**Previous months:**

2007 - 0702(8) - 0703(11) - 0705(1) - 0708(1) - 0711(1)

2008 - 0802(1) - 0804(6) - 0807(1) - 0812(1)

2009 - 0903(1) - 0907(10) - 0908(9) - 0909(4) - 0910(6) - 0911(4) - 0912(4)

2010 - 1001(5) - 1002(3) - 1003(29) - 1004(9) - 1005(7) - 1006(5) - 1007(5) - 1008(4) - 1009(3) - 1011(1) - 1012(1)

2011 - 1101(5) - 1102(3) - 1103(6) - 1104(7) - 1105(3) - 1106(8) - 1107(9) - 1108(7) - 1109(11) - 1110(10) - 1111(11) - 1112(9)

2012 - 1201(1) - 1202(3) - 1203(11) - 1204(5) - 1205(8) - 1206(6) - 1207(4) - 1208(9) - 1209(8) - 1210(11) - 1211(12) - 1212(7)

2013 - 1301(16) - 1302(11) - 1303(6) - 1304(8) - 1305(16) - 1306(20) - 1307(16) - 1308(10) - 1309(15) - 1310(2) - 1311(12) - 1312(26)

2014 - 1401(9) - 1402(7) - 1403(19) - 1404(14) - 1405(13) - 1406(20) - 1407(22) - 1408(17) - 1409(19) - 1410(15) - 1411(23) - 1412(16)

2015 - 1501(7) - 1502(20) - 1503(19) - 1504(14) - 1505(28) - 1506(26) - 1507(27) - 1508(31) - 1509(29) - 1510(6)

Any replacements are listed further down

[867] **viXra:1510.0051 [pdf]**
*submitted on 2015-10-05 07:54:38*

**Authors:** Johan Noldus

**Comments:** 4 Pages.

We propose a new interpretation of quantum mechanics without the
observer and thereby solve the micro-macro problem. Our proposal goes
beyond Bohm-de Broglie theory but is as far as it stands mathematically
isomorphic to it.

**Category:** Quantum Physics

[866] **viXra:1510.0034 [pdf]**
*submitted on 2015-10-04 09:46:54*

**Authors:** Steve Faulkner

**Comments:** 5 Pages.

The homogeneity symmetry is re-examined and shown to be non-unitary, with no requirement for the imaginary unit. This removes symmetry, as reason, for imposing unitarity (or self-adjointness) -- by Postulate. The work here is part of a project researching logical independence in quantum mathematics, for the purpose of advancing a full and complete theory of quantum randomness.**Keywords:** foundations of quantum theory, quantum physics, quantum mechanics, wave mechanics, Canonical Commutation Relation, symmetry, homogeneity of space, unitary, non-unitary, unitarity, mathematical logic, formal system, elementary algebra, information, axioms, mathematical propositions, logical independence, quantum indeterminacy, quantum randomness.

**Category:** Quantum Physics

[865] **viXra:1510.0026 [pdf]**
*submitted on 2015-10-03 04:38:24*

**Authors:** George Rajna

**Comments:** 15 Pages.

A team of researchers working at the University of Konstanz, in Germany is claiming to have directly sampled electric-field vacuum fluctuations, which would be the first ever made. In their paper published in the journal Science, the team describes an experiment they carried out and a part of it which they claim indicates that they have measured vacuum fluctuations directly for the first time. [9]
Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[864] **viXra:1510.0012 [pdf]**
*submitted on 2015-10-02 07:12:31*

**Authors:** George Rajna

**Comments:** 14 Pages.

Now in a new study, scientists from Hokkaido University in Japan have reported the first evidence of quantum tunneling as a mechanism for the surface diffusion of hydrogen atoms on the surface of ice, although quantum tunneling has previously been observed for hydrogen atoms on the surface of some metals. In quantum tunneling, the hydrogen atoms can move through barriers that they otherwise could not pass through using only classical mechanisms, such as thermal hopping. [10]
An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process. The new theory could lead to faster and smaller electronic components, for which quantum tunneling is a significant factor. It will also lead to a better understanding of diverse areas such as electron microscopy, nuclear fusion and DNA mutations. [9]
Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

**Category:** Quantum Physics

[863] **viXra:1510.0005 [pdf]**
*submitted on 2015-10-01 09:40:46*

**Authors:** George Rajna

**Comments:** 24 Pages.

Is a cognitive computer the future of computing? While the computer has come a long way in the last few years, researchers at IBM say it hasn’t come far enough. Research in cognitive computing could lead to smart computers that compose, create, and digest via cognitive learning, a process that might seem a bit intimidating and complex at first, but is now being called the future of computers, and expected to be introduced into the market in as little as five to ten years. [11]
Combining the vast processing power of quantum computers with cognitive computing systems like IBM's Watson will lead to huge advances in artificial intelligence, according to a C-level executive at the US software giant. [10]
Around the world, small bands of such engineers have been working on this approach for decades. Using two particular quantum phenomena, called superposition and entanglement, they have created qubits and linked them together to make prototype machines that exist in many states simultaneously. Such quantum computers do not require an increase in speed for their power to increase. In principle, this could allow them to become far more powerful than any classical machine—and it now looks as if principle will soon be turned into practice. Big firms, such as Google, Hewlett-Packard, IBM and Microsoft, are looking at how quantum computers might be commercialized. The world of quantum computation is almost here. [9]
IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8]
Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[862] **viXra:1510.0001 [pdf]**
*submitted on 2015-10-01 04:07:51*

**Authors:** George Rajna

**Comments:** 17 Pages.

Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9]
Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[861] **viXra:1509.0295 [pdf]**
*submitted on 2015-09-30 21:24:36*

**Authors:** R Lecamwasam, S Needham, P Reddy

**Comments:** 2 Pages.

It is our belief that under the Everett interpretation of quantum mechanics, postulating the objective reality of a universal wavefunction and the sufficiency of the linear model describing quantum mechanical systems without observers to equally describe systems with an observer, there must presently exist a universe where objects indistinguishable from a carrot \cite{carrot} in our consensus reality take the role of the dominant sapient species on Earth. In this brief note, we present our justification for this belief based on the postulates of the Everett interpretation and speculative ideas of what such a universe might be like.

**Category:** Quantum Physics

[860] **viXra:1509.0290 [pdf]**
*submitted on 2015-09-30 07:59:23*

**Authors:** Johan Noldus

**Comments:** 2 Pages.

We point out that there is no obvious contradiction between the results of quantum mechanics and consequences of general relativity

**Category:** Quantum Physics

[859] **viXra:1509.0288 [pdf]**
*submitted on 2015-09-29 21:42:47*

**Authors:** Vedat Tanriverdi

**Comments:** 6 pages, classical electron radius, spin, quantum mechanics

Some simple models about classical electron radius and spin are considered.
These simple models are considered for a better understanding spin and its relation with other electron properties, i.e. charge, inertia, energy.
These models have different inconsistencies with current theories, however they are still helpful for understanding.

**Category:** Quantum Physics

[858] **viXra:1509.0284 [pdf]**
*submitted on 2015-09-29 13:58:36*

**Authors:** Rodolfo A. Frino

**Comments:** 2 Pages.

In this paper I derive the invariance of the product: relativistic mass times relativistic length.

**Category:** Quantum Physics

[857] **viXra:1509.0283 [pdf]**
*submitted on 2015-09-29 14:00:50*

**Authors:** Rodolfo A. Frino

**Comments:** 4 Pages.

The purpose of this paper is to derive the formula for the momentum of a body (or particle) as a
function of its “contracted” length. The paper also shows that the Fitzgerald-Lorentz contraction is a real effect, and therefore, not an illusion.

**Category:** Quantum Physics

[856] **viXra:1509.0270 [pdf]**
*submitted on 2015-09-28 09:46:23*

**Authors:** George Rajna

**Comments:** 14 Pages.

For a very long time mankind has questioned what consciousness is – whether our ability to think, our free will, is tied directly to our soul or if it’s a component of the complexity of our brains? [8]
Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness.
The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

**Category:** Quantum Physics

[855] **viXra:1509.0233 [pdf]**
*submitted on 2015-09-26 03:42:57*

**Authors:** Isaac Deronic

**Comments:** 6 Pages.

Recently it was proposed that quantum mechanics, if applied to macroscopic systems, would necessarily include a form of fortune telling or psychic phenomena. In this article, this claim is presented using formal quantum mechanics methods, and the results are analysed and found to be possible.

**Category:** Quantum Physics

[854] **viXra:1509.0232 [pdf]**
*submitted on 2015-09-25 09:59:10*

**Authors:** Steve Faulkner

**Comments:** 5 Pages.

The homogeneity symmetry is re-examined and shown to be non-unitary. This is motivated by the prospect that logical independence in elementary algebra, entering quantum mathematics, will constitute the basis for a theory explaining quantum randomness.
Keywords: foundations of quantum theory, quantum physics, quantum mechanics, wave mechanics, Canonical Commutation Relation, symmetry, homogeneity of space, unitary, non-unitary, unitarity, mathematical logic, formal system, elementary algebra, information, axioms, mathematical propositions, logical independence, quantum indeterminacy, quantum randomness.

**Category:** Quantum Physics

[853] **viXra:1509.0230 [pdf]**
*submitted on 2015-09-25 10:57:33*

**Authors:** George Rajna

**Comments:** 17 Pages.

Schrodinger's thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straightforward method to create quantum superposition states of a living microorganism by putting a small bacterium on top of an electromechanical oscillator. [11]
For the first time, physicists have achieved interference between two separate atoms: when sent towards the opposite sides of a semi-transparent mirror, the two atoms always emerge together. This type of experiment, which was carried out with photons around thirty years ago, had so far been impossible to perform with matter, due to the extreme difficulty of creating and manipulating pairs of indistinguishable atoms. [10]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[852] **viXra:1509.0225 [pdf]**
*submitted on 2015-09-25 05:50:07*

**Authors:** Andrew Beckwith

**Comments:** Rencontres Du Vietnam conference submission, 2 pages, for the proceedings. Very abbreviated discussion and put in Quantum physics, due to its overwhelming quantum fluctuation orientatation

Brief synopsis of a quantum effect, for the Rencontres Du Vietnam (hot topics in Gravitation) conference, in Quy Nohn as of August 2016. Outlines what may be relevant quantum conditions for a minimum value of a graviton (heavy Gravitons), as opposed to the situation where Goldbauer and other researchers only talk about the top allowed maximum mass of a heavy graviton

**Category:** Quantum Physics

[851] **viXra:1509.0215 [pdf]**
*submitted on 2015-09-23 16:43:40*

**Authors:** Dimitris Mastoridis, Konstantinos Kalogirou

**Comments:** 33 Pages.

The current paper presents a new idea that it might lead us to the Grand Unified Theory. A concrete mathematical framework have been provided that could be appropriate for one to work with. Possible answers were given concerning the problems of dark matter and dark energy as well as the "penetration" to vacuum dominant epoch, combining Quantum Physics with Cosmology through the existence of Higg's boson. A value for Higg's mass around 125.179345 Gev/c^2 and a value for vacuum density around 4.41348x10-5Gev/cm^3 were derived . Via Cartan's theorem a proof regarding the number of bosons existing in nature (28) have been presented. Additionally, the full Lagrangian of our Cosmos (including Quantum Gravity) was accomplished.

**Category:** Quantum Physics

[850] **viXra:1509.0205 [pdf]**
*submitted on 2015-09-22 05:14:05*

**Authors:** George Rajna

**Comments:** 16 Pages.

The irrationality of how we think has long plagued psychology. When someone asks us how we are, we usually respond with "fine" or "good." But if someone followed up about a specific event — "How did you feel about the big meeting with your boss today?" — suddenly, we refine our "good" or "fine" responses on a spectrum from awful to excellent. [8]
A new trend taking shape in psychological science not only uses quantum physics to explain humans' (sometimes) paradoxical thinking, but may also help researchers resolve certain contradictions among the results of previous psychological studies. According to Zheng Joyce Wang and others who try to model our decision-making processes mathematically, the equations and axioms that most closely match human behavior may be ones that are rooted in quantum physics. [7]
The hypothesis that there may be something quantum-like about the human mental function was put forward with “Spooky Activation at Distance” formula which attempted to model the effect that when a word’s associative network is activated during study in memory experiment; it behaves like a quantum-entangled system. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.

**Category:** Quantum Physics

[849] **viXra:1509.0203 [pdf]**
*submitted on 2015-09-21 18:15:06*

**Authors:** Jiri Soucek

**Comments:** 5 Pages.

In this note we shall show the relation between the locality of Quantum Mechanics and the meaning of the quantum state.

**Category:** Quantum Physics

[848] **viXra:1509.0197 [pdf]**
*submitted on 2015-09-21 11:34:48*

**Authors:** Steve Faulkner

**Comments:** 9 Pages.

As opposed to the classical logic of true and false, when elementary algebra is treated as a formal axiomatised system, formulae in that algebra are either provable, disprovable or otherwise, logically independent of axioms. This logical independence is well-known to Mathematical Logic. The intention here is to cover the subject in a way accessible to physicists, and suggest how this logical independence might connect with quantum randomness.
Keywords:mathematical logic, formal arithmetic, formal system, axioms, mathematical propositions, Soundness Theorem, Completeness Theorem, logical independence, mathematical undecidability, foundations of quantum theory, quantum mechanics, quantum physics, quantum indeterminacy, quantum randomness.

**Category:** Quantum Physics

[847] **viXra:1509.0166 [pdf]**
*submitted on 2015-09-18 23:57:44*

**Authors:** Kuyukov Vitaly

**Comments:** 2 Pages.

In this paper the results obtained by evaluating the maximum information
about the Universe by using the method of quantization of time.

**Category:** Quantum Physics

[846] **viXra:1509.0158 [pdf]**
*submitted on 2015-09-18 07:13:06*

**Authors:** George Rajna

**Comments:** 12 Pages.

A team of researchers with members from several countries in Europe has used a type of X-ray diffraction to reveal defects in the way a superconductor develops. In their paper published in the journal Nature, the team describes the technique they used to study one type of superconductor and what they saw. Erica Carlson with Perdue University offers a News & Views piece on the work done by the team in the same journal issue. [26]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[845] **viXra:1509.0149 [pdf]**
*submitted on 2015-09-17 11:22:46*

**Authors:** Michael A. Sherbon

**Comments:** 12 Pages. International Journal of Physical Research 2, 1, 1-9 (2014). CC 3.0

Arnold Sommerfeld introduced the fine-structure constant that determines the strength of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several clues to calculating the fine-structure constant with his research on Johannes Kepler's view of nature and Pythagorean geometry. The Laplace limit of Kepler's equation in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian Schwinger's research enable a calculation of the electron magnetic moment anomaly. Considerations of fundamental lengths such as the charge radius of the proton and mass ratios suggest some further foundational interpretations of quantum electrodynamics.

**Category:** Quantum Physics

[844] **viXra:1509.0141 [pdf]**
*submitted on 2015-09-17 01:31:49*

**Authors:** George Rajna

**Comments:** 16 Pages.

An international team led by Radboud University physicists has discovered that reversing the poles of magnets must be possible without a heating or a magnetic field.. A strong pulse of light can have a direct effect on the strong quantum mechanical 'exchange interaction', therefore changing the magnetism. [9]
Magnetic waves are known as solitons—for solitary waves—and were theorized to occur in magnets in the 1970s. They form because of a delicate balance of magnetic forces—much like water waves can form a tsunami. Now physicists have used a specialized x-ray method to take pictures of them. [8]
This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[843] **viXra:1509.0139 [pdf]**
*submitted on 2015-09-16 08:17:25*

**Authors:** Koji Nagata, Tadao Nakamura

**Comments:** Physics Journal, Volume 1, Issue 3 (2015), Page 183--188.

We use the validity of Addition and Multiplication for a hidden variables theory. First, we provide an example that the two operations Addition and Multiplication do not commute with each other as revealed by the analyses that are performed in a finite set of numbers. Our discussion leads to an initial conclusion that Sum rule and Product rule do not commute with each other in a hidden variables theory. If we accept this conclusion, we do not get the Bell- Kochen -Specker paradox. In more detail, quantum mechanics may accept the hidden variables theory. Next, we discuss the validity of operators under an assumption that Sum rule and Product rule commute with each other. In this case, we indeed get the Bell- Kochen -Specker paradox. We got the non-classicality of macroscopic experimental data observed in the Stern-Gerlach experiment and the double-slit experiment. If we detect |↑> and then we detect |↓>, the experiments cannot accept the hidden variables theory. We considered whether we can assign the predetermined “hidden” result to numbers 1 and -1 as in results of measurements with the number of measurements finite (e.g., twice) in the experiments. It turned out that we cannot assign the predetermined hidden result to such results of measurements. The next conclusion indicates interestingly that the Stern-Gerlach experiment cannot accept classical mechanics. The double-slit experiment had led to the same situation, and they were indeed quantum mechanical phenomena.

**Category:** Quantum Physics

[842] **viXra:1509.0134 [pdf]**
*submitted on 2015-09-15 13:44:09*

**Authors:** Fran De Aquino

**Comments:** 5 Pages.

The possibility of obtention of quantum vacuum in laboratory is shown in this work. The method consists in ward off air atoms from the surface of a solid material plate. The clearance can reach up to several nanometers, thus producing a region where there are no elementary particles.

**Category:** Quantum Physics

[841] **viXra:1509.0130 [pdf]**
*submitted on 2015-09-15 09:28:19*

**Authors:** George Rajna

**Comments:** 15 Pages.

A new trend taking shape in psychological science not only uses quantum physics to explain humans' (sometimes) paradoxical thinking, but may also help researchers resolve certain contradictions among the results of previous psychological studies. According to Zheng Joyce Wang and others who try to model our decision-making processes mathematically, the equations and axioms that most closely match human behavior may be ones that are rooted in quantum physics. [7]
The hypothesis that there may be something quantum-like about the human mental function was put forward with “Spooky Activation at Distance” formula which attempted to model the effect that when a word’s associative network is activated during study in memory experiment; it behaves like a quantum-entangled system. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

**Category:** Quantum Physics

[840] **viXra:1509.0114 [pdf]**
*submitted on 2015-09-11 10:08:55*

**Authors:** George Rajna

**Comments:** 14 Pages.

An international team of researchers, including the MESA+ Institute for Nanotechnology at the University of Twente in The Netherlands and the U.S. Department of Energy's Argonne National Laboratory, announced today in Science the observation of a dynamic Mott transition in a superconductor. [26]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[839] **viXra:1509.0107 [pdf]**
*submitted on 2015-09-10 11:57:07*

**Authors:** John C. Hodge

**Comments:** 9 Pages.

The Scalar Theory of Everything (STOE) model of single photon diffraction is a model with photons being directed by plenum forces along their trajectory (http://intellectualarchive.com/ ?link=item\&id=1557). By setting initial conditions in a simulation, predictions of screen patterns can be made. Changing the altitude produces a change in the width of the pattern. Using a pattern resulting from a single slit, a second mask can examine the result of varying the intensity of the illumination across the slit and of only one of the double slits being illuminated. The resultant patterns on a screen were photographed and are on the opposite side of center from the illuminated side of the second mask. The STOE is consistent and all other models of diffraction are inconsistent with these results.

**Category:** Quantum Physics

[838] **viXra:1509.0081 [pdf]**
*submitted on 2015-09-07 08:51:30*

**Authors:** George Rajna

**Comments:** 14 Pages.

With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10]
Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[837] **viXra:1509.0080 [pdf]**
*submitted on 2015-09-07 02:26:00*

**Authors:** Herbert Weidner

**Comments:** 6 Pages.

After discussing various examples, the diameter of a single photon is calculated by combining the formulas of quantum mechanics and wave theory. The experimentally known coherence length is the length of the photon.

**Category:** Quantum Physics

[836] **viXra:1509.0079 [pdf]**
*submitted on 2015-09-06 14:57:39*

**Authors:** George Rajna

**Comments:** 13 Pages.

Since the 1930s scientists have been searching for particles that are simultaneously matter and antimatter. Now physicists have found strong evidence for one such entity inside a superconducting material. The discovery could represent the first so-called Majorana particle, and may help researchers encode information for quantum computers.[27]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[835] **viXra:1509.0049 [pdf]**
*submitted on 2015-09-04 09:55:37*

**Authors:** Shinsuke Hamaji

**Comments:** 3 Pages.

My previous research involved representing energies (gravitational mass, inertial mass, and Planck’s constant) of different particle speeds as an equivalence for quantum (Mc = ΔmΔw = hf/c). In addition, E = Mc2 (kinetic energy is changed to mass) does not indicate that the total energy change is always proportional to particle speed. Therefore, “energy representation of a mathematical action,” and “energy change of a physical interaction” are not similar. The actual physical phenomenon should distinguish between these actions.

**Category:** Quantum Physics

[834] **viXra:1509.0045 [pdf]**
*submitted on 2015-09-03 15:30:46*

**Authors:** Rodolfo A. Frino

**Comments:** 3 Pages.

The quantum gravitational formula for the mass of the electron suggests the existence of a super light particle yet to be observed. However, it is not clear whether this particle is an electrino, a new type of neutrino, a neutralino (a neutral particle that is neither a neutrino nor a darkino) or a darkino (a neutral particle “responsible” for the mysterious dark matter contents of the Universe). The formula also suggests four possible values for the rest mass of this super light particle.

**Category:** Quantum Physics

[833] **viXra:1509.0033 [pdf]**
*submitted on 2015-09-02 11:33:32*

**Authors:** George Rajna

**Comments:** 13 Pages.

The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, a switch both on and off, a cat both dead and alive. Or entanglement, what Einstein called "spooky action-at-distance" in which objects are invisibly linked, even when separated by huge distances. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[832] **viXra:1508.0303 [pdf]**
*submitted on 2015-08-30 14:25:05*

**Authors:** Jiri Soucek

**Comments:** 3 Pages.

In this note we show that in the modified quantum mechanics EPR correlations can be explained locally. We show also that the claim on the quantum nonlocality is in the modified quantum mechanics false.

**Category:** Quantum Physics

[831] **viXra:1508.0297 [pdf]**
*submitted on 2015-08-29 05:23:10*

**Authors:** George Rajna

**Comments:** 14 Pages.

Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[830] **viXra:1508.0287 [pdf]**
*submitted on 2015-08-27 11:53:43*

**Authors:** George Rajna

**Comments:** 15 Pages.

The pursuit of an understanding of the base machinery of the mind led early researchers to anatomical exhaustion. With neuroscience now in the throes of molecular mayhem and a waning biochemical bliss, physics is spicing things up with a host of eclectic quantum, spin, and isotopic novelties. While increases in electron spin content have been linked to anesthetic effects, nuclear spins have recently been implicated in a more rarefied and subtle phenomenon— neural quantum processing. [7]
The hypothesis that there may be something quantum-like about the human mental function was put forward with “Spooky Activation at Distance” formula which attempted to model the effect that when a word’s associative network is activated during study in memory experiment; it behaves like a quantum-entangled system. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

**Category:** Quantum Physics

[829] **viXra:1508.0236 [pdf]**
*submitted on 2015-08-27 03:30:07*

**Authors:** Mojtaba Mahmoudi Fard

**Comments:** 6 pages

It is thought that in accordance with the quantum uncertainty, energy could be extracted from the empty space. However, space nowadays could be considered as a material sui generis entity, a collection of indivisible small particles, and in a grainy fabric. So this paper asserts that the vacuum is not a concept other than the space-time itself related to its microscopic structure and the underlying ether.

**Category:** Quantum Physics

[828] **viXra:1508.0211 [pdf]**
*submitted on 2015-08-26 13:44:06*

**Authors:** George Rajna

**Comments:** 14 Pages.

Quantum physics tell us that even massive particles can behave like waves, as if they could be in several places at once. This phenomenon is typically proven in the diffraction of a matter wave at a grating. Researchers have now carried this idea to the extreme and observed the delocalization of molecules at the thinnest possible grating, a mask milled into a single layer of atoms. [6]
Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5]
Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

**Category:** Quantum Physics

[827] **viXra:1508.0206 [pdf]**
*submitted on 2015-08-25 13:46:36*

**Authors:** Kunle Adegoke, Henry Otobrise, Tolulope Famoroti, Adenike Olatinwo, Afees Tiamiyu, Funmi Akintujoye

**Comments:** 27 Pages.

We give an explicit matrix representation for the Hamiltonian of the Ising model in mutually orthogonal external magnetic fields, using as basis the eigenstates of a system of non-interacting spin~$1/2$ particles in external magnetic fields. We subsequently apply our results to obtain an analytical expression for the ground state energy per spin, to the fourth order in the exchange integral, for the Ising model in perpendicular external fields.

**Category:** Quantum Physics

[826] **viXra:1508.0198 [pdf]**
*submitted on 2015-08-24 11:14:35*

**Authors:** Sjaak Uitterdijk

**Comments:** 2 Pages.

This article criticises the phenomenon “wave-like-behaviour” of matter and shows that the Davisson-Germer experiment, considered as the validation of De Broglie’s hypothesis, can be interpreted in another way too.

**Category:** Quantum Physics

[825] **viXra:1508.0192 [pdf]**
*submitted on 2015-08-24 03:29:59*

**Authors:** Amrit Sorli

**Comments:** 3 Pages.

Idea that time can have origin in entanglement is based on the preposition that “internal observer”, “external observer”, “coordinate time” and “proper time” are theoretical models of the world which have counterpart in physical universe. Bijective epistemology based on bijective function of set theory confirms these models have no counterpart in physical universe; they are pure theoretical inventions on which we cannot build a consistent scientific theory. Idea that time could have origin in entanglement has no enough theoretical and experimental basis to be taken seriously as an adequate model of physical world.

**Category:** Quantum Physics

[824] **viXra:1508.0191 [pdf]**
*submitted on 2015-08-23 10:03:40*

**Authors:** PV Raktoe

**Comments:** 6 Pages.

This paper discribes several mistakes in (theoretical) physics, it explains why most mysteries in the universe cannot be solved. Scientists claim that a black hole is massive, but there is no proof that it is. They think a black hole is massive because they think it needs to be (because of Einstein's gravity), otherwise the stars wouldn't stay in their orbit. They looked at the stars and their speed and used mathematics to calculate how massive a black hole needed to be, but if there is no proof that a black hole is massive you also need to look at another option; an empty black hole. A massive black hole remains a mystery because they cannot see what's inside, but when you remove that mass it's not a mystery anymore. But more important, the origin of gravity reveals itself. And once you understand what gravity is, you will immediately understand that most mysteries in space are in fact man-made. You will find that Einstein's gravity, gravitational waves, massive black holes, dark matter and dark energy don't exist, and that is why they cannot find or explain it. You will find that some mysteries can easily be solved, because you will understand what the universe is.

**Category:** Quantum Physics

[823] **viXra:1508.0185 [pdf]**
*submitted on 2015-08-22 10:24:11*

**Authors:** George Rajna

**Comments:** 16 Pages.

One thing that all chemical reactions have in common—whether they are the reactions that take place inside a battery, the metabolic reactions inside a living organism, or the combustion reactions that cause an explosion—is that they all involve some kind of change in energy. On a large scale, the changes in energy of a reaction can usually be measured in various ways for practical purposes, but attempting to understand the fundamental origins of this energy at smaller and smaller scales becomes more complicated, especially as chemistry enters the quantum realm. [9]
New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.

**Category:** Quantum Physics

[822] **viXra:1508.0183 [pdf]**
*submitted on 2015-08-22 08:19:43*

**Authors:** George Rajna

**Comments:** 10 Pages.

Per Delsing and his team want to combine theoretical calculations with experiments on superconducting circuits to gain an understanding of how things fit together at the nano level. Among other things, they plan to simulate objects that move very rapidly, almost at the speed of light, and demonstrate the "twin paradox" on a microchip. [4]
The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Relativistic Quantum Theories.

**Category:** Quantum Physics

[821] **viXra:1508.0176 [pdf]**
*submitted on 2015-08-21 06:44:30*

**Authors:** Wan-Jiung Hu

**Comments:** 6 Pages.

Unification of strong force, weak force, and electromagnetism is provided via higgs mechanism. Thus, gluons, W+, W-, and Z particles can acquire mass. All green related gluons then have mass. This theory links U(1), SU(2), and SU(3) for a general unification theory which extends from Weinberg's electroweak interaction.

**Category:** Quantum Physics

[820] **viXra:1508.0171 [pdf]**
*submitted on 2015-08-21 13:16:51*

**Authors:** Antonio Cardoso

**Comments:** 6 pages, 1 figure

In this paper we discuss a recent double-slit experiment where which-path information is obtained without disturbing the photons in their path to the detector, and, as a consequence, an interference pattern is observed on the far screen even if it is known which slit the photons go through. We argue that this result is in clear contradiction with a fundamental principle in orthodox quantum mechanics – Bohr’s complementarity principle – and also point out that, on the other hand, the results of this experiment are the expected ones in the framework of de Broglie’s pilot wave theory.

**Category:** Quantum Physics

[819] **viXra:1508.0147 [pdf]**
*submitted on 2015-08-18 20:27:34*

**Authors:** Jiri Soucek

**Comments:** 4 Pages.

In this note we shall show that the proof of the nonlocality of Quantum Mechanics given in [1] contains a gap. We also show that Bell inequalities cannot be derived in the modified QM.

**Category:** Quantum Physics

[818] **viXra:1508.0144 [pdf]**
*submitted on 2015-08-18 15:39:33*

**Authors:** Michael John Sarnowski

**Comments:** 6 Pages.

The mass ratio calculation for the elementary particles of the proton, electron, muon, and tau(tauon) are shown below. It is shown that these particles are all ratios with the neutron. It is shown that the electron, muon, and tau are all derived from the proton neutron mass ratio. It is shown that the muon and tau are complimentary lepton particles.

**Category:** Quantum Physics

[817] **viXra:1508.0127 [pdf]**
*submitted on 2015-08-17 06:38:09*

**Authors:** A. Furtado Neto

**Comments:** 3 Pages.

Speed of the wavefunction collapse is calculated assuming the universe is a vast cellular
automaton.

**Category:** Quantum Physics

[816] **viXra:1508.0124 [pdf]**
*submitted on 2015-08-16 07:46:28*

**Authors:** George Rajna

**Comments:** 11 Pages.

An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process. The new theory could lead to faster and smaller electronic components, for which quantum tunneling is a significant factor. It will also lead to a better understanding of diverse areas such as electron microscopy, nuclear fusion and DNA mutations. [9]
Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

**Category:** Quantum Physics

[815] **viXra:1508.0107 [pdf]**
*submitted on 2015-08-14 08:02:06*

**Authors:** George Rajna

**Comments:** 11 Pages.

It is unusual for a pure-theory physics paper to make it into the journal Science. So when one does, it’s worth a closer look. In the new study, researchers bring together one of physics' most venerable set of equations – those of James Clerk’s Maxwell’s famous theory of light – with one of the hot topics in modern solid-state physics: the quantum spin Hall effect and topological insulators. [4]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

**Category:** Quantum Physics

[814] **viXra:1508.0105 [pdf]**
*submitted on 2015-08-14 05:03:45*

**Authors:** George Rajna

**Comments:** 12 Pages.

For any computer, being able to manipulate information is essential, but for quantum computing, singling out one data location without influencing any of the surrounding locations is difficult. Now, a team of Penn State physicists has a method for addressing individual neutral atoms without changing surrounding atoms. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[813] **viXra:1508.0104 [pdf]**
*submitted on 2015-08-14 06:56:53*

**Authors:** George Rajna

**Comments:** 15 Pages.

We often use phrases such as “think from the head” and “feel from the heart” which implies that the brain does all the logical thinking and our heart is where we respond from emotionally. The logical mind often takes control over the best of us and very rarely do we understand the power we hold within our hearts. [8]
Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness.
The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

**Category:** Quantum Physics

[812] **viXra:1508.0103 [pdf]**
*submitted on 2015-08-14 03:05:44*

**Authors:** George Rajna

**Comments:** 12 Pages.

Now, researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone (NTT) in Japan, have pulled off the same feat for light in the quantum world by developing an optical chip that can process photons in an infinite number of ways. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[811] **viXra:1508.0100 [pdf]**
*submitted on 2015-08-13 14:43:55*

**Authors:** George Rajna

**Comments:** 14 Pages.

A team of physicists from the University of Vienna and the Austrian Academy of Sciences have demonstrated a new quantum computation scheme in which operations occur without a well-defined order. The researchers led by Philip Walther and Caslav Brukner used this effect to accomplish a task more efficiently than a standard quantum computer. Moreover, these ideas could set the basis for a new form of quantum computing, potentially providing quantum computers with an even larger computational speed-up. Their results will be published in an upcoming issue of "Nature Communications". [8]
Researchers in the University of Tokyo have demonstrated that it is possible to exchange a quantum bit, the minimum unit of information used by quantum computers, between a superconducting quantum-bit circuit and a quantum in a magnet called a magnon. This result is expected to contribute to the development of quantum interfaces and quantum repeaters. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[810] **viXra:1508.0087 [pdf]**
*submitted on 2015-08-11 10:34:44*

**Authors:** George Rajna

**Comments:** 17 Pages.

MIT physicists have created a superfluid gas, the so-called Bose-Einstein condensate, for the first time in an extremely high magnetic field. The magnetic field is a synthetic magnetic field, generated using laser beams, and is 100 times stronger than that of the world's strongest magnets. Within this magnetic field, the researchers could keep a gas superfluid for a tenth of a second—just long enough for the team to observe it. The researchers report their results this week in the journal Nature Physics. [9]
Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by a researcher group from The Ohio State University. [8]
This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[809] **viXra:1508.0073 [pdf]**
*submitted on 2015-08-10 08:42:29*

**Authors:** J.A.J. van Leunen

**Comments:** 4 Pages.

In intimate cooperation, symmetry centers and coherent stochastic mechanisms recurrently recreate elementary physical objects. Symmetry centers are dedicated subspaces of separable quaternionic Hilbert spaces. As such they are no more and no less than structured storage places that feature special properties. The coherent stochastic mechanisms are the actors that generate and control coherent dynamics.

**Category:** Quantum Physics

[808] **viXra:1508.0072 [pdf]**
*submitted on 2015-08-10 09:43:24*

**Authors:** George Rajna

**Comments:** 14 Pages.

The work in correlated electrons looks at a subset of electrons. Metals, as an example, have an unfilled outermost orbital and electrons are free to move from atom to atom. Thus, metals are good electrical conductors. When metal atoms are tightly packed into lattices (or crystals) these electrons mingle together into a "sea" of electrons. The metallic element mercury is liquid at room temperature, in part due to its electron configuration, and shows very little resistance to electric current due to its electron configuration. At 4 degrees above absolute zero (just barely above -460 degrees Fahrenheit), mercury's electron arrangement and other properties create communal electrons that show no resistance to electric current, a state known as superconductivity. [27]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[807] **viXra:1508.0056 [pdf]**
*submitted on 2015-08-09 00:27:15*

**Authors:** Peter F Coin

**Comments:** 5 Pages. Rough draft "paper" to present this idea. Needs love.

A popular objection to the Many-worlds interpretation of Quantum Mechanics is that it allows for quantum suicide where an experimenter creates a device that instantly kills him or leaves him be depending the output of a quantum measurement, since he has no experience of the device killing him he experiences quantum immortality. This is considered counterintuitive and absurd. Presented here is a speculative argument that accepts counterintuitiveness and proposes it as a new approach to physical theory without accepting some of the absurd conclusions of the thought experiment. The approach is based on the idea that the Universe is Fragile in that only a fraction of the time evolved versions retain the familiar structures of people and planets, but the fractions that do not occur are not observed. This presents to us as a skewed view of physics and only by accounting for this fact (which I propose calling the Continual Anthropic Principle) can we understand the true fundamental laws.

**Category:** Quantum Physics

[806] **viXra:1508.0047 [pdf]**
*submitted on 2015-08-05 13:44:52*

**Authors:** George Rajna

**Comments:** 12 Pages.

Researchers in the University of Tokyo have demonstrated that it is possible to exchange a quantum bit, the minimum unit of information used by quantum computers, between a superconducting quantum-bit circuit and a quantum in a magnet called a magnon. This result is expected to contribute to the development of quantum interfaces and quantum repeaters. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[805] **viXra:1508.0028 [pdf]**
*submitted on 2015-08-03 05:40:57*

**Authors:** George Rajna

**Comments:** 13 Pages.

Using a magnetic field, internal states of each ion are tailored to represent a qutrit, with a (+) state, (-) state and (0) state denoting the three available energy levels. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[804] **viXra:1508.0015 [pdf]**
*submitted on 2015-08-02 04:20:23*

**Authors:** Richard D. Gill

**Comments:** 18 Pages. Also posted on arXiv: http://arxiv.org/abs/1507.00106

In this note, I analyse the data generated by M. Fodje’s simulation programs epr-simple and epr-clocked using appropriate modified Bell-CHSH type inequalities: the Larsson detection loophole adjusted CHSH, and the Larsson-Gill coincidence loophole adjusted CHSH. The experimental efficiencies turn out to be η ≈ 81% and γ ≈ 55% respectively, and the observed value of CHSH is (of course) well within the adjusted bounds.

**Category:** Quantum Physics

[803] **viXra:1508.0011 [pdf]**
*submitted on 2015-08-02 06:13:26*

**Authors:** Binyamin Tsadik

**Comments:** 1 Page.

What if we were not actually testing spin, but aligning our measuring system to detect a specific spin.
This is possible in DTL because we postulate that spin is really just particle phase relationships and not exclusively a pole/dipole moment.

**Category:** Quantum Physics

[802] **viXra:1508.0010 [pdf]**
*submitted on 2015-08-01 11:16:30*

**Authors:** Solomon Budnik

**Comments:** 10 Pages.

We present here our quantum propagation and entanglement system for virtual reality remote
space computers and TVs with photonic displays in laser activated imagery. This concept is
based on 1935 Einstein-Podolsky-Rosen Argument in Quantum Theory. Einstein maintains
(Bacciagaluppi and Valentini 2009, p. 488) “the interpretation, according to which |ψ|² expresses
the probability that this particle is found at a given point, assumes an entirely peculiar
mechanism of action at a distance, which prevents the wave continuously distributed in space
from producing an action in two places on the screen. Einstein continues: “in my opinion, one
can remove this objection only in the following way, that one does not describe the process
solely by the Schrödinger wave, but that at the same time one localizes the particle during
propagation

**Category:** Quantum Physics

[801] **viXra:1507.0222 [pdf]**
*submitted on 2015-07-30 09:37:56*

**Authors:** Han Geurdes

**Comments:** 17 Pages.

In this paper the design and coding of a local hidden variables model is presented that violates the CHSH criterion in size larger than $1+\sqrt{2}$.

**Category:** Quantum Physics

[800] **viXra:1507.0208 [pdf]**
*submitted on 2015-07-28 07:24:38*

**Authors:** Jacob Biemond

**Comments:** 12 Pages, including 2 tables

An expression for the magnetic moment of a massive Dirac neutrino was deduced in the context of the electroweak interactions at the one-loop level in 1977. A linear dependence on the neutrino mass was found. In addition, a magnetic moment for a massive neutrino arising from gravitational origin is predicted by the so-called Wilson-Blackett law. The latter relation may also be deduced from a gravitomagnetic interpretation of the Einstein equations. Both formulas for the magnetic moment can be combined, yielding the value of the neutrino mass.

The gravitomagnetic moment, i.e., the magnetic moment from gravitational origin, may contain different *g*-factors for the massive neutrino eigenstates *m*_{1}, *m*_{2} and *m*_{3}, respectively. Starting from the Dirac equation, a *g*-factor *g* = 2 has been deduced for a neutrino in first order, related to the derivation of the g-factor of charged leptons. When a value *g* = 2 is inserted, a value 1.530 meV results for the lightest neutrino mass *m*_{1}, the main result of this work. In addition, the remaining neutrino masses can be calculated from observed neutrino oscillations.

Our results for the neutrino masses are compatible with the three-parameter semi-empirical neutrino mass formulas obtained by Królikowski. In addition, an empirical relation between the three neutrino masses proposed by Sazdović yields neutrino masses in fair agreement with our results.

[799] **viXra:1507.0185 [pdf]**
*submitted on 2015-07-24 05:04:06*

**Authors:** J.A.J. van Leunen

**Comments:** 17 Pages.

By starting from a quaternionic separable Hilbert space as a base model the paper uses the capabilities and the restrictions of this model in order to investigate the origins of the electric charge and the electric fields. Also other discrete properties such as color charge and spin are considered.
The paper exploits all known aspects of the quaternionic number system and it uses quaternionic differential calculus rather than Maxwell based differential calculus.
The paper presents fields as mostly continuous quaternionic functions. The electric field is compared with another basic field that acts as a background embedding continuum.

**Category:** Quantum Physics

[798] **viXra:1507.0178 [pdf]**
*submitted on 2015-07-23 14:52:54*

**Authors:** George Rajna

**Comments:** 14 Pages.

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits. One of the obstacles to this goal is the difficulty of preserving the fragile quantum condition of qubits against unwanted outside influence even as the qubits interact among themselves in a programmatic way. [8]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[797] **viXra:1507.0175 [pdf]**
*submitted on 2015-07-22 20:25:03*

**Authors:** John C. Hodge

**Comments:** 11 Pages.

Interference experiments with only one photon in the experiment at a time have also showed interference patterns. A previous paper that studied photon diffraction and interference (IntellectualArchive, Vol.1, No. 3, P. 20, ISSN 1929-4700, Toronto, July 2012.) required several photons in the experiment at the same time. The Scalar Theory of Everything (STOE) model of photon, plenum, screen and mask; the Bohm Interpretation of Quantum Mechanics; and the Transaction Interpretation of Quantum Mechanics are combined. The speed of the plenum wave is much faster than the speed of photons/light. The reverse wave required by the Transaction Interpretation is provided by a reflected plenum wave rather than a reverse time wave. The photon distribution on a screen results in an intensity pattern well fit by the Fraunhofer diffraction equation. The resultant mathematical model corresponds to the Fraunhofer mathematical model without the peculiar assumptions.

**Category:** Quantum Physics

[796] **viXra:1507.0163 [pdf]**
*submitted on 2015-07-21 10:51:52*

**Authors:** Koji Nagata, Tadao Nakamura

**Comments:** Journal of Applied Mathematics and Physics, Volume 3, No.7 (2015), Page 898--902.

We investigate the violation factor of the original Bell-Mermin inequality.
Until now, we have used an assumption
that the results of measurement are $\pm 1$.
In this case, the maximum violation factor is as follows:
$2^{(n-2)/2}(n={\rm even})$ and $2^{(n-1)/2}(n={\rm odd})$.
The quantum predictions by $n$-partite Greenberger-Horne-Zeilinger
state violate
the Bell-Mermin inequality by an amount that grows exponentially with $n$.
Recently, a new measurement theory is proposed
[{K. Nagata and T. Nakamura,
Int. J. Theor. Phys. {\bf 49}, 162 (2010)}].
The values of measurement outcome are $\pm 1/\sqrt{2}$.
Here we use the new measurement theory.
We consider a multipartite GHZ state.
We use the original Bell-Mermin inequality.
It turns out that the original Bell-Mermin inequality is satisfied irrespective of the number of particles.
In this case, the maximum violation factor is as follows:
$1/2(n={\rm even})$ and $1/\sqrt{2}(n={\rm odd})$.
Thus the original
Bell-Mermin inequality is satisfied by the new measurement theory.
We propose the following conjecture: {\it All
the two-orthogonal-settings experimental correlation functions
admit local realistic theories irrespective of a state
if we use the new measurement theory.}

**Category:** Quantum Physics

[795] **viXra:1507.0161 [pdf]**
*submitted on 2015-07-21 08:07:57*

**Authors:** Jiri Soucek

**Comments:** 2 Pages.

In this note we shall give the simple formulation of the local explanation of EPR correlations [1] based on [2]. We also show that Bell inequalities cannot be derived in the modified Quantum Mechanics (QM).

**Category:** Quantum Physics

[794] **viXra:1507.0136 [pdf]**
*submitted on 2015-07-17 13:33:19*

**Authors:** Solomon Budnik

**Comments:** 9 Pages.

We present here our quantum propagation system for virtual reality remote space computers and TVs with photonic displays in laser activated imagery.

**Category:** Quantum Physics

[793] **viXra:1507.0132 [pdf]**
*submitted on 2015-07-17 09:33:52*

**Authors:** George Rajna

**Comments:** 12 Pages.

An international team led by Princeton University scientists has discovered an elusive massless particle theorized 85 years ago. The particle could give rise to faster and more efficient electronics because of its unusual ability to behave as matter and antimatter inside a crystal, according to new research.
The researchers report in the journal Science July 16 the first observation of Weyl fermions, which, if applied to next-generation electronics, could allow for a nearly free and efficient flow of electricity in electronics, and thus greater power, especially for computers, the researchers suggest. [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[792] **viXra:1507.0131 [pdf]**
*submitted on 2015-07-17 09:44:22*

**Authors:** Jiri Soucek

**Comments:** 3 Pages.

We discuss the three options: the psi-ontic position, the psi-epistemic position and the novel psi-hybrid position.

**Category:** Quantum Physics

[791] **viXra:1507.0129 [pdf]**
*submitted on 2015-07-16 16:40:17*

**Authors:** Antonio Cardoso

**Comments:** 5 pages, 1 figure. Talk given at the International Symposium - Eurhythmy, Complexity and Rationality in an Interdisciplinary Perspective

In this paper we will discuss a recent double-slit experiment with quantum particles where an interference pattern is observed even when which-path information is available, and argue that this result is in clear contradiction with orthodox quantum mechanics but perfectly understandable in the framework of a nonlinear quantum physics.

**Category:** Quantum Physics

[790] **viXra:1507.0118 [pdf]**
*submitted on 2015-07-16 05:46:38*

**Authors:** Solomon Budnik

**Comments:** 8 Pages.

Our quantum harmonics electronic system will be based on jump-resonance phenomena of nonlinear feedback control systems of any order. The nonlinearities are those whose outputs are single-valued odd functions of the inputs and are independent of frequencies of the photonic inputs. The general conditions under which jump-resonance occurs will be given and the system with saturation nonlinearity will be analyzed. The essential objective is to define the contours on the complex plane for the constant values of system variables, e.g., input amplitude, amplitude ratio, and phase shift.

**Category:** Quantum Physics

[789] **viXra:1507.0117 [pdf]**
*submitted on 2015-07-15 14:55:08*

**Authors:** Jiri Soucek

**Comments:** 4 Pages.

Quantum Mechanics (QM) is primarily a probabilistic theory. The standard Kolmogorov probability theory is not suitable for this goal since it does not offer the possibility of the reversible time evolution. This implies the need to construct a new probability theory which is able to model the reversible time evolution. I have proposed such an Extended probability theory. The main goal of this project is to understand what QM is. In this note I shall describe the program of the research which is already partially realized.

**Category:** Quantum Physics

[788] **viXra:1507.0107 [pdf]**
*submitted on 2015-07-14 10:52:24*

**Authors:** Rodolfo A. Frino

**Comments:** 2 Pages.

The purpose of this paper is to find out the physical meaning of the product pc in Einstein's Total Relativistic Energy Formula.

**Category:** Quantum Physics

[787] **viXra:1507.0097 [pdf]**
*submitted on 2015-07-13 15:40:52*

**Authors:** Valeri V. Dvoeglazov

**Comments:** 6 Pages. http://www.emph.com.ua/4/pdf/dvoeglazov.pdf

It has long been claimed that the antisymmetric tensor field of the second rank is longitudinal after quantization. In my opinion, such a situation produces speculations about the violation of the Correspondence Principle. On the basis of the Lagrangian formalism I calculate the Pauli-Lubanski vector of relativistic spin for this field. Even at the classical level it can be equal to zero after applications of well-known constraints. The correct quantization procedure permits us to propose a solution of this puzzle in the modern field theory. Obtained results develop the previous consideration Physica A 214 (1995) 605-618.

**Category:** Quantum Physics

[786] **viXra:1507.0096 [pdf]**
*submitted on 2015-07-13 15:44:13*

**Authors:** V. V. Dvoeglazov

**Comments:** 4 Pages. http://www.emph.com.ua/5/pdf/dvoeglazov.pdf

We continue to study the "fermion - 4-vector potential" interactions in the framework of the McLennan-Case construct which is a reformulation of the Majorana theory of the neutrino. This theory is shown after applying Majorana-like anzatzen to give rise to appearance of unusual terms as σ · [A × A*], which were recently discussed in non-linear optics.

**Category:** Quantum Physics

[785] **viXra:1507.0083 [pdf]**
*submitted on 2015-07-12 15:08:38*

**Authors:** Jiri Soucek

**Comments:** 3 Pages.

In the standard Quantum Mechanics there exists certain assumption (which I call the von Neuman axiom) stating that an ensemble in the pure state is homogeneous. This means that all members of this ensemble are in the same individual state. In this note I am going to show that the von Neumann axiom is false. This also means that the standard interpretation of the wave function as
the state of the individual system is in general false. In the ontic/epistemic terminology this means that the ontic interpretation of the wave function cannot be true. As a solution I propose the modified Quantum Mechanics which can be local.

**Category:** Quantum Physics

[784] **viXra:1507.0082 [pdf]**
*submitted on 2015-07-12 09:34:36*

**Authors:** George Rajna

**Comments:** 14 Pages.

How does the brain - a lump of 'pinkish gray meat' - produce the richness of conscious experience, or any subjective experience at all? Scientists and philosophers have historically likened the brain to contemporary information technology, from the ancient Greeks comparing memory to a 'seal ring in wax,' to the 19th century brain as a 'telegraph switching circuit,' to Freud's sub-conscious desires 'boiling over like a steam engine,' to a hologram, and finally, the computer. [8]
Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness.
The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

**Category:** Quantum Physics

[783] **viXra:1507.0074 [pdf]**
*submitted on 2015-07-11 13:24:47*

**Authors:** Rodolfo A. Frino

**Comments:** 9 Pages.

The goal of this paper is to solve the mystery of the large imbalance between matter and antimatter
of the Universe. Some people think the Universe was created with equal amounts of matter and
antimatter. However today's observations indicate that there is not enough antimatter to match the
amount of matter observed. Thus, it seems that matter has, for some reason, taken over. Putting
together an idea from two lead physicists: John Wheeler and Richard Feynman and the theory of
the Pre-universe that I developed in 2012, I found not only the possible cause of the imbalance but
also that the imbalance took place at the very beginning of universal time (normal time). This is
exactly when our Universe began to exist.

**Category:** Quantum Physics

[782] **viXra:1507.0071 [pdf]**
*submitted on 2015-07-11 04:04:55*

**Authors:** Solomon Budnik

**Comments:** 7 Pages.

Our quantum harmonics electronic system will be based on jump-resonance phenomena of nonlinear feedback control systems of any order. The nonlinearities are those whose outputs are single-valued odd functions of the inputs and are independent of frequencies of the photonic inputs. The general conditions under which jump-resonance occurs will be given and the system with saturation nonlinearity will be analyzed. The essential objective is to define the contours on the complex plane for the constant values of system variables, e.g., input amplitude, amplitude ratio, and phase shift.

**Category:** Quantum Physics

[781] **viXra:1507.0062 [pdf]**
*submitted on 2015-07-09 09:44:31*

**Authors:** Peter Cameron

**Comments:** Pages.

There are many ways and whats to quantize. Here we seek to explain some of the whys and hows of the impedance model.

**Category:** Quantum Physics

[780] **viXra:1507.0061 [pdf]**
*submitted on 2015-07-09 09:44:41*

**Authors:** George Rajna

**Comments:** 22 Pages.

Combining the vast processing power of quantum computers with cognitive computing systems like IBM's Watson will lead to huge advances in artificial intelligence, according to a C-level executive at the US software giant. [10]
Around the world, small bands of such engineers have been working on this approach for decades. Using two particular quantum phenomena, called superposition and entanglement, they have created qubits and linked them together to make prototype machines that exist in many states simultaneously. Such quantum computers do not require an increase in speed for their power to increase. In principle, this could allow them to become far more powerful than any classical machine—and it now looks as if principle will soon be turned into practice. Big firms, such as Google, Hewlett-Packard, IBM and Microsoft, are looking at how quantum computers might be commercialized. The world of quantum computation is almost here. [9]
IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8]
Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[779] **viXra:1507.0054 [pdf]**
*submitted on 2015-07-09 00:58:51*

**Authors:** Declan Traill

**Comments:** 23 Pages. Please visit http://www.energyfieldtheory.com

The Wave/Particle duality of particles in Physics is well known. Particles have
properties that uniquely characterize them from one another, such as mass,
charge and spin. Charged particles have associated Electric and Magnetic
fields. Also every moving particle has a De Broglie wavelength determined by
its mass and velocity. In this paper I show that all of these properties of a
particle can be derived from a single wave function equation for that particle. I
present wave functions for the Electron and the Positron and provide
principles that can be used to calculate the wave functions of all the
fundamental particles in Physics.

**Category:** Quantum Physics

[778] **viXra:1507.0047 [pdf]**
*submitted on 2015-07-07 14:38:52*

**Authors:** Rodolfo A. Frino

**Comments:** 5 Pages.

The purpose of this article is to highlight the role of powers of 2 in physics.

**Category:** Quantum Physics

[777] **viXra:1507.0044 [pdf]**
*submitted on 2015-07-07 08:18:16*

**Authors:** George Rajna

**Comments:** 14 Pages.

A combined team of researchers from Israel's Hebrew University and Technion-Israel Institute of Technology and Germany's Universität Kassel has succeeded in demonstrating coherent control of bond-forming between atoms using a laser beam. In their paper published in Physical Review Letters, the team describes their experiments with molecule-making and outlines future possible applications. [6]
Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5]
Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

**Category:** Quantum Physics

[776] **viXra:1507.0020 [pdf]**
*submitted on 2015-07-03 07:18:22*

**Authors:** George Rajna

**Comments:** 21 Pages.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have identified a system that could store quantum information for longer times, which is critical for the future of quantum computing. [10]
Around the world, small bands of such engineers have been working on this approach for decades. Using two particular quantum phenomena, called superposition and entanglement, they have created qubits and linked them together to make prototype machines that exist in many states simultaneously. Such quantum computers do not require an increase in speed for their power to increase. In principle, this could allow them to become far more powerful than any classical machine—and it now looks as if principle will soon be turned into practice. Big firms, such as Google, Hewlett-Packard, IBM and Microsoft, are looking at how quantum computers might be commercialized. The world of quantum computation is almost here. [9]
IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8]
Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[775] **viXra:1507.0018 [pdf]**
*submitted on 2015-07-03 04:14:14*

**Authors:** George Rajna

**Comments:** 13 Pages.

A team from the RIKEN Center for Emergent Matter Science, along with collaborators from several Japanese institutions, have successfully produced pairs of spin-entangled electrons and demonstrated, for the first time, that these electrons remain entangled even when they are separated from one another on a chip. [27]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[774] **viXra:1507.0006 [pdf]**
*submitted on 2015-07-01 08:25:32*

**Authors:** George Rajna

**Comments:** 15 Pages.

Quantum cryptography involves two parties sharing a secret key that is created using the states of quantum particles such as photons. The communicating parties can then exchange messages by conventional means, in principle with complete security, by encrypting them using the secret key. Any eavesdropper trying to intercept the key automatically reveals their presence by destroying the quantum states. [10]
Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[773] **viXra:1506.0214 [pdf]**
*submitted on 2015-06-30 23:37:33*

**Authors:** ChengGang.Zhang

**Comments:** 8 Pages.

This paper will research one special function and it’s physics principle , the special function which has quantum properties ; Two hypothesis of quantum theory can be derived from the special function , and the special function also applies to atoms successfully；This paper proves that the special function is related to Coulomb force in the end , and reveals the essential reason .

**Category:** Quantum Physics

[772] **viXra:1506.0209 [pdf]**
*submitted on 2015-06-30 08:52:49*

**Authors:** George Rajna

**Comments:** 11 Pages.

A team of researchers led by UCLA electrical engineers has demonstrated a new way to harness light particles, or photons, that are connected to each other and act in unison no matter how far apart they are —a phenomenon known as quantum entanglement. [6]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[771] **viXra:1506.0202 [pdf]**
*submitted on 2015-06-28 06:59:16*

**Authors:** Ilija Barukčić

**Comments:** 8 pages. (C) Ilija Barukčić, Jever, Germany, 2015,

The exact nature of non-locality and entanglement is still a matter of an ongoing controversy. Especially, the concept of non-locality as postulated by the orthodox Copenhagen quantum mechanics is claiming to reflect any non-locality in the quantum realm. Attention should be called to the obvious but very disconcerting fact that the concept of non-locality cannot contradict the theory of special relativity, as long as the same is not refuted theoretically or by experiments. Another way of expressing the peculiar situation is, under conditions of the special theory of relativity it remains rather discomforting to alter the properties of a distant system instantaneously (i. e. no light signal can travel) by acting on a local system. The purpose of this publication is to solve the problem of non-locality and entanglement from the standpoint of the special theory of relativity.

**Category:** Quantum Physics

[770] **viXra:1506.0199 [pdf]**
*submitted on 2015-06-28 02:55:01*

**Authors:** Solomon Budnik

**Comments:** 3 Pages.

In this article we offer to enhance the standard model of a bosonic superconducting cosmic string (fig 1) and model it in our quantum harmonic system (fig. 2) to enable quantum devices for cars and aircrafts, superfluid propulsion, levitation and teleportation.

**Category:** Quantum Physics

[769] **viXra:1506.0195 [pdf]**
*submitted on 2015-06-27 15:15:56*

**Authors:** Rodolfo A. Frino

**Comments:** 3 Pages.

The number 12 is found not only as a factor but also as a power in different equations. Thus, the
purpose of this article is to highlight the role of the number 12 in physics.

**Category:** Quantum Physics

[768] **viXra:1506.0194 [pdf]**
*submitted on 2015-06-27 10:22:50*

**Authors:** Paul A. Titze

**Comments:** 29 Pages.

In 2015 the answer is still no. However this paper will look at what current physics has to say on this topic and what further questions need to be put forward to advance our enquiries. This work is a modified compilation of several posts that were originally published in the author's blogsite [1] on Gravity Control Propulsion (GCP) looking at several papers that deal with related topics with some ideas and speculations for further research.

**Category:** Quantum Physics

[767] **viXra:1506.0187 [pdf]**
*submitted on 2015-06-26 08:39:20*

**Authors:** Koji Nagata, Tadao Nakamura

**Comments:** International Journal of Emerging Engineering Research and Technology, Volume 3, Issue 6 (2015), Page 78--89.

We discuss the fact that a single spin observable
$\sigma_x$ in a quantum state
does not have a counterpart in physical reality.
We consider whether a single spin-1/2 pure state
has a counterpart in physical reality.
It is an eigenvector of Pauli observable $\sigma_z$ or an
eigenvector of Pauli observable $\sigma_x$.
We assume a state $|+_z\rangle$, which can be described
as an eigenvector of Pauli observable $\sigma_z$.
We assume also a state $|+_x\rangle$, which can be described
as an eigenvector of Pauli observable $\sigma_x$.
The value of transition probability $|\langle +_z|+_x\rangle|^2$ is 1/2.
We consider the following physical situation.
If we detect $|+_z\rangle$,
then we assign measurement outcome as $+1$.
If we detect $|+_x\rangle$,
then we assign measurement outcome as $-1$.
The existence of a single classical probability space
for the transition probability
within the formalism of the measurement outcome
does not coexist with the value of
the transition probability
$|\langle +_z|+_x\rangle|^2=1/2$.
We have to give up the existence of such a classical
probability space for the state $|+_z\rangle$ or
for the state $|+_x\rangle$, as they define the transition probability.
It turns out that
the single spin-1/2 pure state $|+_z\rangle$ or
the single spin-1/2 pure state $|+_x\rangle$ does not have
counterparts in physical reality, in general.
We investigate whether the
Stern-Gerlach experiment accepts hidden-variables theories.
We discuss that the existence of the
two spin-1/2 pure states
$|\uparrow\rangle$ and $|\downarrow\rangle$ rules out
the existence of probability space of
specific quantum measurement.
If we detect $|\uparrow\rangle$, then we assign measurement outcome as $+1$.
If we detect $|\downarrow\rangle$, then we assign measurement outcome as $-1$.
This hidden-variables theory does not accept
the transition probability
$|\langle\uparrow|\downarrow\rangle|^2=0$.
Therefore we have to give up the hidden-variables theory.
This implies the Stern-Gerlach experiment cannot accept the
hidden-variables theory.
A single spin-1/2 pure state (e.g., $|\uparrow \rangle\langle \uparrow|$)
is a single
one-dimensional projector.
In other word,
a single one-dimensional projector does not have
a counterpart in such physical reality, in general.
The one-dimensional projectors $|\uparrow\rangle\langle\uparrow|$ and $|\downarrow\rangle\langle \downarrow|$ are commuting with each other.
Our discussion shows that we cannot assign the specific definite values
($+1$ and $-1$) to the two commuting operators, simultaneously.
We study whether quantum phase factor
accepts a hidden-variables theory.
We discuss that the existence of
two spin-1/2 pure states
$|0\rangle=(|\uparrow\rangle+|\downarrow\rangle)/\sqrt{2}$
and $|\theta\rangle=(|\uparrow\rangle+e^{i \theta}|\downarrow\rangle)/\sqrt{2}$ rules out
the existence of probability space of a
hidden-variables theory.
If we detect $|0\rangle$,
then we assign measurement outcome as $+1$.
If we detect $|\theta\rangle$,
then we assign measurement outcome as $-1$.
The hidden-variables theory does not accept
the transition probability
$|\langle 0|\theta\rangle|^2=\cos^2(\theta/2)$.
Therefore we have to give up the hidden-variables theory
for quantum phase factor.
We explore phase factor is indeed a quantum effect, not classical.
Our research gives a new insight to the quantum information processing
which relies on quantum phase factor, such as Deutsch's algorithm.

**Category:** Quantum Physics

[766] **viXra:1506.0186 [pdf]**
*submitted on 2015-06-26 04:19:47*

**Authors:** George Rajna

**Comments:** 17 Pages.

Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[765] **viXra:1506.0180 [pdf]**
*submitted on 2015-06-25 13:37:51*

**Authors:** George Rajna

**Comments:** 13 Pages.

Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5]
Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

**Category:** Quantum Physics

[764] **viXra:1506.0172 [pdf]**
*submitted on 2015-06-24 04:30:18*

**Authors:** George Rajna

**Comments:** 13 Pages.

A University of Tokyo research group has successfully measured the spin Hall Effect in a superconductor for the first time. The spin Hall Effect is responsible for the conversion of magnetic flow to current flow and has not been thoroughly examined in superconductors. [27]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[763] **viXra:1506.0155 [pdf]**
*submitted on 2015-06-20 10:37:09*

**Authors:** George Rajna

**Comments:** 17 Pages.

A new study by researchers at the Stanford University School of Medicine found that synchronized physiological interactions between remote brain regions have genetic underpinnings. [8]
Sometimes, you can picture something so vividly in your head that it feels as though you’re actually looking at what you’re imagining. But no matter how good your imagination is, information will flow through your brain in the opposite direction compared to when you actually perceive something. That’s the conclusion of a new study, published in NeuroImage, which looked at brain activity in participants when they were either watching clips or recalling them in their heads. [7]
The hypothesis that there may be something quantum-like about the human mental function was put forward with “Spooky Activation at Distance” formula which attempted to model the effect that when a word’s associative network is activated during study in memory experiment; it behaves like a quantum-entangled system. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

**Category:** Quantum Physics

[762] **viXra:1506.0152 [pdf]**
*submitted on 2015-06-20 07:10:49*

**Authors:** Ilija Barukčić

**Comments:** 9 pages. (C) Ilija Barukčić, Jever, Germany, 2015,

The hottest and one of the major unresolved problems of today’s quantum mechanics is the physical meaning of the wave function. The debate about the physical meaning of the wave function raises broader issues as well. In brief, the difficulties stemmed from an apparent conflict about the existence of an objective reality existing independent of the human mind and consciousness. The purpose of this publication is to investigate the meaning of the wave function by analyzing the relationship between the wave function and Einstein’s special theory of relativity and. As we will see, the wavefunction and “co-ordinate” time of Einstein’s special theory of relativity are identical.

**Category:** Quantum Physics

[761] **viXra:1506.0149 [pdf]**
*submitted on 2015-06-19 09:51:03*

**Authors:** Koji Nagata, Tadao Nakamura

**Comments:** International Journal of Emerging Engineering Research and Technology, Volume 3, Issue 6 (2015), Page 49--53.

We review the no-cloning theorem that relies on
the properties of the quantum theory.
Usually, the no-cloning theorem implies that
two quantum states are identical or orthogonal if we allow a cloning
to be on the two quantum states.
Here, we rely on the maximum value of
the square of an expected value.
We may result in the fact that
the two quantum states under consideration could not be orthogonal
if we consider the maximum value of
the square of the expected value.
The no-cloning theorem may imply that the
two quantum states under consideration may be identical
if we consider the maximum value of
the square of the expected value.
The no-cloning theorem itself has this character.

**Category:** Quantum Physics

[760] **viXra:1506.0135 [pdf]**
*submitted on 2015-06-17 15:27:58*

**Authors:** George Rajna

**Comments:** 13 Pages.

Gravitational time dilation causes decoherence of composite quantum systems. Even if gravitons are there, it’s probable that we would never be able to perceive them. Perhaps, assuming they continue inside a robust model of quantum gravity, there may be secondary ways of proving their actuality. [7]
The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[759] **viXra:1506.0111 [pdf]**
*submitted on 2015-06-14 06:33:57*

**Authors:** J.A.J. van Leunen

**Comments:** 10 Pages.

Two quite different forms of differential calculus exist that both have physical significance. The most simple version is quaternionic differential calculus. Maxwell based differential calculus is based on the equations that Maxwell and others have developed in order to describe electromagnetic phenomena. Both approaches can be represented by four component “fields” and four component differential operators. Both approaches result in a dedicated non-homogeneous wave equation. These wave equations differ and offer solutions that differ in details.
Maxwell based differential calculus uses coordinate time t, where quaternionic differential calculus uses proper time τ. The consequence is that also the interpretation of speed differs between the two approaches. A more intriguing fact is that these differences involve a different space-progression model and different charges and currents.
Physics formulated in Maxwell based differential calculus differs from physics formulated in quaternionic differential calculus. This choice influences the description of physical reality. It does not influence physical reality.
Quaternionic differential calculus fits better with the application of Hilbert spaces in quantum physics than Maxwell based differential calculus. However, Maxwell based differential calculus is the general trend in current physical theories.

**Category:** Quantum Physics

[758] **viXra:1506.0106 [pdf]**
*submitted on 2015-06-13 22:07:45*

**Authors:** Joan Manuel Rodriguez Nunez.

**Comments:** 42 Pages. This theory, not so much to unify the gravitational field, but gives us a theoretical concept of the universe can be correlated, hence the DEPENDABILIDAD universal, by the fact that Unis de all the theories that there are on all Einstein's theory of gener

This theory, not so much to unify the gravitational field, but gives us a theoretical concept of the universe can be correlated, hence the DEPENDABILIDAD universal, by the fact that Unis de all the theories that there are on all Einstein's theory of general relativity and the theory of gravity dynamics of tesla, and among others.
We are living in a giant time clock, with two different poles - one positive and one negative, that the turn gives us our time for life, that is our universe.

**Category:** Quantum Physics

[757] **viXra:1506.0076 [pdf]**
*submitted on 2015-06-10 00:20:19*

**Authors:** Ramzi Suleiman

**Comments:** 9 Pages.

The non-locality of quantum mechanics continues to be an unexplainable phenomenon. In a previous paper [1] I utilized a recently proposed relativity theory, termed Information Relativity (IR) to account, both qualitatively and quantitatively to the entanglement in an EPR type experiment. IR rests on two well accepted propositions: The relativity axiom, plus an axiom specifying the information carrier and its velocity. The theory is deterministic and local. It is also complete, in the sense that each element in the theory is in a one-to-one correspondence with reality. Contrary to special relativity which predicts that an object's length will always contract along the direction of its relative motion with respect to an observer, IR predicts length contraction for approaching bodies and length stretching for departing bodies. In the present paper I demonstrate that IR is also successful in explaining and predicting de Broglie's matter-wave duality, quantum phase transition, quantum criticality, and the formation of the Bose-Einstein condensate. Quite strikingly, I found that the critical "stretch" associated with a particle's wave phase transition is equal to the critical value of de Broglie wave length ζ(32) ≈ 2.612, where ζ(x) is the Riemann zeta function. This result enables to calculate the Planck's constant, the corner stone of all quantum mechanics, based on a completely deterministic and local theory. The unavoidable conclusion of the present analysis is that Einstein's intuition that "God does not play dice" is correct.

**Category:** Quantum Physics

[756] **viXra:1506.0070 [pdf]**
*submitted on 2015-06-09 02:49:09*

**Authors:** George Rajna

**Comments:** 11 Pages.

"A grin without a cat" is how Lewis Carroll describes the Cheshire Cat's mysterious way of disappearing while leaving its grin behind in his 1865 classic, Alice in Wonderland. The fanciful character raises a question that has captured physicists' attention over the past few years: can an object be separated from its properties? [4]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

**Category:** Quantum Physics

[755] **viXra:1506.0069 [pdf]**
*submitted on 2015-06-08 14:02:57*

**Authors:** Wenliang Jin

**Comments:** 8 Pages.

We discuss at length the dynamical behavior of Grover's search algorithm for which all the Walsh-Hadamard transformations contained in this algorithm are exposed to their respective random
perturbations inducing the augmentation of the dimension of the search space. We give the concise and general mathematical formulations for approximately characterizing the maximum success probabilities of finding a unique desired state in a large unsorted database and their corresponding numbers of Grover iterations, which are applicable to the search spaces of arbitrary dimension and are used to answer a salient open problem posed by Grover [L. K. Grover, Phys. Rev. Lett. \textbf{80}, 4329 (1998)].

**Category:** Quantum Physics

[754] **viXra:1506.0068 [pdf]**
*submitted on 2015-06-08 14:58:01*

**Authors:** Remi Cornwall

**Comments:** 5 Pages.

The No-communication Theorem has been seen as the bar to communication by quantum state collapse. The essence of this theory is the procedure of taking the partial trace on an entangled, hence inseparable multi-particle system. This mathematical procedure applied unthinkingly, strikes out the off-diagonal elements from the ensemble density matrix and renders the reduced trace matrix representative of a mixed state. Decoherence theory is able to justify this mathematical procedure and we review it to show: the partial trace results for both unitary and non-unitary processes (hence measurement) on one, several or all particles of the ensemble; and that a unitary process keeps interference terms in the trace reduced matrix.

**Category:** Quantum Physics

[753] **viXra:1506.0039 [pdf]**
*submitted on 2015-06-05 06:54:42*

**Authors:** George Rajna

**Comments:** 13 Pages.

Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[460] **viXra:1510.0034 [pdf]**
*replaced on 2015-10-05 11:30:37*

**Authors:** Steve Faulkner

**Comments:** 5 Pages.

The homogeneity symmetry is re-examined and shown to be non-unitary, with no requirement for the imaginary unit. This removes symmetry, as reason, for imposing unitarity (or self-adjointness) -- by Postulate. The work here is part of a project researching logical independence in quantum mathematics, for the purpose of advancing a full and complete theory of quantum randomness.**Keywords:**foundations of quantum theory, quantum physics, quantum mechanics, wave mechanics, Canonical Commutation Relation, symmetry, homogeneity of space, unitary, non-unitary, unitarity, mathematical logic, formal system, elementary algebra, information, axioms, mathematical propositions, logical independence, quantum indeterminacy, quantum randomness.

**Category:** Quantum Physics

[459] **viXra:1509.0225 [pdf]**
*replaced on 2015-09-25 12:05:10*

**Authors:** Andrew Beckwith

**Comments:** 2 Pages. Replaced , since I accidentally picked the wrong file. This is the one to use. My apologies.

Brief synopsis of a quantum effect, for the Rencontres Du Vietnam (hot topics in Gravitation) conference, in Quy Nohn as of August 2016. Outlines what may be relevant quantum conditions for a minimum value of a graviton (heavy Gravitons), as opposed to the situation where Goldbauer and other researchers only talk about the top allowed maximum mass of a heavy graviton

**Category:** Quantum Physics

[458] **viXra:1509.0203 [pdf]**
*replaced on 2015-09-27 12:51:06*

**Authors:** Jiri Soucek

**Comments:** 5 Pages.

In this note we shall show the relation between the locality of Quantum Mechanics and the meaning of the quantum state.

**Category:** Quantum Physics

[457] **viXra:1509.0080 [pdf]**
*replaced on 2015-09-24 16:53:06*

**Authors:** Herbert Weidner

**Comments:** 7 Pages.

After discussing various examples, the diameter of a single photon is calculated by combining the formulas of quantum mechanics and wave theory. The experimentally known coherence length is the length of the photon.

**Category:** Quantum Physics

[456] **viXra:1509.0049 [pdf]**
*replaced on 2015-09-18 19:00:21*

**Authors:** Shinsuke Hamaji

**Comments:** 3 Pages.

My previous research involved representing energies (gravitational mass, inertial mass, and Planck’s constant) of different particle speeds as an equivalence for quantum (Mc = ΔmΔw = hf/c). In addition, E = Mc2 (kinetic energy is changed to mass) does not indicate that the total energy change is always proportional to particle speed. Therefore, “energy representation of a mathematical action,” and “energy change of a physical interaction” are not similar.

**Category:** Quantum Physics

[455] **viXra:1509.0049 [pdf]**
*replaced on 2015-09-14 10:36:33*

**Authors:** Shinsuke Hamaji

**Comments:** 3 Pages.

My previous research involved representing energies (gravitational mass, inertial mass, and Planck’s constant) of different particle speeds as an equivalence for quantum (Mc = ΔmΔw = hf/c). In addition, E = Mc2 (kinetic energy is changed to mass) does not indicate that the total energy change is always proportional to particle speed. Therefore, “energy representation of a mathematical action,” and “energy change of a physical interaction” are not similar. The actual physical phenomenon should distinguish between these actions.

**Category:** Quantum Physics

[454] **viXra:1509.0045 [pdf]**
*replaced on 2015-09-14 18:01:49*

**Authors:** Rodolfo A.Frino

**Comments:** 3 Pages.

The quantum gravitational formula for the mass of the electron suggests the existence of a super light particle yet to be observed. However, it is not clear whether this particle is an electrino, a new type of neutrino, a neutralino (a neutral particle that is neither a neutrino nor a darkino) or a darkino (a neutral particle “responsible” for the mysterious dark matter contents of the Universe).
The formula also suggests four possible values for the rest mass of this super light particle.

**Category:** Quantum Physics

[453] **viXra:1508.0191 [pdf]**
*replaced on 2015-09-07 17:58:41*

**Authors:** PV Raktoe

**Comments:** 7 Pages.

This paper discribes several mistakes in (theoretical) physics, it explains why most mysteries in the universe cannot be solved. Scientists claim that a black hole is massive, but there is no proof that it is. They are all sure that it's massive, otherwise the stars wouldn't stay in their orbit. The mass of a black hole is based on the stars and their orbital speed near that black hole, but if there is no proof that a black hole is massive you also need to look at another option; an empty black hole. A massive black hole remains a mystery because they cannot see what's inside, but when you remove that mass it's not a mystery anymore. But more important, the origin of gravity reveals itself. And once you understand what gravity is, you will immediately understand that most mysteries in space are in fact man-made. You will find that Einstein's gravity, gravitational waves, massive black holes, dark matter and dark energy don't exist, and that is why they cannot find or explain it. You will find that some mysteries can easily be solved, because you will understand what the universe is.

**Category:** Quantum Physics

[452] **viXra:1508.0191 [pdf]**
*replaced on 2015-08-24 17:00:31*

**Authors:** PV Raktoe

**Comments:** 7 Pages.

This paper discribes several mistakes in (theoretical) physics, it explains why most mysteries in the universe cannot be solved. Scientists claim that a black hole is massive, but there is no proof that it is. They think a black hole is massive because it needs to be (because of Einstein's gravity), otherwise the stars wouldn't stay in their orbit. They looked at the stars and their speed and used mathematics to calculate how massive a black hole needed to be, but if there is no proof that a black hole is massive you also need to look at another option; an empty black hole. A massive black hole remains a mystery because they cannot see what's inside, but when you remove that mass it's not a mystery anymore. But more important, the origin of gravity reveals itself. And once you understand what gravity is, you will immediately understand that most mysteries in space are in fact man-made. You will find that Einstein's gravity, gravitational waves, massive black holes, dark matter and dark energy don't exist, and that is why they cannot find or explain it. You will find that some mysteries can easily be solved, because you will understand what the universe is.

**Category:** Quantum Physics

[451] **viXra:1508.0176 [pdf]**
*replaced on 2015-08-31 06:56:15*

**Authors:** Wan-Jiung Hu

**Comments:** 7 Pages.

Unification of strong force, weak force, and electromagnetism is provided via higgs mechanism. Thus, gluons, W+, W-, and Z particles can acquire mass. All green related gluons then have mass. This theory links U(1), SU(2), and SU(3) for a general unification theory which extends from Weinberg's electroweak interaction.

**Category:** Quantum Physics

[450] **viXra:1508.0176 [pdf]**
*replaced on 2015-08-28 00:53:33*

**Authors:** Wan-Jiung Hu

**Comments:** 7 Pages.

Unification of strong force, weak force, and electromagnetism is provided via higgs mechanism. Thus, gluons, W+, W-, and Z particles can acquire mass. All green related gluons then have mass. This theory links U(1), SU(2), and SU(3) for a general unification theory which extends from Weinberg's electroweak interaction.

**Category:** Quantum Physics

[449] **viXra:1508.0144 [pdf]**
*replaced on 2015-08-20 18:04:46*

**Authors:** Michael John Sarnowski

**Comments:** 6 Pages. added electron neutrino mass calculation.

The mass ratio calculation for the elementary particles of the proton, electron, muon, and tau(tauon) are shown below. It is shown that these particles are all ratios with the neutron. It is shown that the electron, muon, and tau are all derived from the proton neutron mass ratio. It is shown that the muon and tau are complimentary lepton particles.

**Category:** Quantum Physics

[448] **viXra:1508.0073 [pdf]**
*replaced on 2015-08-17 05:04:06*

**Authors:** J.A.J. van Leunen

**Comments:** 7 Pages.

In intimate cooperation, symmetry centers and coherent stochastic mechanisms recurrently recreate elementary physical objects. Symmetry centers are dedicated subspaces of separable quaternionic Hilbert spaces. As such they are no more and no less than structured storage places that feature special properties. The coherent stochastic mechanisms are the actors that generate and control coherent dynamics. Tri-state flavor switching appears to fit similar quaternionic representation as dynamic geometry does.

**Category:** Quantum Physics

[447] **viXra:1507.0185 [pdf]**
*replaced on 2015-09-14 10:26:29*

**Authors:** J.A.J. van Leunen

**Comments:** 21 Pages.

By starting from a quaternionic separable Hilbert space as a base model the paper uses the capabilities and the restrictions of this model in order to investigate the origins of the electric charge and the electric fields. Also other discrete properties such as color charge and spin are considered.
The paper exploits all known aspects of the quaternionic number system and it uses quaternionic differential calculus rather than Maxwell based differential calculus.
The paper presents fields as mostly continuous quaternionic functions. The electric field is compared with another basic field that acts as a background embedding continuum. The behavior of photons is used in order to investigate the long range behavior of these fields.

**Category:** Quantum Physics

[446] **viXra:1507.0185 [pdf]**
*replaced on 2015-08-03 03:03:30*

**Authors:** J.A.J. van Leunen

**Comments:** 20 Pages.

By starting from a quaternionic separable Hilbert space as a base model the paper uses the capabilities and the restrictions of this model in order to investigate the origins of the electric charge and the electric fields. Also other discrete properties such as color charge and spin are considered.
The paper exploits all known aspects of the quaternionic number system and it uses quaternionic differential calculus rather than Maxwell based differential calculus.
The paper presents fields as mostly continuous quaternionic functions. The electric field is compared with another basic field that acts as a background embedding continuum. The behavior of photons is used in order to investigate the long range behavior of these fields.

**Category:** Quantum Physics

[445] **viXra:1507.0185 [pdf]**
*replaced on 2015-07-29 13:14:57*

**Authors:** J.A.J. van Leunen

**Comments:** 20 Pages.

By starting from a quaternionic separable Hilbert space as a base model the paper uses the capabilities and the restrictions of this model in order to investigate the origins of the electric charge and the electric fields. Also other discrete properties such as color charge and spin are considered.
The paper exploits all known aspects of the quaternionic number system and it uses quaternionic differential calculus rather than Maxwell based differential calculus.
The paper presents fields as mostly continuous quaternionic functions. The electric field is compared with another basic field that acts as a background embedding continuum. The behavior of photons is used in order to investigate the long range behavior of these fields.

**Category:** Quantum Physics

[444] **viXra:1507.0131 [pdf]**
*replaced on 2015-07-18 12:58:39*

**Authors:** Jiri Soucek

**Comments:** 3 Pages.

We discuss the three options: the psi-ontic option, the psi-epistemic option and the novel psi-hybrid option.

**Category:** Quantum Physics

[443] **viXra:1507.0107 [pdf]**
*replaced on 2015-09-29 13:56:22*

**Authors:** Rodolfo A. Frino

**Comments:** 3 Pages.

The purpose of this paper is to find out the physical meaning of the product pc in Einstein's Total Relativistic Energy Formula.

**Category:** Quantum Physics

[442] **viXra:1507.0074 [pdf]**
*replaced on 2015-08-03 09:45:52*

**Authors:** Rodolfo A. Frino

**Comments:** 10 Pages.

The goal of this paper is to solve the mystery of the large imbalance between matter and antimatter
of the Universe. Some people think the Universe was created with equal amounts of matter and
antimatter. However today's observations indicate that there is not enough antimatter to match the
amount of matter observed. Thus, it seems that matter has, for some reason, taken over. Putting
together an idea from two lead physicists: John Wheeler and Richard Feynman and the theory of
the Pre-universe that I developed in 2012, I found not only the possible cause of the imbalance but
also that the imbalance began at the very beginning of universal time (normal time). Because
matter and antimatter were created by a gradual and very fast process known as Metatransformation,
it is possible that most of the imbalance took place during the first seconds or minutes after the Big Bang.

**Category:** Quantum Physics

[441] **viXra:1507.0074 [pdf]**
*replaced on 2015-07-14 10:47:56*

**Authors:** Rodolfo A. Frino

**Comments:** 10 Pages.

The goal of this paper is to solve the mystery of the large imbalance between matter and antimatter of the Universe. Some people think the Universe was created with equal amounts of matter and antimatter. However today's observations indicate that there is not enough antimatter to match the amount of matter observed. Thus, it seems that matter has, for some reason, taken over. Putting together an idea from two lead physicists: John Wheeler and Richard Feynman and the theory of the Pre-universe that I developed in 2012, I found not only the possible cause of the imbalance but
also that the imbalance took place at the very beginning of universal time (normal time). This is exactly when our Universe began to exist.

**Category:** Quantum Physics

[440] **viXra:1507.0062 [pdf]**
*replaced on 2015-07-11 12:38:41*

**Authors:** Peter Cameron

**Comments:** Pages.

There are many ways and whats to quantize. Here we seek to explain some of the whys and hows of the impedance model.

**Category:** Quantum Physics

[439] **viXra:1507.0062 [pdf]**
*replaced on 2015-07-10 08:31:42*

**Authors:** Peter Cameron

**Comments:** 1 Page.

There are many ways and whats to quantize. Here we seek to explain some of the whys and hows of the impedance model.

**Category:** Quantum Physics

[438] **viXra:1507.0062 [pdf]**
*replaced on 2015-07-09 13:16:51*

**Authors:** Peter Cameron

**Comments:** 1 Page.

**Category:** Quantum Physics

[437] **viXra:1507.0054 [pdf]**
*replaced on 2015-07-12 23:55:04*

**Authors:** Declan Traill

**Comments:** 23 Pages. Please visit http://www.energyfieldtheory.com

The Wave/Particle duality of particles in Physics is well known. Particles have
properties that uniquely characterize them from one another, such as mass,
charge and spin. Charged particles have associated Electric and Magnetic
fields. Also every moving particle has a De Broglie wavelength determined by
its mass and velocity. In this paper I show that all of these properties of a
particle can be derived from a single wave function equation for that particle. I
present wave functions for the Electron and the Positron and provide
principles that can be used to calculate the wave functions of all the
fundamental particles in Physics.

**Category:** Quantum Physics

[436] **viXra:1507.0047 [pdf]**
*replaced on 2015-09-29 13:53:32*

**Authors:** Rodolfo A. Frino

**Comments:** 6 Pages.

The purpose of this article is to highlight the role of powers of 2 in physics.

**Category:** Quantum Physics

[435] **viXra:1507.0047 [pdf]**
*replaced on 2015-08-03 09:43:06*

**Authors:** Rodolfo A. Frino

**Comments:** 6 Pages.

The purpose of this article is to highlight the role of powers of 2 in physics.

**Category:** Quantum Physics

[434] **viXra:1507.0041 [pdf]**
*replaced on 2015-07-17 06:51:55*

**Authors:** Han Geurdes

**Comments:** 8 Pages. Omega 0 numerical consistency

In the paper it is demonstrated that the particular form of CHSH S=E{A(1)[B(1)-B(2)]-A(2)[B(1)+B(2)]} with S maximally 2 and minimally -2, for A and B functions in {-1,1}, is not generally valid for local models. The nonzero probability that local hidden extra parameters violate the CHSH, is not eliminated with basic principles derived from the CHSH.

**Category:** Quantum Physics

[433] **viXra:1506.0214 [pdf]**
*replaced on 2015-07-18 07:44:11*

**Authors:** ChengGang.Zhang

**Comments:** 9 Pages.

This paper will research one special function and it’s physics principle , the special function which has quantum properties ; Two hypothesis of quantum theory can be derived from the special function , and the special function also applies to atoms successfully；This paper proves that the special function is related to Coulomb force in the end , and reveals the essential reason .

**Category:** Quantum Physics

[432] **viXra:1506.0214 [pdf]**
*replaced on 2015-07-03 10:10:31*

**Authors:** ChengGang.Zhang

**Comments:** 8 Pages.

This paper will research one special function and it’s physics principle , the special function which has quantum properties ; Two hypothesis of quantum theory can be derived from the special function , and the special function also applies to atoms successfully；This paper proves that the special function is related to Coulomb force in the end , and reveals the essential reason .

**Category:** Quantum Physics

[431] **viXra:1506.0214 [pdf]**
*replaced on 2015-07-02 10:14:52*

**Authors:** ChengGang.Zhang

**Comments:** 8 Pages.

文中将研究一个具有量子化特征的特殊函数，和其所包含的物理学原理；量子理论中两个基本假设的形式可以通过这个特殊函数推导得到，特殊函数可以被应用到原子领域，最终发现并证明特殊函数与已知的库仑力形式相关，其揭示了量子化的真正本质。

**Category:** Quantum Physics

[430] **viXra:1506.0130 [pdf]**
*replaced on 2015-06-26 06:42:42*

**Authors:** Solomon Budnik

**Comments:** 3 Pages.

In this article we offer to enhance the standard model of a bosonic superconducting cosmic string (fig 1) and model it in our quantum harmonic system (fig. 2) to enable quantum devices for cars and aircrafts, superfluid propulsion, levitation and teleportation.

**Category:** Quantum Physics

[429] **viXra:1506.0130 [pdf]**
*replaced on 2015-06-17 05:20:54*

**Authors:** Solomon Budnik

**Comments:** 2 Pages.

In this article we offer to enhance the standard model of a bosonic superconducting cosmic string (fig 1) and model it in our quantum harmonic system (fig. 2).

**Category:** Quantum Physics

[428] **viXra:1506.0111 [pdf]**
*replaced on 2015-06-15 11:59:46*

**Authors:** J.A.J. van Leunen

**Comments:** 12 Pages.

Two quite different forms of differential calculus exist that both have physical significance. The most simple version is quaternionic differential calculus. Maxwell based differential calculus is based on the equations that Maxwell and others have developed in order to describe electromagnetic phenomena. Both approaches can be represented by four-component “fields” and four-component differential operators. Both approaches result in a dedicated non-homogeneous wave equation. These wave equations differ and offer solutions that differ in details.
Maxwell based differential calculus uses coordinate time t, where quaternionic differential calculus uses proper time τ. The consequence is that also the interpretation of speed differs between the two approaches. A more intriguing fact is that these differences involve a different space-progression model and different charges and currents. The impact of these differences are not treated in this paper.
Physics formulated in Maxwell based differential calculus differs from physics formulated in quaternionic differential calculus. This choice influences the description of physical reality. It cannot not influence physical reality.
Quaternionic differential calculus fits better with the application of Hilbert spaces in quantum physics than Maxwell based differential calculus. However, Maxwell based differential calculus is the general trend in current physical theories.

**Category:** Quantum Physics

[427] **viXra:1506.0095 [pdf]**
*replaced on 2015-07-02 13:34:35*

**Authors:** Rodolfo A. Frino

**Comments:** 11 Pages.

The theory presented here is the third part of the quantum gravitational formulation of Einstein's
special theory of relativity. I shall derive two new relativistic formulas. Firstly, based on 'quantum length to classical length transformations', I shall derive the quantum gravitational length contraction equation introduced without proof in Part I. Secondly, based on 'quantum time interval to classical time interval transformations', I shall derive the quantum gravitational time dilation equation. I have shown, in Part I, that the Fitzgerald-Lorentz length contraction formulation violates the space quantization postulate, and consequently, a new quantum gravitational equation was introduced. If the second postulate I put forward in Part I turns out to be correct, then the new length contraction formula should be preferred over the Fitzgerald-Lorentz length contraction counterpart. On the other hand, Einstein's time dilation formula does not violate the time quantization postulate. This means that when we apply the same technique to time we obtain a new time dilation formula that differs from that of Einstein. But then the question arises: which of the two time dilation formulas is the correct one? I found that I do not have solid arguments in favour of either of them, except for a feeling in favour of Einstein's equation. It seems that only the experiment can answer this question beyond reasonable doubt.

**Category:** Quantum Physics

[426] **viXra:1506.0095 [pdf]**
*replaced on 2015-06-22 12:07:55*

**Authors:** Rodolfo A. Frino

**Comments:** 10 Pages.

The theory presented here is the third part of the quantum gravitational formulation of Einstein's special theory of relativity. I shall derive two new relativistic formulas. Firstly, based on 'quantum length to classical length transformations', I shall derive the quantum gravitational length contraction equation introduced without proof in Part I. Secondly, based on 'quantum time interval
to classical time interval transformations', I shall derive the quantum gravitational time dilation equation. I have shown, in Part I, that the Fitzgerald-Lorentz length contraction formulation violates the space quantization postulate, and consequently, a new quantum gravitational equation was introduced. If the second postulate I put forward in Part I turns out to be correct, then the new length contraction formula should be preferred over the Fitzgerald-Lorentz length contraction
counterpart. On the other hand, Einstein's time dilation formula does not violate the time
quantization postulate. This means that when we apply the same technique to time we obtain a new time dilation formula that differs from that of Einstein. But then the question arises: which of the two time dilation formulas is the correct one? I found that I do not have solid arguments in favour of either of them, except for a feeling in favour of Einstein's equation. It seems that only the experiment can answer this question beyond reasonable doubt.

**Category:** Quantum Physics

[425] **viXra:1506.0095 [pdf]**
*replaced on 2015-06-18 15:11:43*

**Authors:** Rodolfo A. Frino

**Comments:** 10 Pages.

The theory presented here is the third part of the quantum gravitational formulation of Einstein's special theory of relativity. I shall derive two new relativistic formulas. Firstly, based on 'quantum length to classical length transformations', I shall derive the quantum gravitational length contraction equation introduced without proof in Part I. Secondly, based on 'quantum time interval
to classical time interval transformations', I shall derive the quantum gravitational time dilation equation. I have shown, in Part I, that the Fitzgerald-Lorentz length contraction formulation violates the space quantization postulate, and consequently, a new quantum gravitational equation was introduced. If the second postulate I put forward in Part I turns out to be correct, then the new length contraction formula should be preferred over the Fitzgerald-Lorentz length contraction
counterpart. On the other hand, Einstein's time dilation formula does not violate the time
quantization postulate. Thus means that when we apply the same technique to time we obtain a new time dilation formula that differs from that of Einstein. But then the question arises: which of the two time dilation formulas is the correct one? I found that I do not have solid arguments in favour of either of them, except for a feeling in favour of Einstein's equation. It seems that only the experiment can answer this question beyond reasonable doubt.

**Category:** Quantum Physics

[424] **viXra:1506.0095 [pdf]**
*replaced on 2015-06-15 12:19:16*

**Authors:** Rodolfo A. Frino

**Comments:** 9 Pages.

The theory presented in this paper is the third part of the quantum gravitational formulation of Einstein's special theory of relativity. Based on new and simple 'quantum length to classical length transformations', I shall derive two formulas: (a) the quantum gravitational length contraction formula, introduced without proof in Part I; and (b) the quantum gravitational time dilation formula. In Part I, I showed that the Fitzgerald-Lorentz length contraction formulation violates the space quantization postulate and therefore a new quantum gravitational equation was required. If the second postulate introduced in Part I is correct, then the new length contraction formula should be preferred over the Fitzgerald-Lorentz length contraction counterpart. In contrast I showed that the Einstein's time dilation formula does not violate the time quantization postulate. This is a striking difference between space and time. However, if we apply the 'quantum time to classical time transformations', we obtain a new formula for time dilation. But then the question arises of which of the two time dilation formulas is the correct one? I found that we do not have any arguments to deciding which of the two time dilation formulas should be the preferred one. It seems that only the experiment can answer this question.

**Category:** Quantum Physics

[423] **viXra:1506.0076 [pdf]**
*replaced on 2015-06-10 07:35:43*

**Authors:** Ramzi Suleiman

**Comments:** 9 Pages.

The non-locality of quantum mechanics continues to be an unexplainable phenomenon. In a previous paper [1] I utilized a recently proposed relativity theory, termed Information Relativity (IR) to account, both qualitatively and quantitatively for the entanglement in an EPR type experiment. IR rests on two well accepted propositions: The relativity axiom, plus an axiom specifying the information carrier and its velocity. The theory is deterministic and local. It is also complete, in the sense that each element in the theory is in a one-to-one correspondence with reality. Contrary to special relativity which predicts that an object's length will always contract along the direction of its relative motion with respect to an observer, IR predicts length contraction for approaching bodies and length stretching for departing bodies. In the present paper I demonstrate that IR is also successful in explaining and predicting de Broglie's matter-wave duality, quantum phase transition, quantum criticality, and the formation of the Bose-Einstein condensate. Quite strikingly, I found that the critical "stretch" associated with a particle's wave phase transition is equal to the critical value of de Broglie wave length ζ(3/2) ≈ 2.612, where ζ(x) is the Riemann zeta function. This result enables to calculate the Planck's constant, the corner stone of all quantum mechanics, based on a completely deterministic and local theory. The unavoidable conclusion of the present analysis is that Einstein's intuition that "God does not play dice" is correct.

**Category:** Quantum Physics