,
Category: Quantum Physics

[1176] viXra:1607.0085 [pdf] submitted on 2016-07-07 07:44:21

Photons Quantum Processor

Authors: George Rajna
Comments: 24 Pages.

Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1175] viXra:1607.0081 [pdf] submitted on 2016-07-07 05:35:33

Quantum Web Graphs

Authors: George Rajna
Comments: 18 Pages.

Physicists have shown that, by describing a quantum network as a mathematical graph, they can determine the best way to use quantum repeaters to achieve long-distance entanglement. [13] Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1174] viXra:1607.0066 [pdf] submitted on 2016-07-05 16:11:42

A Geometrodynamical Interpretation of the Measurement Problem

Authors: Tomer Shushi
Comments: 9 Pages.

In this paper we introduce a new interpretation of the measurement problem of how the wavefunction collapse occur, based on the notion of geometrodynamics, which is a field that attempts to describe our reality from a geometric and dynamic perspectives. The interpretation is then discussed and analyzed.
Category: Quantum Physics

[1173] viXra:1607.0057 [pdf] submitted on 2016-07-06 03:30:33

Dream of Quantum Computing

Authors: George Rajna
Comments: 17 Pages.

Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1172] viXra:1607.0051 [pdf] submitted on 2016-07-05 09:15:32

Quantum Communication

Authors: George Rajna
Comments: 18 Pages.

Now in a new study, researchers have experimentally demonstrated a quantum fingerprinting protocol and shown that it can surpass the classical limit for solving communication complexity problems. [10] Quantum superposition has been used to compare data from two different sources more efficiently than is possible, even in principle, on a conventional computer. The scheme is called "quantum fingerprinting" and has been demonstrated by physicists in China. It could ultimately lead to better large-scale integrated circuits and more energy-efficient communication. [9] By leveraging the good ideas of the natural world and the semiconductor community, researchers may be able to greatly simplify the operation of quantum devices built from superconductors. They call this a "semiconductor-inspired" approach and suggest that it can provide a useful guide to improving superconducting quantum circuits. [8] The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, a switch both on and off, a cat both dead and alive. Or entanglement, what Einstein called "spooky action-at-distance" in which objects are invisibly linked, even when separated by huge distances. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1171] viXra:1607.0019 [pdf] submitted on 2016-07-01 23:17:38

Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. XRD data showed that biofield treatment has altered the lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of treated magnesium powder, as compared to control. In addition, the crystallite size of treated magnesium was significantly reduced up to 16.70, 16.70, and 28.59% on day 7, 41 and 63 respectively as compared to control. Besides this, the surface area of treated magnesium powder was increased by 36.5 and 10.72% on day 6 and 72 respectively, whereas it was reduced by 32.77% on day 92 as compared to control. In addition, biofield treatment has also altered the particle sizes d10, d50, and d99 (size, below which 10, 50, and 99% particles were present, respectively) as compared to control. Overall, data suggest that biofield treatment has substantially altered the atomic and physical properties of treated magnesium powder.
Category: Quantum Physics

[1170] viXra:1607.0006 [pdf] submitted on 2016-07-01 08:20:06

Hybrid Quantum Computer

Authors: George Rajna
Comments: 25 Pages.

The multi-qubit chip has five superconducting transmon qubits and associated readout resonators. When cooled to absolute zero, such a device can compute things like quantum simulations of advanced materials. [16] Bringing together the best of two types of quantum computer for the first time, researchers at Google have created a prototype that combines the architecture of both a universal quantum computer and an analogue quantum computer. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1169] viXra:1607.0005 [pdf] submitted on 2016-07-01 09:21:55

Classical 'Quantum' Bounds

Authors: George Rajna
Comments: 11 Pages.

The physicists, Diego Frustaglia et al., at the University of Sevilla in Spain, have published a paper on the emergence of quantum bounds in classical experiments in a recent issue of Physical Review Letters. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[1168] viXra:1607.0001 [pdf] submitted on 2016-07-01 06:04:15

Terahertz Waves Power-Splitting

Authors: George Rajna
Comments: 21 Pages.

One of the most basic components of any communications network is a power splitter that allows a signal to be sent to multiple users and devices. Researchers from Brown University have now developed just such a device for terahertz radiation—a range of frequencies that may one day enable data transfer up to 100 times faster than current cellular and Wi-Fi networks. [11] The National High Magnetic Field Laboratory, with facilities in Florida and New Mexico, offers scientists access to enormous machines that create record-setting magnetic fields. The strong magnetic fields help researchers probe the fundamental structure of materials to better understand and manipulate their properties. Yet large-scale facilities like the MagLab are scarce, and scientists must compete with others for valuable time on the machines. [10] By showing that a phenomenon dubbed the "inverse spin Hall effect" works in several organic semiconductors - including carbon-60 buckyballs - University of Utah physicists changed magnetic "spin current" into electric current. The efficiency of this new power conversion method isn't yet known, but it might find use in future electronic devices including batteries, solar cells and computers. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1167] viXra:1606.0336 [pdf] submitted on 2016-06-29 23:18:35

Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Peptone

Authors: Mahendra Kumar Trivedi, Snehasis Jana
Comments: 6 Pages.

Bile salt (BS) and proteose peptone (PP) are important biomacromolecules being produced inside the human body. The objective of this study was to investigate the influence of biofield treatment on physicochemical properties of BS and PP. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated BS and PP samples were characterized by particle size analyzer (PSA), Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry (DSC), x-ray diffraction (XRD), and thermogravimetric analysis (TGA). PSA results showed increase in particle size (d50 and d99) of both treated BS and PP as compared to control. Surface area analysis showed minimal decrease by 1.59%, in surface area of treated BS as compared to control. However, the treated PP showed increase (8%) in surface area as compared to control. DSC characterization showed increase in melting temperature of treated BS as compared to control. Whereas, DSC thermogram of treated PP showed decrease in melting temperature with respect to control. Moreover, the DSC of control and treated PP showed presence of exothermic peaks which were possibly due to protein aggregation. The treated PP showed higher exothermic transition temperature as compared to control. XRD analysis revealed slight reduction in crystalline nature of BS as compared to control. On the other hand, XRD data of control and treated PP showed an amorphous nature. TGA analysis of treated BS showed maximum thermal decomposition temperature at 22°C which was higher as compared to control sample (106°C). This could be due to biofield treatment which may enhance the thermal stability of treated BS with respect to control. However, the TGA thermogram of treated PP showed decrease in maximum thermal stability as compared to control. The overall results showed that biofield treatment has significantly altered the physical and thermal properties of BS and PP.
Category: Quantum Physics

[1166] viXra:1606.0329 [pdf] submitted on 2016-06-30 04:21:06

Low Dose Rate Imaging

Authors: J.A.J. van Leunen
Comments: 3 Pages.

Heerbaan 6The quality of low dose rate imaging strongly depends on the number of quanta that take part in the detected image. If quantum multiplication is applied, then the detective quantum efficiency of the imaging chain is an important imaging quality characteristic. Also the blur caused by the chain of imaging components that take part in the imaging process affects the imaging quality. For linear operating imaging devices this translates in the optical transfer function of the participating components. The fact that these qualifiers play a decisive role is based on the assumption that human perception is in a special way optimized for perceiving low dose rate images.
Category: Quantum Physics

[1165] viXra:1606.0313 [pdf] submitted on 2016-06-28 08:16:06

Bose-Einstein Condensates

Authors: George Rajna
Comments: 17 Pages.

Bose-Einstein condensates (BECs) are macroscopic systems that have quantum behaviour, and are useful for exploring fundamental physics. Now researchers at the Gakushuin University and the University of Electro-Communications have studied how the miscibility of multicomponent BECs affects their behaviour, with surprising results. [8] Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic antisocial behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made from bosons, life would certainly not look like it does. Recently, JQI theorists have proposed an elegant method for achieving transmutation—that is, making bosons act like fermions. This work was published in the journal Physical Review Letters. [7] Quantum physics tell us that even massive particles can behave like waves, as if they could be in several places at once. This phenomenon is typically proven in the diffraction of a matter wave at a grating. Researchers have now carried this idea to the extreme and observed the delocalization of molecules at the thinnest possible grating, a mask milled into a single layer of atoms. [6] Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5] Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[1164] viXra:1606.0304 [pdf] submitted on 2016-06-28 09:39:48

Superconductor's Asymmetry

Authors: George Rajna
Comments: 14 Pages.

Researchers from the Foundation for Fundamental Research on Matter and the University of Amsterdam (the Netherlands), together with researchers from the Institute for Materials Science in Tsukuba (Japan), have discovered an exceptional new quantum state within a superconducting material. This exceptional quantum state is characterised by a broken rotational symmetry – in other words, if you turn the material in a magnetic field, the superconductivity isn't the same everywhere in the material. [27] Scientists at the U.S. Department of Energy's Brookhaven National Laboratory, Cornell University, and collaborators have produced the first direct evidence of a state of electronic matter first predicted by theorists in 1964. The discovery, described in a paper published online April 13, 2016, in Nature, may provide key insights into the workings of high-temperature superconductors. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1163] viXra:1606.0301 [pdf] submitted on 2016-06-27 23:14:01

Effect of Biofield Treatment on Structural and Morphological Properties of Silicon Carbide

Authors: Mahendra Kumar Trivedi, Gopal Nayak
Comments: 4 Pages.

Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. The control and biofield treated SiC powder was analysed using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy techniques with respect to control. The XRD pattern revealed that crystallite size was significantly increased by 40% in treated SiC as compared to control. The biofield treatment has induced changes in lattice parameter, density and molecular weight of atoms in the SiC powder. Particle size was increased upto 2.4% and the surface area was significantly reduced by 71.16% in treated SiC as compared to control. The FT-IR results indicated that the stretching vibrations frequency of silicon-carbon bond in treated SiC (925 cm-1) was shifted towards lower frequency as compared to control (947 cm-1). These findings suggest that biofield treatment has substantially altered the physical and structural properties of SiC powder.
Category: Quantum Physics

[1162] viXra:1606.0299 [pdf] submitted on 2016-06-28 03:45:03

3-D Pattern of Quantum Computers

Authors: George Rajna
Comments: 25 Pages.

The era of quantum computers is one step closer as a result of research published in the current issue of the journal Science. The research team has devised and demonstrated a new way to pack a lot more quantum computing power into a much smaller space and with much greater control than ever before. The research advance, using a 3-dimensional array of atoms in quantum states called quantum bits—or qubits—was made by David S. Weiss, professor of physics at Penn State University, and three students on his lab team. He said "Our result is one of the many important developments that still are needed on the way to achieving quantum computers that will be useful for doing computations that are impossible to do today, with applications in cryptography for electronic data security and other computing-intensive fields." [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1161] viXra:1606.0289 [pdf] submitted on 2016-06-26 23:18:38

Biofield Treatment: an Alternative Approach to Combat Multidrug-Resistant Susceptibility Pattern of Raoultella Ornithinolytica

Authors: Mahendra Kumar Trivedi, Mayank Gangwar, Snehasis Jana
Comments: 6 Pages.

Raoultella ornithinolytica is belongs to the family of Enterobacteriaceae, a Gram-negative encapsulated aerobic bacillus associated with bacteremia and urinary tract infections. As biofield therapy is increasingly popular in biomedical heath care, so present study aimed to evaluate the impact of Mr. Trivedi’s biofield treatment on antimicrobial sensitivity, minimum inhibitory concentration (MIC), biochemical study, and biotype number of multidrug resistant strain of R. ornithinolytica. Clinical sample of R. ornithinolytica was divided into two groups i.e. control and biofield treated which were analyzed for the above parameters using MicroScan Walk-Away® system on day 10 after treatment. Antimicrobial sensitivity assay results showed a significant increase (60.71%) in sensitivity pattern of antimicrobials i.e. changed from resistant to susceptible while 10.71% of tested antimicrobials changed from intermediate to susceptible as compared to control. MIC results showed a significant decrease in MIC values of 71.88% tested antimicrobials as compared to control. Biochemical reaction study showed 15.15% alteration in different biochemical such as cetrimide, cephalothin, kanamycin, and ornithine after biofield treatment as compared to control. A significant change in biotype number (7775 4370) was also observed with organism identified as Klebsiella oxytoca after biofield treatment as compared to control (7775 5372). Overall results conclude that biofield treatment could be used as complementary and alternative treatment strategy against multidrug resistant strain of R. ornithinolytica with respect to improve the sensitivity and reduce the MIC values of antimicrobials. Hence, it is assumed that biofield treatment might be a suitable cost effective treatment strategy in near future, which could have therapeutic value in patients suffering from multidrug resistant pathogens.
Category: Quantum Physics

[1160] viXra:1606.0280 [pdf] submitted on 2016-06-26 06:04:18

Quantum Entanglement Swapping

Authors: George Rajna
Comments: 24 Pages.

There is a phenomenon called entanglement swapping. Suppose that Alice and Bob have an entangled state. If I then take one part of Alice's entangled state, and another part from Bob, and I do a joint measurement on them, the remaining parts of Alice's and Bob's states will also become entangled, even though they never interacted. [16] RMIT quantum computing researchers have developed and demonstrated a method capable of efficiently detecting high-dimensional entanglement. [15] More than 200 beryllium ions have been entangled in a record-breaking experiment done by researchers at NIST in the US. [14] Experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection. [13] Now, researchers have come up with a rather simple scheme for providing quantum error controls: entangle atoms from two different elements so that manipulating won't affect the second. Not only is this highly effective, the researchers show that they can construct quantum logic gates with the setup. And while they were at it, they demonstrate the quantum nature of entanglement with a precision that's 40 standard deviations away from classic physical behavior. [12] A team of quantum physicists from Harvard University measured a property called entanglement entropy, which quantifies the apparent randomness that comes with observing just a portion of an entangled whole. Markus Greiner and colleagues used lasers to create an optical cage with four compartments, each of which held a rubidium atom chilled to nearly absolute zero. The researchers could tweak the laser settings to adjust the height of the walls between compartments. If the walls were low enough, atoms could exploit their strange quantum ability to occupy multiple compartments at once. As the four atoms jumped around, they interacted and established a state of entanglement. [11] Physicists in the US and Serbia have created an entangled quantum state of nearly 3000 ultracold atoms using just one photon. This is the largest number of atoms ever to be entangled in the lab, and the researchers say that the technique could be used to boost the precision of atomic clocks. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1159] viXra:1606.0266 [pdf] submitted on 2016-06-25 09:25:20

Measuring Polarization of Light

Authors: George Rajna
Comments: 24 Pages.

Researchers from North Carolina State University have developed a new tool for detecting and measuring the polarization of light based on a single spatial sampling of the light, rather than the multiple samples required by previous technologies. The new device makes use of the unique properties of organic polymers, rather than traditional silicon, for polarization detection and measurement. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape,
Category: Quantum Physics

[1158] viXra:1606.0261 [pdf] submitted on 2016-06-24 13:58:55

Magnetic Anisotropy

Authors: George Rajna
Comments: 21 Pages.

There is a big effort in industry to produce electrical devices with more and faster memory and logic. Magnetic memory elements, such as in a hard drive, and in the future in what is called MRAM (magnetic random access memory), use electrical currents to encode information. However, the heat which is generated is a significant problem, since it limits the density of devices and hence the performance of computer chips. [11] The National High Magnetic Field Laboratory, with facilities in Florida and New Mexico, offers scientists access to enormous machines that create record-setting magnetic fields. The strong magnetic fields help researchers probe the fundamental structure of materials to better understand and manipulate their properties. Yet large-scale facilities like the MagLab are scarce, and scientists must compete with others for valuable time on the machines. [10] By showing that a phenomenon dubbed the "inverse spin Hall effect" works in several organic semiconductors-including carbon-60 buckyballs-University of Utah physicists changed magnetic "spin current" into electric current. The efficiency of this new power conversion method isn't yet known, but it might find use in future electronic devices including batteries, solar cells and computers. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1157] viXra:1606.0257 [pdf] submitted on 2016-06-24 11:47:16

Stoe Model of the Electron Spin 1/2 Observation

Authors: John C. Hodge
Comments: 7 Pages.

The Scalar Theory of Everything (STOE) model posits the bizarre features of the quantum mechanics model of the small scale should have analogies in the classical scale. One such feature of the quantum model is the model of ``spin 1/2'' observation of the Stern-Gerlach experiment. The STOE model of the structure of electron using disc magnets as an analogy of hods suggests multiple North--South poles produce the ``spin'' observation. The electron analogy is placed in an inhomogeneous magnetic field and the change of orientation is photographed. Noting that the re-orientating always occurs implies no electron will travel straight through the magnetic field. Thus, the STOE models another quantum feature, the spin 1/2 effect.
Category: Quantum Physics

[1156] viXra:1606.0249 [pdf] submitted on 2016-06-23 13:08:18

Particle Zoo in a Quantum Computer

Authors: George Rajna
Comments: 21 Pages.

Researchers simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1155] viXra:1606.0247 [pdf] submitted on 2016-06-23 07:32:34

Genetic Quantum Algorithms

Authors: George Rajna
Comments: 23 Pages.

In the new study, the researchers demonstrated that genetic algorithms can identify gate designs for digital quantum simulations that outperform designs identified by standard optimization techniques, resulting in the lowest levels of digital quantum errors achieved so far. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1154] viXra:1606.0245 [pdf] submitted on 2016-06-23 05:53:27

On Super Computing.

Authors: Johan Noldus
Comments: 2 Pages.

We present some of the theoretical underpinnings of a super computer which is superior to the classical and quantum computer.
Category: Quantum Physics

[1153] viXra:1606.0242 [pdf] submitted on 2016-06-22 13:30:22

Quantum Cache in Diamonds

Authors: George Rajna
Comments: 15 Pages.

Quantum devices can team up to perform a task collectively, but only if they share that most " spooky " of all quantum phenomena: entanglement. Remote devices have been successfully entangled in order to investigate entanglement itself, but the entanglement's quality is too low for practical applications. The solution, known as entanglement purification, has seemed daunting to implement in a real device. Now new research shows that even quite simple quantum components—nanostructures in diamond—have the potential to store and upgrade entanglement. The result relies on hiding information in almost-inaccessible nuclear memories, and may be a key step toward the era of practical quantum networks. [8] In quantum entanglement, two particles are correlated in such a way that any action on one of them affects the other even when they are far apart. The traditional methods of measuring the degree of quantum entanglement were originally developed for nonidentical particles, such as between an electron and a proton, or two atoms of different types. [7] For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled 'rotation'. So far this has only been achieved with two photons. The discovery makes uncrackable secret communication of complex information possible between multiple parties. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1152] viXra:1606.0229 [pdf] submitted on 2016-06-21 12:16:59

Atomic Clocks and Gravitational Waves

Authors: George Rajna
Comments: 13 Pages.

A proposal for a gravitational-wave detector made of two space-based atomic clocks has been unveiled by physicists in the US. [8] The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. [7] A team of researchers with the University of Lisbon has created simulations that indicate that the gravitational waves detected by researchers with the LIGO project, and which are believed to have come about due to two black holes colliding, could just have easily come from another object such as a gravaster (objects which are believed to have their insides made of dark energy) or even a wormhole. In their paper published in Physical Review Letters, the team describes the simulations they created, what was seen and what they are hoping to find in the future. [6] In a landmark discovery for physics and astronomy, international scientists said Thursday they have glimpsed the first direct evidence of gravitational waves, or ripples in space-time, which Albert Einstein predicted a century ago. [5] Scientists at the National Institute for Space Research in Brazil say an undiscovered type of matter could be found in neutron stars (illustration shown). Here matter is so dense that it could be 'squashed' into strange matter. This would create an entire 'strange star'-unlike anything we have seen. [4] The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the electromagnetic inertia, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1151] viXra:1606.0217 [pdf] submitted on 2016-06-21 05:56:15

Universal Quantum Computer

Authors: George Rajna
Comments: 21 Pages.

Bringing together the best of two types of quantum computer for the first time, researchers at Google have created a prototype that combines the architecture of both a universal quantum computer and an analogue quantum computer. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1150] viXra:1606.0204 [pdf] submitted on 2016-06-20 06:32:42

Mixed Matter and Light

Authors: George Rajna
Comments: 18 Pages.

In a lovely demonstration of light's quantum effects, physicists in the UK have just mixed a molecule with light at room temperature for the first time ever. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1149] viXra:1606.0202 [pdf] submitted on 2016-06-19 19:25:55

Gravitational Waves

Authors: PV Raktoe
Comments: 3 Pages.

The discovery of a gravitational wave is scientific fraud because scientists claim that they have definite proof, that signal might be real but there is no definite proof that they found a gravitational wave. Scientific fraude can be tempering with data, but it can also be a deliberate misinterpretation of data. That is what they did (misinterpretation of data), and they claimed that there was definite proof but in fact there is not. That discovery of a gravitational wave is also the result of a fallacy, scientists are lost in fiction. The research might be correct but I don't believe it, the conclusions are incorrect and absurd. Scientists were able to claim that it was a gravitational wave because science journalists failed to see what was happening, they failed to see that there was no definite proof. Science journalists act like fans, they admire the scientists and therefore they don't ask too many or no questions. Scientists claim that gravity is the result of the curvature of a fictional space fabric (space-time), and those gravitational waves are shockwaves (wrinkles) in that fictional space fabric bit there is no proof that it exists. Scientists know that space and time are real (3D), but that also means that space and time cannot exist as real things in a fictional space fabric (4D). When you claim that space and time are merged in a fictional space fabric, then you are saying that space and time don't exist (then you're talking about fiction). Space-time (4D) means that space and time cannot exist in reality (3D), and therefore Einstein's gravity, gravitational waves, etc cannot exist as well.
Category: Quantum Physics

[1148] viXra:1606.0195 [pdf] submitted on 2016-06-19 08:52:45

Detecting Quantum Entanglement

Authors: George Rajna
Comments: 23 Pages.

RMIT quantum computing researchers have developed and demonstrated a method capable of efficiently detecting high-dimensional entanglement. [15] More than 200 beryllium ions have been entangled in a record-breaking experiment done by researchers at NIST in the US. [14] Experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection. [13] Now, researchers have come up with a rather simple scheme for providing quantum error controls: entangle atoms from two different elements so that manipulating won't affect the second. Not only is this highly effective, the researchers show that they can construct quantum logic gates with the setup. And while they were at it, they demonstrate the quantum nature of entanglement with a precision that's 40 standard deviations away from classic physical behavior. [12] A team of quantum physicists from Harvard University measured a property called entanglement entropy, which quantifies the apparent randomness that comes with observing just a portion of an entangled whole. Markus Greiner and colleagues used lasers to create an optical cage with four compartments, each of which held a rubidium atom chilled to nearly absolute zero. The researchers could tweak the laser settings to adjust the height of the walls between compartments. If the walls were low enough, atoms could exploit their strange quantum ability to occupy multiple compartments at once. As the four atoms jumped around, they interacted and established a state of entanglement. [11] Physicists in the US and Serbia have created an entangled quantum state of nearly 3000 ultracold atoms using just one photon. This is the largest number of atoms ever to be entangled in the lab, and the researchers say that the technique could be used to boost the precision of atomic clocks. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1147] viXra:1606.0189 [pdf] submitted on 2016-06-18 14:49:26

Controlling Quantum States

Authors: George Rajna
Comments: 20 Pages.

An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1146] viXra:1606.0188 [pdf] submitted on 2016-06-18 15:00:41

Quantum Materials in Curved Space

Authors: George Rajna
Comments: 25 Pages.

Physicists observe behavior of quantum materials in curved space. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1145] viXra:1606.0178 [pdf] submitted on 2016-06-18 05:13:18

Superconductors, Lasers, and Bose-Einstein Condensates

Authors: George Rajna
Comments: 19 Pages.

However, as superconductors, lasers, and Bose-Einstein condensates all share a common feature, it has been expected that it should be able to see these features at the same time. A recent experiment in a global collaborative effort with teams from Japan, the United States, and Germany have observed for the first time experimental indication that this expectation is true. [30] The quantum behaviour of hydrogen affects the structural properties of hydrogen-rich compounds, which are possible candidates for the elusive room temperature superconductor, according to new research co-authored at the University of Cambridge. [29] A German-French research team has constructed a new model that explains how the so-called pseudogap state forms in high-temperature superconductors. The calculations predict two coexisting electron orders. Below a certain temperature, superconductors lose their electrical resistance and can conduct electricity without loss. [28] New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential of materials that could provide lossless energy storage, levitating trains and ultra-fast supercomputers. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[1144] viXra:1606.0176 [pdf] submitted on 2016-06-17 11:54:44

200 Beryllium Ions Entangled

Authors: George Rajna
Comments: 22 Pages.

More than 200 beryllium ions have been entangled in a record-breaking experiment done by researchers at NIST in the US. [14] Experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection. [13] Now, researchers have come up with a rather simple scheme for providing quantum error controls: entangle atoms from two different elements so that manipulating won't affect the second. Not only is this highly effective, the researchers show that they can construct quantum logic gates with the setup. And while they were at it, they demonstrate the quantum nature of entanglement with a precision that's 40 standard deviations away from classic physical behavior. [12] A team of quantum physicists from Harvard University measured a property called entanglement entropy, which quantifies the apparent randomness that comes with observing just a portion of an entangled whole. Markus Greiner and colleagues used lasers to create an optical cage with four compartments, each of which held a rubidium atom chilled to nearly absolute zero. The researchers could tweak the laser settings to adjust the height of the walls between compartments. If the walls were low enough, atoms could exploit their strange quantum ability to occupy multiple compartments at once. As the four atoms jumped around, they interacted and established a state of entanglement. [11] Physicists in the US and Serbia have created an entangled quantum state of nearly 3000 ultracold atoms using just one photon. This is the largest number of atoms ever to be entangled in the lab, and the researchers say that the technique could be used to boost the precision of atomic clocks. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1143] viXra:1606.0097 [pdf] submitted on 2016-06-10 11:59:39

Illusory Signaling under Local Realism with Forecasts

Authors: John R. Dixon
Comments: 5 Pages.

G. Adenier and A.Y. Khrennikov (2016) show that a recent ``loophole free'' CHSH Bell experiment violates no-signaling equalities, contrary to the expected impossibility of signaling in that experiment. We show that a local realism setup, in which nature sets hidden variables based on forecasts, and which can violate a Bell Inequality, can also give the illusion of signaling where there is none. This suggests that the violation of the CHSH Bell inequality, and the puzzling no-signaling violation in the CHSH Bell experiment may be explained by hidden variables based on forecasts as well.
Category: Quantum Physics

[1142] viXra:1606.0085 [pdf] submitted on 2016-06-09 12:31:59

New Method to Get the Kochen-Specker Theorem

Authors: Koji Nagata, Tadao Nakamura
Comments: 17 pages

We derive new type of no-hidden-variables theorem based on the assumptions proposed by Kochen and Specker. We consider $N$ spin-1/2 systems. The hidden results of measurement are either $+1$ or $-1$ (in $\hbar/2$ unit). We derive some proposition concerning a quantum expected value under an assumption about the existence of the Bloch sphere in $N$ spin-1/2 systems. However, the hidden variables theory violates the proposition with a magnitude that grows exponentially with the number of particles. Therefore, we have to give up either the existence of the Bloch sphere or the hidden variables theory. Also we discuss two-dimensional no-hidden-variables theorem of the KS type. Especially, we systematically describe our assertion based on more mathematical analysis using raw data in a thoughtful experiment.
Category: Quantum Physics

[1141] viXra:1606.0079 [pdf] submitted on 2016-06-09 04:02:07

Information and Conditional Probability to go Beyond Hidden Variables

Authors: Koji Nagata, Germano Resconi, Tadao Nakamura, Han Geurdes
Comments: 6 pages

We study the relation between the possibility of describing quantum correlation with hidden variables and the existence of the Bloch sphere. We derive some proposition concerning a quantum expected value under an assumption about the existence of the Bloch sphere in $N$ spin-1/2 systems. However, the hidden variables theory violates the proposition with a magnitude that grows exponentially with the number of particles. Therefore, we have to give up either the existence of the Bloch sphere or the hidden variables theory. We show that the introduction of curved information and the continuity equation of probability is in agreement with classical quantum mechanics. So we give up the hidden variable theory as local theory and we accept the Bloch sphere as global theory connected with the information space.
Category: Quantum Physics

[1140] viXra:1606.0071 [pdf] submitted on 2016-06-07 11:41:33

Optical Quantum Technologies

Authors: George Rajna
Comments: 23 Pages.

Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1139] viXra:1606.0063 [pdf] submitted on 2016-06-07 02:16:39

Quantum Enigma Machine

Authors: George Rajna
Comments: 21 Pages.

Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1138] viXra:1606.0045 [pdf] submitted on 2016-06-04 08:29:42

Kochen-Specker Theorem in the Two-Dimensional White Noise State

Authors: Koji Nagata, Tadao Nakamura
Comments: 4 pages

We present the Kochen-Specker (KS) theorem in the two-dimensional white noise state. We consider whether we can simulate the double-slit experiment in the state by a realistic theory of the KS type. We assume an implementation of the double-slit experiment. There is a detector just after each slit. Thus interference figure does not appear, and we do not consider such a pattern. We assume that a source of spin-carrying particles emits them in a state, which can be described as the two-dimentional white noise state. We consider a single expected value of a Pauli observable $\sigma_x$ in the double-slit experiment. A wave function analysis says that the quantum expected value of it is zero. However, the realistic theory of the KS type cannot coexist with the value of the expected value of $\langle\sigma_x\rangle=0$. Hence, we cannot simulate the double-slit experiment in the state by the realistic theory of the KS type.
Category: Quantum Physics

[1137] viXra:1606.0044 [pdf] submitted on 2016-06-04 08:26:50

Data Storage with Laser

Authors: George Rajna
Comments: 20 Pages.

Using lasers to make data storage faster than ever. [11] Some three-dimensional materials can exhibit exotic properties that only exist in "lower" dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, electrons can separate into three distinct entities, each carrying information about just one aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries information about electron spin, has been known to control magnetism in certain insulating materials whose electron spins can point in any direction and easily flip direction. Now, a new study just published in Science reveals that spinons are also present in a metallic material in which the orbital movement of electrons around the atomic nucleus is the driving force behind the material's strong magnetism. [10] Currently studying entanglement in condensed matter systems is of great interest. This interest stems from the fact that some behaviors of such systems can only be explained with the aid of entanglement. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[1136] viXra:1606.0035 [pdf] submitted on 2016-06-03 11:14:27

Is There An Abstract Wave Function?

Authors: Nguyen Dinh Dung
Comments: 10 Pages.

This paper gives a hypothesis about state and a formulation about quantum system. This formulation has no inside conflict, needn’t any abstract boundary and can connect state with reality. Its calculation consists with orthodox theory (OQM). It is used to explain double slits experiment and Stern-Gerlach experiment. Paper also shows a case, in which, this formulation and OQM give different result.
Category: Quantum Physics

[1135] viXra:1606.0030 [pdf] submitted on 2016-06-03 09:12:14

Quantum Speed Limits

Authors: George Rajna
Comments: 21 Pages.

In order to determine how fast quantum technologies can ultimately operate, physicists have established the concept of "quantum speed limits." Quantum speed limits impose limitations on how fast a quantum system can transition from one state to another, so that such a transition requires a minimum amount of time (typically on the order of nanoseconds). This means, for example, that a future quantum computer will not be able to perform computations faster than a certain time determined by these limits. [15] Quantum photonic researchers start new company, Sparrow Quantum. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1134] viXra:1606.0028 [pdf] submitted on 2016-06-02 16:25:28

Mechanisms that Keep Reality Coherent

Authors: J.A.J. van Leunen
Comments: 4 Pages.

Quantum physics applies Hilbert spaces as the realm in which quantum physical research is done. However, the Hilbert spaces contain nothing that prevents universe from turning into complete chaos. Quantum physics requires extra mechanisms that ensure sufficient coherence.
Category: Quantum Physics

[1133] viXra:1606.0027 [pdf] submitted on 2016-06-02 16:32:57

De Mechanismen Die de Realiteit Coherent Houden

Authors: J.A.J. van Leunen
Comments: 4 Pages. Language is Dutch

De kwantumnatuurkunde gebruikt Hilbertruimten als het kader waarin kwantum fysisch onderzoek gedaan wordt. De Hilbertruimte bevat echter niets wat er voor zorgt dat niet alles snel in een chaos belandt. Kwantumfysica heeft extra mechanismen nodig die ervoor zorgen dat het universum zijn samenhang behoudt.
Category: Quantum Physics

[1132] viXra:1606.0024 [pdf] submitted on 2016-06-03 03:45:30

Global Quantum Network

Authors: George Rajna
Comments: 21 Pages.

You can't sign up for the quantum internet just yet, but researchers have reported a major experimental milestone towards building a global quantum network-and it's happening in space. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1131] viXra:1606.0015 [pdf] submitted on 2016-06-01 13:34:29

Lattice Quantum Geometry

Authors: George Rajna
Comments: 19 Pages.

The geometry and topology of electronic states in solids plays a central role in a wide range of modern condensed-matter systems including graphene or topological insulators. However, experimentally accessing this information has proven to be challenging, especially when the bands are not well-isolated from one another. As reported in last week's issue of Science, an international team of researchers has devised a straightforward method to probe the band geometry using ultracold atoms in an optical lattice. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1130] viXra:1606.0003 [pdf] submitted on 2016-06-01 01:36:43

Quantum Thermal Transistor

Authors: George Rajna
Comments: 20 Pages.

Researchers have designed a quantum thermal transistor that can control heat currents, in analogy to the way in which an electronic transistor controls electric current. The thermal transistor could be used in applications that recycle waste heat that has been harvested from power stations and other energy systems. Currently, there are methods for transporting and guiding this heat, but not for controlling, amplifying, and switching the heat on and off, as the quantum thermal transistor can do. [15] Quantum photonic researchers start new company, Sparrow Quantum. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1129] viXra:1605.0303 [pdf] submitted on 2016-05-31 02:14:39

Quantum Photonic Research

Authors: George Rajna
Comments: 20 Pages.

Quantum photonic researchers start new company, Sparrow Quantum. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1128] viXra:1605.0282 [pdf] submitted on 2016-05-28 04:38:24

Violation of no-Signaling Constraint by Local Quantum Measurement Discrimination with Numerous Eight-Qubit Entangld States

Authors: Youbang Zhan
Comments: 10 Pages.

The discrimination of quantum measurements is an important subject of quantum information processes. In this paper we present a novel protocol for local quantum measurement discrimination (LQMD) with multi-qubit entanglement systems. It is shown that, for two spacelike separated parties, the local discrimination of two different kinds of measurement can be completed via numerous eight-qubit GHZ entangled states and selective projective measurements without help of classical information. This means that no-signaling constraint can be violated by the LQMD.
Category: Quantum Physics

[1127] viXra:1605.0281 [pdf] submitted on 2016-05-28 05:56:13

Quantum Annealing

Authors: George Rajna
Comments: 20 Pages.

One of the most striking discoveries of quantum information theory is the existence of problems that can be solved in a more efficient way with quantum resources than with any known classical algorithm. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1126] viXra:1605.0268 [pdf] submitted on 2016-05-25 16:28:01

An Unorthodox View on the Foundations of Physical Reality

Authors: J.A.J. van Leunen
Comments: 14 Pages.

This paper is telling essentials of the story of the Hilbert Book Test Model without applying the mathematical formulas. The paper cannot avoid the usage of mathematical terms, but these terms will be elucidated such that mathematical novices can still understand most of the story. The Hilbert Book Test Model is a way to investigate the part of the foundation of physical reality that cannot be observed. This foundation is necessarily simple and it can easily be comprehended by skilled scientists. However, this paper is targeted to readers that are not skilled in math.
Category: Quantum Physics

[1125] viXra:1605.0263 [pdf] submitted on 2016-05-25 06:19:14

Practical Quantum Computers

Authors: George Rajna
Comments: 19 Pages.

Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1124] viXra:1605.0260 [pdf] submitted on 2016-05-25 07:12:14

Teleportation of Information Without Classical Communication Channel

Authors: Iliyan Peruhov
Comments: 7 Pages.

The spin projection expectation value of electrons in magnetic field in direction perpendicular to the magnetic induction B depends on the magnitude of B and the time t, spent by the electron in the field. Consequently choosing the value of the product B.t one can have spin statistics biased to +1/2 or -1/2. The spin statistics of electrons from a quantity of EPR pairs is manipulated this way. The spin statistics of the partner electrons will show the opposite statistics, thus realizing teleportation of information without the use of a classical channel in contrast to the Bennett teleportation protocol [1].
Category: Quantum Physics

[1123] viXra:1605.0257 [pdf] submitted on 2016-05-25 03:07:12

Reaction Less Drive by Anti Maxwell Dead Zone Around a Wire.

Authors: Leo Vuyk
Comments: 21 Pages. 21

According to Quantum FFF Theory (Function Follows Form at the quantum level) the magnetic quantum field has always TWO different shaped monopole vector components: a North- and a South vector field component. This is comparable with the electric Quantum field, equipped with Plus and Minus vector components but it is in contrast with all other quantum fields like the neutrino- gravity-or x-gamma ray field. After interference of the magnetic wave with a real spinning propeller shaped Fermion particle, TWO real monopole magnetic waves from opposite direction will collapse and come to life as two real rigid shaped photons, as the result of two individual mutated oscillating Higgs filed particles from the vacuum. These photons should do the magnetic job by interlocking temporarily with the Fermion, and give the Fermion a push to the left respectively a push to the right fully in line and according to the Lorentz force law. However, based on observation of iron powder patterns around wires, it is assumed that if these monopole particle/ wave dualities travel parallel to each other inside the Higgs field, (and not- as normal- in opposition due to the natural opposing curvature of the so called B field) .As a result, the magnetic field strength- created by the wire itself-locally drops down to zero, with a up to zero reduced Lorentz force on the iron powder atoms. This is in contradiction with Maxwell’s magnetic field law around an electric energized wire and I call it the “tubular local magnetic dropping zone” ( dead zone) around the electric wire, which can be used for reaction less drive propulsion and Levitation in combination with different forms of strong tubular or spiral magnets. Magnet optimalisation is suggested to form spiral configurations of high performance magnet platings with a spiralling electric coils in between. The Lorentz force created on the wire by the static magnetic field of the tubular or spiral magnet (s) is supposed to be the only force in the system, by the absence of a reaction force on the magnet due to the local magnetic dropping zone.
Category: Quantum Physics

[1122] viXra:1605.0254 [pdf] submitted on 2016-05-24 15:37:12

Wavefunction Collapse Resolved, as a Function of Time Perspective Distortion

Authors: Arthur E Pletcher
Comments: 6 Pages.

"Time Perspective Theory (TPT) predicts that all quantum experimental results will vary with the scale of the instrumentation involved in any measurement. For example; The Davisson-Germer Experiment involved observations between the detectors angular measurements (at the observers scale) and electron behavior (at quantum scales). TPT predicts that if detecting instruments can be scaled and positioned much closer to the point of beam scattering the intensities would become more isotropic, proportionately. This concept of perspectives between scales sheds some light on the Double Slit Experiment. TPT offers an alternate explanation to the "undetermined probability wavefunction Ψ". In TPT, wavefunction is a time perspective distortion between the scale of the observer and the scale of the particle. In the ""Double slit experiment"", the ""collapse"" is resolved when an optical plate (or any measuring instrument) is introduced at the scale of the particle. Subsequently, the measurement becomes no longer between scales, but rather at the same scale. Although TPT is analogous to the distortions of spacial perspective, TPT addresses distortions in the time dimension (perspective vs orthogonal). TPT proposes that the same convex distortions and divergence which occur in space during magnifcation, also occurs in time. Subsequently, if a particle's motion (v) is viewed as pluralistic in time, so then is it's position d/t. TPT has great implications in Macro-space, as well. Time intervals appear to decrease and converge to a single event. Subsequently, decreased time intervals appear as increased velocity. See figure 1. Thus, Photons travelling to an observer from remote past events will appear to arrive with successively decreased time intervals. TPT provides a simple alternative explanation for: wavefunction, the ""Double slit experiment"", accelerated universal expansion, millisecond pulsars and the galaxy outer rim rotation problem. "
Category: Quantum Physics

[1121] viXra:1605.0253 [pdf] submitted on 2016-05-24 13:30:32

Spintronics

Authors: George Rajna
Comments: 19 Pages.

Spintronics In our computer chips, information is transported in form of electrical charge. Electrons or other charge carriers have to be moved from one place to another. For years scientists have been working on elements that take advantage of the electrons angular momentum (their spin) rather than their electrical charge. This new approach, called "spintronics" has major advantages compared to common electronics. It can operate with much less energy. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1120] viXra:1605.0250 [pdf] submitted on 2016-05-24 04:16:00

The Light

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: statement of light is just one kind of waves.
Category: Quantum Physics

[1119] viXra:1605.0219 [pdf] submitted on 2016-05-21 07:41:47

Computing a Secret Key

Authors: George Rajna
Comments: 20 Pages.

What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1118] viXra:1605.0208 [pdf] submitted on 2016-05-20 11:09:52

Photon Collisions

Authors: George Rajna
Comments: 24 Pages.

Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump.
Category: Quantum Physics

[1117] viXra:1605.0207 [pdf] submitted on 2016-05-20 04:27:12

Producing Quantum Dots

Authors: George Rajna
Comments: 18 Pages.

A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1116] viXra:1605.0193 [pdf] submitted on 2016-05-18 08:47:04

Spin-Gravity Coupling

Authors: George Rajna
Comments: 15 Pages.

Einstein's equivalence principle states that an object in gravitational free fall is physically equivalent to an object that is accelerating with the same amount of force in the absence of gravity. This principle lies at the heart of general relativity and has been experimentally tested many times. Now in a new paper, scientists have experimentally demonstrated a conceptually new way to test the equivalence principle that could detect the effects of a relatively new concept called spin-gravity coupling. [10] A recent peer-reviewed paper by physicist James Franson from the University of Maryland in the US has initiated a stir among physics community. Issued in the New Journal of Physics, the paper points to evidence proposing that the speed of light as defined by the theory of general relativity, is slower than originally thought. [9] Gravitational time dilation causes decoherence of composite quantum systems. Even if gravitons are there, it’s probable that we would never be able to perceive them. Perhaps, assuming they continue inside a robust model of quantum gravity, there may be secondary ways of proving their actuality. [7] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[1115] viXra:1605.0191 [pdf] submitted on 2016-05-18 09:38:24

Six-State Magnetic Memory

Authors: George Rajna
Comments: 21 Pages.

Computers are often described with "ones and zeros," referring to their binary nature: each memory element stores data in two states. But there is no fundamental reason why there should be just two. In a new study, researchers have designed a magnetic element that has six stable magnetic states, which paves the way toward realizing a six-state magnetic memory element. [13] Quantum technology has the potential to revolutionize computation, cryptography, and simulation of quantum systems. However, quantum states are fragile, and so must be controlled without being measured. Researchers have now demonstrated a key property of Majorana zero modes that protects them from decoherence. The result lends positive support to the existence of Majorana modes, and goes further by showing that they are protected, as predicted theoretically. [11] In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave "tuning fork." [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1114] viXra:1605.0182 [pdf] submitted on 2016-05-17 09:18:40

New Form of Light

Authors: George Rajna
Comments: 23 Pages.

Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[1113] viXra:1605.0179 [pdf] submitted on 2016-05-16 13:17:31

Quantum Friction Modeling

Authors: George Rajna
Comments: 14 Pages.

Theoretical chemists at Princeton University have pioneered a strategy for modeling quantum friction, or how a particle's environment drags on it, a vexing problem in quantum mechanics since the birth of the field. The study was published in the Journal of Physical Chemistry Letters. [11] Protons can tunnel in solutions and at temperatures above the boiling point of water, found scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. [10] An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process. The new theory could lead to faster and smaller electronic components, for which quantum tunneling is a significant factor. It will also lead to a better understanding of diverse areas such as electron microscopy, nuclear fusion and DNA mutations. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: Quantum Physics

[1112] viXra:1605.0172 [pdf] submitted on 2016-05-16 05:20:03

Gravitational Theory of the Casimir Effect: from the Virtual Quantum Vacuum to the Deterministic Physical Vacuum

Authors: Daniele Sasso
Comments: 8 Pages.

The Casimir effect is interpreted generally through the consideration of indeterministic quantum events that are justified by the indeterminacy principle and by the concept of quantum vacuum. That explanation is based on the hypothesis of existence of statistical fluctuations of energy around the point of zero energy that generate virtual pairs of particle-antiparticle. With this research let us intend to prove the Casimir effect can be explained by the interaction mass-mass of the symmetry MLM without the necessity to make use of virtual and probabilistic paradigms.
Category: Quantum Physics

[1111] viXra:1605.0171 [pdf] submitted on 2016-05-15 13:50:08

Stoe Assumptions that Model Particle Diffraction and that Replaces QM

Authors: John C. Hodge
Comments: 6 Pages.

The STOE originally was a model to describe mysterious cosmological observations. The STOE has explained Young's Experiment and light as photons. It also predicted the result of The Hodge Experiment that differentiates between particles (photons) and waves going through the slits. The assumptions used in the STOE explanation and the computer simulation are many over several papers. This paper lists the assumptions used to form the equations. The advantages of the STOE are that it is one model of the big, the Newtonian scale, and the small of light and that it is more intuitive.
Category: Quantum Physics

[1110] viXra:1605.0170 [pdf] submitted on 2016-05-15 14:08:43

Extension of the Standardmodel

Authors: Kronberger Reinhard
Comments: 17 Pages.

The symmetrie of the coxeterelement of the affine liegroup E9 shows an extension of the quantum standardmodel. By doing a second symmetriebreaking it shows the graviton particle and a new field like the higgsfield.I call it oktoquintenfield. This field predicts a new particle like the higgsfield predict the higgs.This new particle is a Spin 2 Tensorboson. The extended standardmodel also allows to understand dark energie by the cosmological constant and dark matter. Like the weak force with light the extension shows a superweak force with gravity.
Category: Quantum Physics

[1109] viXra:1605.0153 [pdf] submitted on 2016-05-14 05:46:43

Polarimeters

Authors: George Rajna
Comments: 21 Pages.

Polarimeters Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or " topolariton " : a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature.
Category: Quantum Physics

[1108] viXra:1605.0151 [pdf] submitted on 2016-05-14 06:39:37

Addendum – the Table of All the Abbreviations Used in Bidum Version 1.1

Authors: Andrei Lucian Dragoi
Comments: 4 Pages. ADDENDUM – The table of all the abbreviations used in BIDUM version 1.1

Dear readers, I appreciate your time and patience to read/try to read my article. However, this is not a simple article: as it describes the universe in informational terms (as it is a model of the universe; Bio-Info-Digital-Universe-Model [BIDUM]) and has almost 60 pages, it tends to be more like a manual in which I have reformulated a lot of classical and modern concepts of physics. Like any manual/book-like article, the abbreviations are inevitable, as I also try to impose new general concepts (together with their abbreviations which I try to propose too). If I had used the classical terms with a minimal abbreviational strategy, the phrases would become very complex and hard to read as the explanations have a lot of parenthesis (as I practice a tree-like multi-level phrase structures). The main abbreviations I have imposed is for fundamental physical concepts I try to present and I always first explain them (and mention them between parenthesis). These are the most frequent: (elementary) quantum particle ([E]QP), gauge-boson (GB), non-gauge particle (NGP), physical information (quantity/quanta) (PI[q/qua]), biological information (quantity/quanta) (BI[q/qua]), biophysical information (quantity/quanta) (BPI[q/qua]), physical observer (PO), biological observer (BO), Fine Structure Constant (FSC), GCC (gravitational coupling constant), fundamental forces/fields (FFs): strong nuclear force/field (SNF), weak nuclear force/field (WNF), electromagnetic force/field (EMF), (electro)gravitational force/field (EGF), super string theory (SST), M-theory (MT) etc. The majority of the rest of them are standard abbreviations used in standard physical language. I have also anticipated the difficulty of reading this manual-like article, that is why I have also created this separate file with all the abbreviations used in my BIDUM. Important remark: this update is also due Sergey G. Fedosin[ ] which I want to thank again as he convinced my once again that this table of abbreviations is a must to share with all my readers.
Category: Quantum Physics

[1107] viXra:1605.0135 [pdf] submitted on 2016-05-12 18:57:37

(Short Essay) (11 Pages) an Info-Digital Universe (Toy) Model (Idum) (In Brief) Using the Hypothetical Gravitonic Qubit as the Basic Unit of the Physical Information

Authors: Andrei Lucian Dragoi
Comments: 11 Pages. Title and abstract revised and updated: 13.05.2015

A growing trend in physics is to define the physical world as being made up of information [1]. An important direct relationship between information and entropy is demonstrated by the Maxwell's demon thought experiment [2]: an important consequence is that information may be interchangeable with energy [3]. Wheeler’s “it from bit” principle (hypothesis) is also famous [4,5]. In this essay (which is a short essentialised summary of the author’s Bio-IDUM (BIDUM) version 1.1 [6]), I argue that energy and time are indissolubly connected and can be integrated in a concept of physical information (PI) measurable in qbits (qubits) as an alternative interpretation to the (classical and quantum) angular momentum: energy, matter and their behaviors may be considered proprieties of different PI-quanta.
Category: Quantum Physics

[1106] viXra:1605.0130 [pdf] submitted on 2016-05-13 02:17:09

Atoms Entangled with Light

Authors: George Rajna
Comments: 20 Pages.

Experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection. [13] Now, researchers have come up with a rather simple scheme for providing quantum error controls: entangle atoms from two different elements so that manipulating won't affect the second. Not only is this highly effective, the researchers show that they can construct quantum logic gates with the setup. And while they were at it, they demonstrate the quantum nature of entanglement with a precision that's 40 standard deviations away from classic physical behavior. [12] A team of quantum physicists from Harvard University measured a property called entanglement entropy, which quantifies the apparent randomness that comes with observing just a portion of an entangled whole. Markus Greiner and colleagues used lasers to create an optical cage with four compartments, each of which held a rubidium atom chilled to nearly absolute zero. The researchers could tweak the laser settings to adjust the height of the walls between compartments. If the walls were low enough, atoms could exploit their strange quantum ability to occupy multiple compartments at once. As the four atoms jumped around, they interacted and established a state of entanglement. [11] Physicists in the US and Serbia have created an entangled quantum state of nearly 3000 ultracold atoms using just one photon. This is the largest number of atoms ever to be entangled in the lab, and the researchers say that the technique could be used to boost the precision of atomic clocks. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[1105] viXra:1605.0121 [pdf] submitted on 2016-05-11 13:12:35

Majorana-Based Quantum Computers

Authors: George Rajna
Comments: 19 Pages.

Quantum technology has the potential to revolutionize computation, cryptography, and simulation of quantum systems. However, quantum states are fragile, and so must be controlled without being measured. Researchers have now demonstrated a key property of Majorana zero modes that protects them from decoherence. The result lends positive support to the existence of Majorana modes, and goes further by showing that they are protected, as predicted theoretically. [11] In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave "tuning fork." [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1104] viXra:1605.0119 [pdf] submitted on 2016-05-11 13:54:54

Perfect Quantum Metamaterial

Authors: George Rajna
Comments: 16 Pages.

Scientists have devised a way to build a "quantum metamaterial"—an engineered material with exotic properties not found in nature—using ultracold atoms trapped in an artificial crystal composed of light. The theoretical work represents a step toward manipulating atoms to transmit information, perform complex simulations or function as powerful sensors. [11] An optical chip developed at INRS by Prof. Roberto Morandotti's team overcomes a number of obstacles in the development of quantum computers, which are expected to revolutionize information processing. An international research team has demonstrated that on-chip quantum frequency combs can be used to simultaneously generate multiphoton entangled quantum bit (qubit) states. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1103] viXra:1605.0117 [pdf] submitted on 2016-05-11 10:22:59

Quantum Dot Replaces Metallic Island

Authors: George Rajna
Comments: 16 Pages.

A team of researchers with members from France, Russia and Finland has improved on the current design of an electronic turnstile, by replacing the conventional metallic "island" with a quantum dot. In their paper published in Physical Review Letters, the team describes how the design works, why it is better than the conventional approach and how much the error rate was reduced. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[1102] viXra:1605.0114 [pdf] submitted on 2016-05-11 09:31:42

Single Electrons for Quantum Computing

Authors: George Rajna
Comments: 19 Pages.

Electrons represent an ideal quantum bit, with a "spin" that when pointing up can represent a 0 and down can represent a 1. Such bits are small (even smaller than an atom), and because they do not interact strongly they can remain quantum for long periods. However, exploiting electrons as qubits also poses a challenge in that they must be trapped and manipulated. Which is exactly what David Schuster, a University of Chicago assistant professor of physics and his collaborators at UChicago, Argonne National Laboratory, and Yale University have done. [10] Physicists have unveiled a programmable five-qubit processing module that can be connected together to form a powerful quantum computer. The big challenge now is scale—combining these techniques in a way that can handle large numbers of qubits and perform powerful quantum calculations. [9] By leveraging the good ideas of the natural world and the semiconductor community, researchers may be able to greatly simplify the operation of quantum devices built from superconductors. They call this a "semiconductor-inspired" approach and suggest that it can provide a useful guide to improving superconducting quantum circuits. [8] The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, a switch both on and off, a cat both dead and alive. Or entanglement, what Einstein called "spooky action-at-distance" in which objects are invisibly linked, even when separated by huge distances. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1101] viXra:1605.0112 [pdf] submitted on 2016-05-11 06:12:22

IBM Quantum Computer Test

Authors: George Rajna
Comments: 19 Pages.

IBM on Wednesday opened its quantum computer processor to anyone who wants to try what is expected to be a new kind of computing with enormously improved power and speed. [11] Scientists and engineers from the Universities of Bristol and Western Australia have developed how to efficiently simulate a "quantum walk" on a new design for a primitive quantum computer. [10] Physicists have unveiled a programmable five-qubit processing module that can be connected together to form a powerful quantum computer. The big challenge now is scale—combining these techniques in a way that can handle large numbers of qubits and perform powerful quantum calculations. [9] By leveraging the good ideas of the natural world and the semiconductor community, researchers may be able to greatly simplify the operation of quantum devices built from superconductors. They call this a "semiconductor-inspired" approach and suggest that it can provide a useful guide to improving superconducting quantum circuits. [8] The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, a switch both on and off, a cat both dead and alive. Or entanglement, what Einstein called "spooky action-at-distance" in which objects are invisibly linked, even when separated by huge distances. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1100] viXra:1605.0111 [pdf] submitted on 2016-05-11 02:04:57

Quantum Computer Walk

Authors: George Rajna
Comments: 18 Pages.

Scientists and engineers from the Universities of Bristol and Western Australia have developed how to efficiently simulate a "quantum walk" on a new design for a primitive quantum computer. [10] Physicists have unveiled a programmable five-qubit processing module that can be connected together to form a powerful quantum computer. The big challenge now is scale—combining these techniques in a way that can handle large numbers of qubits and perform powerful quantum calculations. [9] By leveraging the good ideas of the natural world and the semiconductor community, researchers may be able to greatly simplify the operation of quantum devices built from superconductors. They call this a "semiconductor-inspired" approach and suggest that it can provide a useful guide to improving superconducting quantum circuits. [8] The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, a switch both on and off, a cat both dead and alive. Or entanglement, what Einstein called "spooky action-at-distance" in which objects are invisibly linked, even when separated by huge distances. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[1099] viXra:1605.0093 [pdf] submitted on 2016-05-10 07:12:51

Quantum Annealing for Ising Anyonic Syatems

Authors: Masamichi Sato
Comments: 15 Pages.

We consider the quantum annealing for Ising anyonic systems. After giving a description of quantum annealing for Ising anyonic systems, we discuss its use for solving the practical problems, such as phylogenetics, linguistics and decision making. Our scope is not to show the details of calculation, but to invoke the interests on quantum annealing of anyonic systems to solve practical problems in various elds. In near future, this method might be widely spread as a technological foundation of machinery devices to solve the problems on many sights.
Category: Quantum Physics

[1098] viXra:1605.0091 [pdf] submitted on 2016-05-10 01:14:33

Energy Shift of H-Atom Electrons Due the Blackbody Photons

Authors: Miroslav Pardy
Comments: 6 Pages. the original article

The electromagnetic shift of energy levels of H-atom electrons is determined by calculating the mean square amplitude of oscillation of an electron coupled to the relic photon fluctuations of the electromagnetic field. Energy shift of electrons in H-atom is determined in the framework of non-relativistic quantum mechanics. The
Category: Quantum Physics

[1097] viXra:1605.0079 [pdf] submitted on 2016-05-08 08:59:02

Photon Non-physical Interactions and Quantum Enigmas

Authors: Victor Vaguine
Comments: 5 Pages.

A systematic analysis of the simplest quantum optics experiment of linearly polarized photons with a beam-splitter leads to several quantum enigmas, which cannot be explained on the basis of quantum positivism or quantum optics. The fact that photons demonstrate under the "No-Click" conditions non-physical interactions at detector shows that quantum mechanics paradigm is deficient. The study raises philosophical, foundational, and paradigmatic issues with respect to limitations of quantum mechanics.
Category: Quantum Physics

[1096] viXra:1605.0075 [pdf] submitted on 2016-05-07 09:24:29

Controlling Quantum Systems

Authors: George Rajna
Comments: 21 Pages.

Researchers from the Department of Applied Mathematics and the Institute for Quantum Computing at the University of Waterloo have developed a versatile new way of controlling quantum systems that can affect the reliability of experiments. [14] A team around Dr. Stephan Dürr from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics has now demonstrated in an experiment how an important gate operation – the exchange of the binary bit values 0 and 1 – can be realized with single photons. [13] A curious type of nonlocal phenomenon known as one-way quantum steering has been demonstrated experimentally for the first time by two independent groups of physicists. This phenomenon is similar to quantum entanglement but applies when one of the two parties sharing a quantum state does not trust the source of quantum particles. The researchers say their work could help to broaden applications of quantum cryptography. [12] Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three particles of light in a high-dimensional quantum property related to the 'twist' of their wavefront structure. The results from their experiment appear in the journal Nature Photonics. [11] Quantum cryptography involves two parties sharing a secret key that is created using the states of quantum particles such as photons. The communicating parties can then exchange messages by conventional means, in principle with complete security, by encrypting them using the secret key. Any eavesdropper trying to intercept the key automatically reveals their presence by destroying the quantum states. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

Replacements of recent Submissions

[668] viXra:1609.0237 [pdf] replaced on 2016-09-23 00:02:31

Experiment Data Indicates Quantum Entanglement May not Exist

Authors: Krishan Vats
Comments: 8 Pages.

Till date, all experiments prove existence of quantum entanglement based upon overall statistical correlations and thus demonstrating that Bell’s inequality is violated. No detailed data analysis has been published yet. This article presents a first of its kind experimental analysis and it indicates that there is a real chance that entanglement may not be real. This is a huge claim by any means. But it is necessary to make such dramatic claim due to two reasons – 1) It is based upon experimental data and can be tested and verified. 2) So that the QM community makes an effort to analyze detailed data to scrutinize the reality of entanglement. Due to large amount of data involved, experimentalists only look at data in an easily computable manner and do not scrutinize the raw data in full detail. When data of this experiment was analyzed at detail level, it was observed that existence of entanglement can not be settled until this kind of analysis is completed on data from multiple such experiments. The natural and prompt reaction from many may be to look for faults with this analysis without presenting the evidence that such analysis has already been completed. For curious people, observation is odd enough to be probed further. The complacent ones will look only for the faults. If this observation does not trigger more of similar analysis, then it will demonstrate complacency of the QM world. This article does not claim “classical mechanics” to be the solution, but it presents an intuitive mechanism that can explain statistical correlations without entanglement being necessary or entanglement being defined in a different way then it currently is. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope. Moreover anti correlation can easily be explained as a direct consequence of conservation laws. This analysis gives an indication that the outcomes may not be totally probabilistic and so, entanglement may not exists in its currently claimed form. The data is so close to being probabilistic that it is very difficult to spot anything other than probability if the data is not looked at with extreme care.
Category: Quantum Physics

[667] viXra:1609.0237 [pdf] replaced on 2016-09-21 23:29:06

Experiment Data Indicates Quantum Entanglement May not Exist

Authors: Krishan Vats
Comments: 8 Pages.

Till date, all experiments prove existence of quantum entanglement based upon overall statistical correlations and thus demonstrating that Bell’s inequality is violated. No detailed data analysis has been published yet. This article presents a first of its kind experimental analysis and it indicates that there is a real chance that entanglement may not be real. This is a huge claim by any means. But it is necessary to make such dramatic claim due to two reasons – 1) It is based upon experimental data and can be tested and verified. 2) So that the QM community makes an effort to analyze detailed data to scrutinize the reality of entanglement. Due to large amount of data involved, experimentalists only look at data in an easily computable manner and do not scrutinize the raw data in full detail. When data of this experiment was analyzed at detail level, it was observed that existence of entanglement can not be settled until this kind of analysis is completed on data from multiple such experiments. The natural and prompt reaction from many may be to look for faults with this analysis without presenting the evidence that such analysis has already been completed. For curious people, observation is odd enough to be probed further. The complacent ones will look only for the faults. If this observation does not trigger more of similar analysis, then it will demonstrate complacency of the QM world. This article does not claim “classical mechanics” to be the solution, but it presents an intuitive mechanism that can explain statistical correlations without entanglement being necessary or entanglement being defined in a different way then it currently is. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope. Moreover anti correlation can easily be explained as a direct consequence of conservation laws. This is a statistical analysis of the experimental data used in a recent paper [M. Giustina et al, Phys. Rev. Lett. 115, 250401 (2015)]. The data for this analysis was graciously made available by the authors as a private communication. This analysis gives an indication that the outcomes may not be totally probabilistic and so, entanglement may not exists in its currently claimed form.
Category: Quantum Physics

[666] viXra:1609.0237 [pdf] replaced on 2016-09-20 02:16:41

Experiment Data Indicates Quantum Entanglement May not Exist

Authors: Krishan Vats
Comments: 8 Pages.

Till date, all experiments prove existence of quantum entanglement based upon overall statistical correlations and thus demonstrating that Bell’s inequality is violated. No detailed data analysis has been published yet. This article presents a first of its kind experimental analysis and it indicates that there is a real chance that entanglement may not be real. This is a huge claim by any means. But it is necessary to make such dramatic claim due to two reasons – 1) It is based upon experimental data and can be tested and verified. 2) So that the QM community makes an effort to analyze detailed data to scrutinize the reality of entanglement. Due to large amount of data involved, experimentalists only look at data in an easily computable manner and do not scrutinize the raw data in full detail. When data of this experiment was analyzed at detail level, it was observed that existence of entanglement can not be settled until this kind of analysis is completed on data from multiple such experiments. The natural and prompt reaction from many may be to look for faults with this analysis without presenting the evidence that such analysis has already been completed. For curious people, observation is odd enough to be probed further. The complacent ones will look only for the faults. If this observation does not trigger more of similar analysis, then it will demonstrate complacency of the QM world. This article does not claim “classical mechanics” to be the solution, but it presents an intuitive mechanism that can explain statistical correlations without entanglement being necessary or entanglement being defined in a different way then it currently is. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope. Moreover anti correlation can easily be explained as a direct consequence of conservation laws. This is a statistical analysis of the experimental data used in a recent paper [M. Giustina et al, Phys. Rev. Lett. 115, 250401 (2015)]. The data for this analysis was graciously made available by the authors as a private communication. This analysis gives an indication that the outcomes may not be totally probabilistic and so, entanglement may not exists in its currently claimed form.
Category: Quantum Physics

[665] viXra:1609.0237 [pdf] replaced on 2016-09-17 23:09:15

Experiment Data Indicates Quantum Entanglement May not Exist

Authors: Krishan Vats
Comments: 8 Pages.

Till date, all experiments prove existence of quantum entanglement based upon overall statistical correlations and thus demonstrating that Bell’s inequality is violated. No detailed data analysis has been published yet. This article presents a first of its kind experimental analysis and it indicates that there is a real chance that entanglement may not be real. This is a huge claim by any means. But it is necessary to make such dramatic claim due to two reasons – 1) It is based upon experimental data and can be tested and verified. 2) So that the QM community makes an effort to analyze detailed data to scrutinize the reality of entanglement. Due to large amount of data involved, experimentalists only look at data in an easily computable manner and do not scrutinize the raw data in full detail. When data of this experiment was analyzed at detail level, it was observed that existence of entanglement can not be settled until this kind of analysis is completed on data from multiple such experiments. The natural and prompt reaction from many may be to look for faults with this analysis without presenting the evidence that such analysis has already been completed. For curious people, observation is odd enough to be probed further. The complacent ones will look only for the faults. If this observation does not trigger more of similar analysis, then it will demonstrate complacency of the QM world. This article does not claim “classical mechanics” to be the solution, but it presents an intuitive mechanism that can explain statistical correlations without entanglement being necessary or entanglement being defined in a different way then it currently is. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope. Moreover anti correlation can easily be explained as a direct consequence of conservation laws. This is a statistical analysis of the experimental data used in a recent paper [M. Giustina et al, Phys. Rev. Lett. 115, 250401 (2015)]. The data for this analysis was graciously made available by the authors as a private communication. This analysis gives an indication that the outcomes may not be totally probabilistic and so, entanglement may not exists in its currently claimed form.
Category: Quantum Physics

[664] viXra:1609.0237 [pdf] replaced on 2016-09-16 04:26:57

Experiment Data Indicates Quantum Entanglement May not Exist

Authors: Krishan Vats
Comments: 8 Pages.

Till date, all experiments prove existence of quantum entanglement based upon overall statistical correlations and thus demonstrating that Bell’s inequality is violated. No detailed data analysis has been published yet. This article presents a first of its kind experimental analysis and it indicates that there is a real chance that entanglement may not be real. This is a huge claim by any means. But it is necessary to make such dramatic claim due to two reasons – 1) It is based upon experimental data and can be tested and verified. 2) So that the QM community makes an effort to analyze detailed data to scrutinize the reality of entanglement. Due to large amount of data involved, experimentalists only look at data in an easily computable manner and do not scrutinize the raw data in full detail. When data of this experiment was analyzed at detail level, it was observed that existence of entanglement can not be settled until this kind of analysis is completed on data from multiple such experiments. The natural and prompt reaction from many may be to look for faults with this analysis without presenting the evidence that such analysis has already been completed. For curious people, observation is odd enough to be probed further. The complacent ones will look only for the faults. If this observation does not trigger more of similar analysis, then it will demonstrate complacency of the QM world. This article does not claim “classical mechanics” to be the solution, but it presents an intuitive mechanism that can explain statistical correlations without entanglement being necessary or entanglement being defined in a different way then it currently is. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope. Moreover anti correlation can easily be explained as a direct consequence of conservation laws. This is a statistical analysis of the experimental data used in a recent paper [M. Giustina et al, Phys. Rev. Lett. 115, 250401 (2015)]. The data for this analysis was graciously made available by the authors as a private communication. This analysis gives an indication that the outcomes may not be totally probabilistic and so, entanglement may not exists in its currently claimed form.
Category: Quantum Physics

[663] viXra:1609.0135 [pdf] replaced on 2016-09-17 01:58:54

Collapse of Wave Nature is a Necessity for Measurement to Take Place (Intuitive)

Authors: Krishan Vats
Comments: 1 Page.

This is an example description of why and how the wave nature of quantum objects collapses on measurement. The article takes double slit experiment as an example where observing the electrons/photons causes them to abandon the wave nature and start behaving like particles. I.e. the interference pattern disappears. Why the measurement causes a switch from wave nature to particle behavior? It is explained with one specific example scenario. This example can be extended to other scenarios with necessary adjustments.
Category: Quantum Physics

[662] viXra:1609.0135 [pdf] replaced on 2016-09-12 15:15:32

Collapse of Wave Nature is a Necessity for Measurement to Take Place (Classical)

Authors: Krishan Vats
Comments: 1 Page.

This is an example description of why and how the wave nature of quantum objects collapses on measurement. The article takes double slit experiment as an example where observing the electrons/photons causes them to abandon the wave nature and start behaving like particles. I.e. the interference pattern disappears. Why the measurement causes a switch from wave nature to particle behavior? It is explained with one specific example scenario. This example can be extended to other scenarios with necessary adjustments.
Category: Quantum Physics

[661] viXra:1609.0135 [pdf] replaced on 2016-09-11 13:15:12

Collapse of Wave Nature – a Specific Explanation (Classical)

Authors: Krishan Vats
Comments: 1 Page.

This is an example description of why and how the wave nature of quantum objects collapses on measurement. The article takes double slit experiment as an example where observing the electrons/photons causes them to abandon the wave nature and start behaving like particles. I.e. the interference pattern disappears. Why the measurement causes a switch from wave nature to particle behavior? It is explained with one specific example scenario. This example can be extended to other scenarios with necessary adjustments.
Category: Quantum Physics

[660] viXra:1609.0016 [pdf] replaced on 2016-09-06 22:14:05

Quantum Entanglement Experiment Data Indicates Balancing Mechanism

Authors: Krishan Vats
Comments: 8 Pages. To avoid any confusion, this is the latest update

This article presents analysis of experimental data. The data was acquired from a recently published experiment, the link to the published paper is https://arxiv.org/abs/1511.03190. The data analysis gives an indication that the outcomes may not be totally probabilistic and may be guided by some other mechanism. This article only presents an independent observation and is not meant in any way to comment on the originally published findings of the referred experiment from which the data was acquired. This article also does not dispute any quantum mechanics quantitative predictions. It only presents the observation made so that more experiments/analysis may be conducted if deemed necessary. As such, the observation pointed out is minor and its magnitude can be attributed to independent probability. But the same “cumulated imbalance” direction and trend in all four setup combinations is something that would be hard to attribute to probability alone. Also, the accumulated imbalance cleared for all four setups exactly at the same time. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope.
Category: Quantum Physics

[659] viXra:1609.0016 [pdf] replaced on 2016-09-06 15:26:25

Quantum Entanglement Experiment Data Indicates Balancing Mechanism

Authors: Krishan Vats
Comments: 8 Pages.

This article presents analysis of experimental data. The data was acquired from a recently published experiment, the link to the published paper is https://arxiv.org/abs/1511.03190. The data analysis gives an indication that the outcomes may not be totally probabilistic and may be guided by some other mechanism. This article only presents an independent observation and is not meant in any way to comment on the originally published findings of the referred experiment from which the data was acquired. This article also does not dispute any quantum mechanics quantitative predictions. It only presents the observation made so that more experiments/analysis may be conducted if deemed necessary. As such, the observation pointed out is minor and its magnitude can be attributed to independent probability. But the same “cumulated imbalance” direction and trend in all four setup combinations is something that would be hard to attribute to probability alone. Also, the accumulated imbalance cleared for all four setups exactly at the same time. The scope of this article is only statistical data. Anti correlation (when measured in the same angle) is always true, therefore it is not statistical in nature and is left out of scope.
Category: Quantum Physics

[658] viXra:1609.0016 [pdf] replaced on 2016-09-06 12:43:18

Quantum Entanglement Experiment Data Indicates Balancing Mechanism

Authors: Krishan Vats
Comments: 8 Pages.

This article presents analysis of experimental data. The data was acquired from a recently published experiment, the link to the published paper is https://arxiv.org/abs/1511.03190. The data analysis gives an indication that the outcomes may not be totally probabilistic and may be guided by some other mechanism. This article only presents an independent observation and is not meant in any way to comment on the originally published findings of the referred experiment from which the data was acquired. This article also does not dispute any quantum mechanics quantitative predictions. It only presents the observation made so that more experiments/analysis may be conducted if deemed necessary. As such, the observation pointed out is minor and its magnitude can be attributed to independent probability. But the same “cumulated imbalance” direction and trend in all four setup combinations is something that would be hard to attribute to probability alone. Also, the accumulated imbalance cleared for all four setups exactly at the same time. The scope of this article is only
Category: Quantum Physics

[657] viXra:1608.0312 [pdf] replaced on 2016-08-28 10:47:02

Challenges in Separating of Free Electrons (Persian Language)

Authors: Hosein Majlesi
Comments: 15 Pages. Persian language,Patent:139350140003006698,Tuesday,September16,2014

This present paper studied about the challenge in separating of free electrons and history of experiment in Persian language, This present paper is only for Persian readers that want to know more information about the history of experiment and challenges in the theory and experiment by free electrons.
Category: Quantum Physics

[656] viXra:1608.0234 [pdf] replaced on 2016-09-10 23:49:22

Infinitudinal Complexification

Authors: Jonathan Tooker
Comments: 13 Pages. Five figures

To the undoubted displeasure of very many detractors, this research program has heretofore focused on aspects of physics so fundamental that many of said detractors do not even acknowledge the program as physics. This paper responds to detractors' criticisms by continuing the program in the same direction and style as earlier work. We present one new quantitative result regarding the big bang and we find a particularly nice topic from fluid dynamics for qualitative treatment. A few other topics are discussed and we present quantitative results regarding the fine structure constant and the differential operator form of $\hat{M}^3$. This paper is somewhat reiterative as it calls attention to directions for further inquiry and continues to leave the hashing out of certain details to either a later effort or the eventual publication of results by those who have already hashed it out, possibly several years ago by now.
Category: Quantum Physics

[655] viXra:1608.0234 [pdf] replaced on 2016-08-22 21:55:17

Infinitudinal Complexification

Authors: Jonathan Tooker
Comments: 13 Pages. Five figures

To the undoubted displeasure of very many detractors, this research program has heretofore focused on aspects of physics so fundamental that many of said detractors do not even acknowledge the program as physics. This paper responds to detractors' criticisms by continuing the program in the same direction and style as earlier work. We present one new quantitative result regarding the big bang and we find a particularly nice topic from fluid dynamics for qualitative treatment. A few other topics are discussed and we present quantitative results regarding the fine structure constant and the differential operator form of $\hat{M}^3$. This paper is somewhat reiterative as it calls attention to directions for further inquiry and continues to leave the hashing out of certain details to either a later effort or the eventual publication of results by those who have already hashed it out, possibly several years ago by now.
Category: Quantum Physics

[654] viXra:1607.0496 [pdf] replaced on 2016-09-13 18:03:35

The Planck Mass Particle Finally Discovered! The True God Particle! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 24 Pages. Version 7 has fixed a minor type and has a new section (10) explaining why the Planck mass remarkably is at rest as observed from any reference frame.

In this paper we suggest that one single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton’s particle theory was very similar to that of the ancient atomists Democritus and Leucippus. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality.
Category: Quantum Physics

[653] viXra:1607.0496 [pdf] replaced on 2016-09-11 09:44:27

The Planck Mass Particle Finally Discovered! The True God Particle! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 23 Pages. In version 6 I have added section showing the Planck length can be found without depending on G or hbar. In addition the findings strongly indicate there is a maximum length contraction possible limited by the Planck length.

In this paper we suggest that one single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton's particle theory was very similar to that of the ancient atomists Democritus and Leucippus; see, for example. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality.
Category: Quantum Physics

[652] viXra:1607.0496 [pdf] replaced on 2016-08-27 10:15:31

The Planck Mass Particle Finally Discovered! The True God Particle! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 22 Pages. The updated version has a new section on a max limit on kinetic energy, as well as relativistic quantum physics and even relativistic Newtonian gravitation

In this paper we suggest that one single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton's particle theory was very similar to that of the ancient atomists Democritus and Leucippus; see, for example. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality.
Category: Quantum Physics

[651] viXra:1607.0496 [pdf] replaced on 2016-08-16 03:21:16

The Planck Mass Particle Finally Discovered! The True God Particle! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 18 Pages. In latest version new section on infinite mass challenge and speed limits on subatomic particles

In this paper we suggest that one single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton's particle theory was very similar to that of the ancient atomists Democritus and Leucippus; see, for example. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality.
Category: Quantum Physics

[650] viXra:1607.0496 [pdf] replaced on 2016-08-11 16:24:33

The Planck Mass Particle Finally Discovered! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 14 Pages.

In this paper we suggest that one, single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton's particle theory was very similar to that of the ancient atomists Democritus and Leucippus; see, for example. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality. (Longer abstract in paper. The paper offers a new interpretation of Heisenberg’s Uncertainty principle as well of the so-called Schwarzschild radius at the Planck scale. Mini black-holes are not what you think they are.)
Category: Quantum Physics

[649] viXra:1607.0496 [pdf] replaced on 2016-07-27 05:58:52

The Planck Mass Particle Finally Discovered! The True God Particle! Good bye to the Point Particle Hypothesis!

Authors: Espen Gaarder Haug
Comments: 11 Pages.

\abstract{In this paper we suggest that one, single fundamental particle exists behind all matter and energy. We claim that this particle has a spatial dimension and diameter equal to the Planck length and a mass equal to half of the Planck mass. Further, we will claim this particle is indivisible, that is it was never created and can never be destroyed. All other subatomic particles, in spite of having much lower masses than the Planck mass, are easily explained by the existence of such an indivisible particle. Isaac Newton stated that there had to be a fundamental particle, completely hard, that could not be broken down. He also claimed that light consisted of a stream of such particles. Newton's particle theory was very similar to that of the ancient atomists Democritus and Leucippus; see, for example, \cite{Gut65,Tay99}. However, the atomist view of an indivisible particle with spatial dimensions has generally been pushed aside by modern physics and replaced with hypothetical point particles and the mysterious wave-particle duality. Although the Planck mass is enormous compared to any known sub-atomic particles, including the Higgs particle, we will explain how all known sub-atomic particles contain and are created from the Planck mass. In this paper we will show that the Planck mass is found everywhere at the subatomic level and that the Planck mass probably consists of two indivisible particles. There are good reasons to believe that the Planck mass can only exist for an instant equal to a Planck second. We show that what modern physics considers a rest mass is, in reality, ``objects'' rapidly fluctuating between their mass state and an energy state. Our new view of matter and energy seems to address a series of unsolved problems in modern physics, including the question of why we have not observed a particle with a mass close to the Planck mass, despite the fact that the Planck mass plays an important role in certain aspects of theoretical physics. We also show how our view of matter and energy is consistent with the Heisenberg's Uncertainty principle, but gives a different and more logical interpretation than the interpretation given by modern quantum mechanics. Furthermore, based on this new view of matter and energy, we can even unify electromagnetism and gravity, as basically shown by Haug 2016 already.
Category: Quantum Physics

[648] viXra:1607.0495 [pdf] replaced on 2016-09-25 07:42:01

Time Dilation, Time and Gravity

Authors: Peter V. Raktoe
Comments: 5 Pages.

Time speeds up when gravity decreases, and time slows down when gravity increases. If time wasn't affected in another situation, then Einstein could have been right when he concluded that time is affected by gravity. But Einstein failed to see what it meant that time is also affected in another situation, time also slows down by an increase in speed. So if time slows down by an increase in speed in a situation where there is no gravity and in a situation where there is gravity, why would anyone conclude that time is affected by gravity? Einstein assumed that time slows down by an increase in gravity but that was a mistake (a fallacy) because time also slows down where there is no gravity, and there is no proof that time is affected by gravity. There is proof that time is affected by a speed, so we need to focus on that. Time slows down in 2 situations and the reason why it slows down must be the same, and that tells us that time and gravity are simultaneously affected by a speed. And because time is not affected by gravity, we can conclude that spacetime doesn't exist. And time dilation tells us something else, it tells us what the origin of time and gravity is (both are created by ether).
Category: Quantum Physics

[647] viXra:1607.0495 [pdf] replaced on 2016-08-12 03:46:14

Time Dilation, Time and Gravity

Authors: Peter V Raktoe
Comments: 4 Pages.

Time speeds up when gravity decreases, and time slows down when gravity increases. If time wasn't affected in another situation, then Minkowski/Einstein could have been right when they concluded that time is affected by gravity. But they failed to see what it meant that time is also affected in another situation, time also slows down by an increase in speed. So if time slows down by an increase in speed in a situation where there is no gravity, why wouldn't time slow down by an increase in speed in a situation where there is gravity. Minkowski/Einstein assumed that time slows down by an increase in gravity but that was a mistake (a fallacy), there is no proof that time is affected by gravity. There is proof that time is affected by a speed, so we need to focus on that and so we can conclude that time is not affected by gravity. Time slows down in two situations and the reason why it slows down must be the same, and that tells us that time and gravity are simultaneously affected by the same thing (a speed). And because time is not affected by gravity, we can conclude that space-time doesn't exist. And time dilation tells us something else, it tells us what the origin of time and gravity is (both are created by ether).
Category: Quantum Physics

[646] viXra:1607.0482 [pdf] replaced on 2016-08-07 20:58:36

A Unified Phenomenological Description for the Magnetodynamic Origin of Mass for Leptons and for the Complete Baryon Octet and Decuplet.

Authors: Osvaldo F. Schilling
Comments: 10 pages, 2 tables, 1 figure

The masses of the leptons and baryons are shown to be quantitatively described in terms of magnetodynamic energies considering as a fundamental feature the quantization of magnetic flux inside a zitterbewegung motion “ orbit” performed by each particle in consequence of its interaction with the vacuum background( as proposed decades ago by Barut, Jehle, and Post). As a further proof of the soundness of the method, we present a plot of mass against magnetic moment in which the data for the spin-3/2 decuplet particles are shifted from the data for the spin-1/2 octet by the exact numerical factor predicted from the square root of the ratio between their spin angular momenta.
Category: Quantum Physics

[645] viXra:1607.0147 [pdf] replaced on 2016-07-14 12:19:24

Gij Zult Modulair Construeren

Authors: Hans van Leunen
Comments: 4 Pages.

Kijk om je heen en je raakt er snel van overtuigd dat alle losse objecten ofwel modules of modulaire systemen zijn. Het lijkt erop dat de schepper modulair bouwen tot zijn devies gemaakt heeft. Er bestaan echter ook continuüms en die continuüms lijken in verband te staan met de losse objecten. Als waarnemers van deze feiten proberen we deze verbanden te begrijpen.
Category: Quantum Physics

[644] viXra:1607.0146 [pdf] replaced on 2016-08-26 09:04:26

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 19 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment. The paper applies a quaternionic Hilbert space in order to construct a simple dynamic model of a mathematical universe. The Hilbert space stores all historic, current and future dynamic geometric data that describe this mathematical universe.
Category: Quantum Physics

[643] viXra:1607.0146 [pdf] replaced on 2016-08-25 08:45:17

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 19 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment. The paper applies a quaternionic Hilbert space in order to construct a simple dynamic model of a mathematical universe. The Hilbert space stores all historic, current and future dynamic geometric data that describe this mathematical universe.
Category: Quantum Physics

[642] viXra:1607.0146 [pdf] replaced on 2016-08-19 16:25:22

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 16 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment. The paper applies a quaternionic Hilbert space in order to construct a simple dynamic model of a mathematical universe. The Hilbert space stores all historic, current and future dynamic geometric data that describe this mathematical universe.
Category: Quantum Physics

[641] viXra:1607.0146 [pdf] replaced on 2016-08-16 03:06:03

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 13 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment.
Category: Quantum Physics

[640] viXra:1607.0146 [pdf] replaced on 2016-08-09 10:49:44

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 9 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment.
Category: Quantum Physics

[639] viXra:1607.0146 [pdf] replaced on 2016-07-24 08:33:16

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 8 Pages. The docx version is http://www.e-physics.eu/ThouShaltConstructInAModularWay.docx

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment.
Category: Quantum Physics

[638] viXra:1607.0146 [pdf] replaced on 2016-07-20 15:50:12

Thou Shalt Construct in a Modular Way

Authors: Hans van Leunen
Comments: 4 Pages.

Look around and you become easily convinced from the fact that all discrete objects are either modules or modular systems. With other words, the creator of this universe must be a modular designer. His motto is “Construct in a modular way”. However, also non-discrete items exist. Universe contains continuums and these continuums appear to relate to the discrete objects. Further, we as observers of these facts, want to place everything into an appropriate model, such that we can comprehend our environment.
Category: Quantum Physics

[637] viXra:1606.0202 [pdf] replaced on 2016-09-25 04:41:20

Gravitational Waves

Authors: Peter V. Raktoe
Comments: 4 Pages.

The discovery of the gravitational waves is scientific fraud if there is no proof, scientists claim that they have proof but in fact there is not. A gravitational wave can only exist in spacetime, I will show you that spacetime doesn't exist. Just think of an object, it speeds up in empty space and that object is not near a gravitational field. So time will slow down for that object, time slows down and it's not affected by gravity. So in that situation spacetime doesn't exist, but more important, if there is no spacetime between gravitational fields then a gravitational wave cannot travel through space. And if that object travels towards a gravitational field, then time will be affected by a speed outside the gravitational field and then it will be affected by gravity and a speed inside the gravitational field. That doesn't make sense, why would time be affected by two things inside a gravitational field? If you don't know what gravity and time are then you can only guess that time is also affected by gravity, and Einstein's guess was wrong.
Category: Quantum Physics

[636] viXra:1606.0202 [pdf] replaced on 2016-07-03 02:43:58

Gravitational Waves

Authors: Peter V Raktoe
Comments: 4 Pages.

The discovery of a gravitational wave is scientific fraud because scientists claim that they have definite proof, that signal might be real but there is no definite proof that they found a gravitational wave. Scientific fraude can be tempering with data, but it can also be a deliberate misinterpretation of data. That is what they did (misinterpretation of data), and they claimed that there was definite proof but in fact there is not. That discovery of a gravitational wave is also the result of a fallacy, scientists are lost in fiction. The research might be correct but I don't believe it, the conclusions are incorrect and absurd. Scientists were able to claim that it was a gravitational wave because science journalists failed to see what was happening, they failed to see that there was no definite proof. Science journalists act like fans, they admire the scientists and therefore they don't ask too many or no questions. Scientists claim that gravity is the result of the curvature of a fictional space fabric (space-time), and those gravitational waves are shockwaves (ripples) in that fictional space fabric but there is no proof that it exists. Scientists know that space and time are real (3D), but that also means that space and time cannot exist as real things in a fictional space fabric (4D). When you claim that space and time are merged in a fictional space fabric, then you are saying that space and time don't exist (then you're talking about fiction). Space-time (4D) means that space and time cannot exist in reality (3D), and therefore Einstein's gravity, gravitational waves, etc cannot exist as well. And there is also another way to explain why space-time doesn't and cannot exist, all you have to do is to look at an object in space.
Category: Quantum Physics

[635] viXra:1606.0202 [pdf] replaced on 2016-07-02 04:06:41

Gravitational Waves

Authors: Peter V Raktoe
Comments: 4 Pages.

The discovery of a gravitational wave is scientific fraud because scientists claim that they have definite proof, that signal might be real but there is no definite proof that they found a gravitational wave. Scientific fraude can be tempering with data, but it can also be a deliberate misinterpretation of data. That is what they did (misinterpretation of data), and they claimed that there was definite proof but in fact there is not. That discovery of a gravitational wave is also the result of a fallacy, scientists are lost in fiction. The research might be correct but I don't believe it, the conclusions are incorrect and absurd. Scientists were able to claim that it was a gravitational wave because science journalists failed to see what was happening, they failed to see that there was no definite proof. Science journalists act like fans, they admire the scientists and therefore they don't ask too many or no questions. Scientists claim that gravity is the result of the curvature of a fictional space fabric (space-time), and those gravitational waves are shockwaves (ripples) in that fictional space fabric but there is no proof that it exists. Scientists know that space and time are real (3D), but that also means that space and time cannot exist as real things in a fictional space fabric (4D). When you claim that space and time are merged in a fictional space fabric, then you are saying that space and time don't exist (then you're talking about fiction). Space-time (4D) means that space and time cannot exist in reality (3D), and therefore Einstein's gravity, gravitational waves, etc cannot exist as well. And there is also another way to explain why space-time doesn't and cannot exist, all you have to do is to look at an object in space.
Category: Quantum Physics

[634] viXra:1606.0202 [pdf] replaced on 2016-06-21 07:48:38

Gravitational Waves

Authors: Peter V. Raktoe
Comments: 4 Pages.

The discovery of a gravitational wave is scientific fraud because scientists claim that they have definite proof, that signal might be real but there is no definite proof that they found a gravitational wave. Scientific fraude can be tempering with data, but it can also be a deliberate misinterpretation of data. That is what they did (misinterpretation of data), and they claimed that there was definite proof but in fact there is not. That discovery of a gravitational wave is also the result of a fallacy, scientists are lost in fiction. The research might be correct but I don't believe it, the conclusions are incorrect and absurd. Scientists were able to claim that it was a gravitational wave because science journalists failed to see what was happening, they failed to see that there was no definite proof. Science journalists act like fans, they admire the scientists and therefore they don't ask too many or no questions. Scientists claim that gravity is the result of the curvature of a fictional space fabric (space-time), and those gravitational waves are shockwaves (wrinkles) in that fictional space fabric but there is no proof that it exists. Scientists know that space and time are real (3D), but that also means that space and time cannot exist as real things in a fictional space fabric (4D). When you claim that space and time are merged in a fictional space fabric, then you are saying that space and time don't exist (then you're talking about fiction). Space-time (4D) means that space and time cannot exist in reality (3D), and therefore Einstein's gravity, gravitational waves, etc cannot exist as well.
Category: Quantum Physics

[633] viXra:1606.0093 [pdf] replaced on 2016-06-10 15:00:46

On the Unification of the Constants of Nature

Authors: Brent Jarvis
Comments: 4 Pages.

A short essay that unifies electromagnetism and gravity with a 5−D system of natural units.
Category: Quantum Physics

[632] viXra:1606.0093 [pdf] replaced on 2016-06-10 08:43:42

On the Unification of the Constants of Nature

Authors: Brent Jarvis
Comments: 4 Pages.

A short essay that unifies electromagnetism and gravity with a 5−D system of natural units.
Category: Quantum Physics

[631] viXra:1606.0062 [pdf] replaced on 2016-06-07 10:22:20

Does a Classical Probability Space for Two-Dimensional Quantum Measurement Theory Exist?

Authors: Koji Nagata, Tadao Nakamura
Comments: 4 pages

Recently, a new measurement theory based on the truth values is proposed \cite{NN1}. The results of measurements are either 0 or 1. The measurement theory accepts a hidden variables model for a single Pauli observable. Therefore we can introduce a classical probability space for the measurement theory in this case. On the other hand, we discuss the fact that the projective measurement theory (the results of measurements are either $+1$ or $-1$) does not meet a hidden variables model for a single Pauli observable. Hence we cannot introduce a classical probability space for the projective measurement theory in this case. Our discussion provides new insight to formulate quantum measurement theory, by using the measurement theory based on the truth values.
Category: Quantum Physics

[630] viXra:1606.0062 [pdf] replaced on 2016-06-07 06:28:26

A Classical Probability Space Exists for the Measurement Theory Based on the Truth Values

Authors: Koji Nagata, Tadao Nakamura
Comments: 3 pages

Recently, a new measurement theory based on the truth values is proposed \cite{NN1}. The results of measurements are either 0 or 1. The measurement theory accepts a hidden variables model for a single Pauli observable. Therefore we can introduce a classical probability space for the measurement theory. Our discussion provides new insight to formulate quantum measurement theory based on the truth values.
Category: Quantum Physics

[629] viXra:1606.0045 [pdf] replaced on 2016-06-04 11:14:06

Kochen-Specker Theorem in Almost All the Two-Dimensional States

Authors: Koji Nagata, Tadao Nakamura
Comments: 3 pages

We present the Kochen-Specker (KS) theorem in almost all the two-dimensional states. We consider whether we can simulate the double-slit experiment in a state by a realistic theory of the KS type. It turns out that we cannot simulate the double-slit experiment in almost all the states by a realistic theory of the KS type. An exception is an eigenvector of a measured Pauli observable.
Category: Quantum Physics

[628] viXra:1606.0028 [pdf] replaced on 2016-07-01 07:21:50

Mechanisms that Keep Reality Coherent

Authors: Hans van Leunen
Comments: 6 Pages.

Quantum physics applies Hilbert spaces as the realm in which quantum physical research is done. However, the Hilbert spaces contain nothing that prevents universe from turning into complete chaos. Quantum physics requires extra mechanisms that ensure sufficient coherence.
Category: Quantum Physics

[627] viXra:1606.0028 [pdf] replaced on 2016-06-21 06:36:36

Mechanisms that Keep Reality Coherent

Authors: Hans van Leunen
Comments: 5 Pages.

Quantum physics applies Hilbert spaces as the realm in which quantum physical research is done. However, the Hilbert spaces contain nothing that prevents universe from turning into complete chaos. Quantum physics requires extra mechanisms that ensure sufficient coherence.
Category: Quantum Physics

[626] viXra:1606.0028 [pdf] replaced on 2016-06-15 04:37:21

Mechanisms that Keep Reality Coherent

Authors: Hans van Leunen
Comments: 5 Pages.

Quantum physics applies Hilbert spaces as the realm in which quantum physical research is done. However, the Hilbert spaces contain nothing that prevents universe from turning into complete chaos. Quantum physics requires extra mechanisms that ensure sufficient coherence.
Category: Quantum Physics

[625] viXra:1606.0028 [pdf] replaced on 2016-06-04 15:04:33

Mechanisms that Keep Reality Coherent

Authors: J.A.J. van Leunen
Comments: 4 Pages.

Quantum physics applies Hilbert spaces as the realm in which quantum physical research is done. However, the Hilbert spaces contain nothing that prevents universe from turning into complete chaos. Quantum physics requires extra mechanisms that ensure sufficient coherence.
Category: Quantum Physics

[624] viXra:1606.0027 [pdf] replaced on 2016-06-04 15:06:45

De Mechanismen Die de Realiteit Coherent Houden

Authors: J.A.J. van Leunen
Comments: 5 Pages.

De kwantumnatuurkunde gebruikt Hilbertruimten als het kader waarin kwantum fysisch onderzoek gedaan wordt. De Hilbertruimte bevat echter niets wat er voor zorgt dat niet alles snel in een chaos belandt. Kwantumfysica heeft extra mechanismen nodig die ervoor zorgen dat het universum zijn samenhang behoudt.
Category: Quantum Physics

[623] viXra:1605.0268 [pdf] replaced on 2016-05-29 16:09:19

An Unorthodox View on the Foundations of Physical Reality

Authors: J.A.J. van Leunen
Comments: 16 Pages.

This paper is telling essentials of the story of the Hilbert Book Test Model without applying the mathematical formulas. The paper cannot avoid the usage of mathematical terms, but these terms will be elucidated such that mathematical novices can still understand most of the story. The Hilbert Book Test Model is a way to investigate the part of the foundation of physical reality that cannot be observed. This foundation is necessarily simple and it can easily be comprehended by skilled scientists. However, this paper is targeted to readers that are not skilled in math.
Category: Quantum Physics

[622] viXra:1605.0257 [pdf] replaced on 2016-05-25 17:47:33

Reaction Less Drive by Anti Maxwell Dead Zone Around a Wire.

Authors: Leo Vuyk
Comments: 21 Pages. 21

According to Quantum FFF Theory (Function Follows Form at the quantum level) the magnetic quantum field has always TWO different shaped monopole vector components: a North- and a South vector field component. This is comparable with the electric Quantum field, equipped with Plus and Minus vector components but it is in contrast with all other quantum fields like the neutrino- gravity-or x-gamma ray field. After interference of the magnetic wave with a real spinning propeller shaped Fermion particle, TWO real monopole magnetic waves from opposite direction will collapse and come to life as two real rigid shaped photons, as the result of two individual mutated oscillating Higgs filed particles from the vacuum. These photons should do the magnetic job by interlocking temporarily with the Fermion, and give the Fermion a push to the left respectively a push to the right fully in line and according to the Lorentz force law. However, based on observation of iron powder patterns around wires, it is assumed that if these monopole particle/ wave dualities travel parallel to each other inside the Higgs field, (and not- as normal- in opposition due to the natural opposing curvature of the so called B field) .As a result, the magnetic field strength- created by the wire itself-locally drops down to zero, with a up to zero reduced Lorentz force on the iron powder atoms. This is in contradiction with Maxwell’s magnetic field law around an electric energized wire and I call it the “tubular local magnetic dropping zone” ( dead zone) around the electric wire, which can be used for reaction less drive propulsion and Levitation in combination with different forms of strong tubular or spiral magnets. Magnet optimalisation is suggested to form spiral configurations of high performance magnet platings with a spiralling electric coils in between. The Lorentz force created on the wire by the static magnetic field of the tubular or spiral magnet (s) is supposed to be the only force in the system, by the absence of a reaction force on the magnet due to the local magnetic dropping zone.
Category: Quantum Physics

[621] viXra:1605.0250 [pdf] replaced on 2016-06-07 08:51:54

The Light

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: statement of light is just one kind of waves.
Category: Quantum Physics

[620] viXra:1605.0250 [pdf] replaced on 2016-06-06 02:47:18

The Light

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: statement of light is just one kind of waves.
Category: Quantum Physics

[619] viXra:1605.0250 [pdf] replaced on 2016-05-29 07:23:45

The Light

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: statement of light is just one kind of waves.
Category: Quantum Physics

[618] viXra:1605.0250 [pdf] replaced on 2016-05-27 23:29:15

The Light

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: statement of light is just one kind of waves.
Category: Quantum Physics

[617] viXra:1605.0170 [pdf] replaced on 2016-08-19 04:07:20

Extension of the Standardmodel

Authors: Kronberger Reinhard
Comments: 12 Pages.

The symmetrie of the coxeterelement of the affine liegroup E9 shows an extension of the quantum standardmodel. By doing a second symmetriebreaking it shows the graviton particle and a new field like the higgsfield.I call it oktoquintenfield. This field predicts a new particle like the higgsfield predict the higgs.This new particle is a Spin 0 boson. The extended standardmodel also allows to understand dark energie by the cosmological constant and dark matter. Like the weak force with light the extension shows a superweak force with gravity.
Category: Quantum Physics

[616] viXra:1605.0170 [pdf] replaced on 2016-07-09 16:14:02

Extension of the Standardmodel

Authors: Kronberger Reinhard
Comments: 10 Pages.

The symmetrie of the coxeterelement of the affine liegroup E9 shows an extension of the quantum standardmodel. By doing a second symmetriebreaking it shows the graviton particle and a new field like the higgsfield.I call it oktoquintenfield. This field predicts a new particle like the higgsfield predict the higgs.This new particle is a Spin 0 boson. The extended standardmodel also allows to understand dark energie by the cosmological constant and dark matter. Like the weak force with light the extension shows a superweak force with gravity.
Category: Quantum Physics

[615] viXra:1605.0170 [pdf] replaced on 2016-06-26 15:17:02

Extension of the Standardmodel

Authors: Kronberger Reinhard
Comments: 11 Pages.

The symmetrie of the coxeterelement of the affine liegroup E9 shows an extension of the quantum standardmodel. By doing a second symmetriebreaking it shows the graviton particle and a new field like the higgsfield.I call it oktoquintenfield. This field predicts a new particle like the higgsfield predict the higgs.This new particle is a Spin 0 Boson or a Spin 2 Tensorboson. The extended standardmodel also allows to understand dark energie by the cosmological constant and dark matter. Like the weak force with light the extension shows a superweak force with gravity.
Category: Quantum Physics

[614] viXra:1605.0170 [pdf] replaced on 2016-06-17 12:19:26

Extension of the Standardmodel

Authors: Kronberger Reinhard
Comments: 10 Pages.

The symmetrie of the coxeterelement of the affine liegroup E9 shows an extension of the quantum standardmodel. By doing a second symmetriebreaking it shows the graviton particle and a new field like the higgsfield.I call it oktoquintenfield. This field predicts a new particle like the higgsfield predict the higgs.This new particle is a Spin 2 Tensorboson. The extended standardmodel also allows to understand dark energie by the cosmological constant and dark matter. Like the weak force with light the extension shows a superweak force with gravity.
Category: Quantum Physics

[613] viXra:1605.0170 [pdf] replaced on 2016-06-17 04:15:48

Extension of the Standardmodel

Authors: Kronberger Reinhard
Comments: 10 Pages.

The symmetrie of the coxeterelement of the affine liegroup E9 shows an extension of the quantum standardmodel. By doing a second symmetriebreaking it shows the graviton particle and a new field like the higgsfield.I call it oktoquintenfield. This field predicts a new particle like the higgsfield predict the higgs.This new particle is a Spin 2 Tensorboson. The extended standardmodel also allows to understand dark energie by the cosmological constant and dark matter. Like the weak force with light the extension shows a superweak force with gravity.
Category: Quantum Physics