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Abstract

It is demonstrated that the statistical method of the famous As-
pect - Bell experiment requires negative densities and negative proba-
bilities from ”the thing” researched, else that thing doesn’t exist. The
thing refers here to Einstein hidden variables. This requirement in
the experiment is absurd and so the results from such experiment are
meaningless.

Introduction

Kolmogorov axioms

Let us start with the presentation of some relevant Kolmogorov axioms [1]
that are the foundation of probability laws. A probability is a function of a
set. We have three relevant axioms,

• Positivity: A probability, P , is never negative

• Certain event: The probability P of the universe set U is unity

• Additivity: If sets Q and R are disjoint then P (Q∪R) = P (Q)+P (R).

Here, Q and R and Q ∪ R are subsets of U . Sets are connected to events
via an appropriate random variable.

Bell’s experiment

With Bell’s formula for correlation [2] Einstein hidden parameters [3, page
320, ..unvolständig..] are modeled as classical probability random vari-
ables. The value(s) of those random variables, in a universe set Λ, are
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λ. The density is ρ(λ) ≥ 0 for all λ ∈ Λ. The density is normalized, i.e.∫
λ∈Λ ρ(λ)dλ = 1. Bell’s correlation formula

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (1)

is therefore surely embedded in Kolmogorovian classical probabiliy. If one
argues that a density somehow is associated with quantum variables, then
E in (1), based on complex λ, may theoretically violate equal the quantum
result. See however also [4]. In addition in the early days of quantum me-
chanics, Einstein already noticed the difference between classical probability,
leading to Wien’s law, and a kind of quantum probability leading Planck’s
law [5], [6]. Moreover, there is the problem of an association of a quantum
(1) with an experiment, ruled by definition by classical probability laws.

Returning to a classical probability based Bell formula. In a more formal
way we can state that Bell supposed that Einstein’s extra parameters are
somehow represented by a classical probability space (Λ,Σ, P ). The Λ is
the universal set, the Σ is the associated sigma-algebra [7] and P is the
probability measure. The P projects a set S ∈ Σ in the interval [0, 1]. Note,
dP (λ) = ρ(λ)dλ. Sometimes one also writes, P (dλ).

In Bell’s formula (1), a is the unit length setting parameter vector of
Alice’s instrument and b is the unit length setting parameter vector of Bob’s
instrument. Alice doesn’t know Bob’s setting and Bob doesn’t know Alice’s
setting. We have, A(a, λ) ∈ {−1, 1} Alice’s spin measurement function
B(b, λ) ∈ {−1, 1} Bob’s spin measurement function. There is a sufficiently
large distance (see [3]) between Alice and Bob.

For photons it is sufficient to consider the angle x = ∠(a, b) between
the vectors a and b. This angle is a continuous variable in 0 ≤ x < 2π and
is determined in the plane orthogonal to the direction of propagation. The
expectation value E(a, b) in (1) then reduces to E(x).

In experiment use is made of what can be called a raw product moment
(rpm) correlation. This rpm correlation is of course embedded in classical
probability theory.

Furthermore, an excellent example of an experiment can be found in the
literature e.g. [8]. The rpm correlation for photons is,

R(x) =
N(x, ̸=)−N(x,=)

N(x, ̸=) +N(x,=)
(2)

With, N = N(x, ̸=) +N(x,=) the total number of entangled photon pairs
measured under angle x. Here, given 0 ≤ x < 2π, N(x, ̸=) represents the
number of unequal spin measurements by Alice and Bob, i.e. (+,−), (−,+)
and N(x,=) represents the number of equal spin measurements by Alice
and Bob, i.e. (−,−), (+,+). This enables to rewrite R(x) in (2) as

R(x) = 1− 2P (x,=) (3)
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Here, P (x,=) equals N(x,=)/N . It represents the (estimate) classical prob-
ability to find ”=” spin under angle x ∈ [0, 2π). This is a statistical frequency
of an event divided by a total, therefore a probability estimate. The N can
be large if needed.

The set structure behind the probability space of the experiment is
(U,Φ, P ) with U = [0, 2π) and Φ the to U associated sigma-algebra. The P
is the probability measure.

The event ”x,=” is represented by a random variable X. A random
variable connects the probability set structure with what can be found in
measurement (events). Here it associates the Φ set for the angle x, from the
universe, U = [0, 2π) to the real numbers, i.e. X : Φ → R. It does that in
such a way that it connects a continuous variable to a set, viz. [9, page 117].
A probability is P : Φ → [0, 1].

Therefore, a random variableX is associated to the event ”=” spin under
angle x and x ∈ [0, 2π). Furthermore, we are allowed here to assume ideal
(no loss) measurements.

The random variable X is a continuous random variable. The random
variable X attains continuous values because the angle is a continuous vari-
able. It is a mistake to think that P (x,=) is the probability associated to
a discrete random variable. The point of coarse graining and discreteness is
dealt with in a special subsection.

Subsequently, note that for a continuous random variable, the probability
in a point is zero [10]. The probability for a continuous random variable is
computed [11] like e.g.

P (0 ≤ X < x) =

∫ x

0
f(y)dy (4)

In Riemannian integration, inclusion of limits doesn’t make a difference in
outcome.

Hypothesis

In the experiment we ask if it is possible in principle that R(x) can be
equal to the quantum correlation cos(x). Because, we have cos(x) = 1 −
2 sin2(x/2), this leads to the simple testing of the hypotheses

H0 : P (0 ≤ X < x) = sin2(x/2) (5)

H1 : The hypothesis H0 is false

Therefore note, the probability P (x,=) is in fact P (0 ≤ X < x). In this
way we can via the random variable X have sin2(x/2) associated to the set
structure. However, the following things immediately catches the eye.

• The function sin2(x/2) isn’t monotone on x ∈ [0, 2π),
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• P (0 ≤ X < 2π) = 0 instead of 1,

• The probability density, f(x) = (1/2) sin(x) in (4) is not positive def-
inite for x ∈ [0, 2π).

Continuity & negative probabilities

With the fact that sin2(x/2) is not monotone on x ∈ [0, 2π), negative
probabilities are required to let P (0 ≤ X < x) meet sin2(x/2). Sup-
pose, e.g. S1 = [0, π) and S2 = [π, 3π/2). Then, S1 ∩ S2 = ∅ and when
sin2(x/2) is the probability function, P (S1 ∪ S2) = P ([0, 3π/2)) = 1/2.
Because of the additivity in Kolmogorovian axioms, we also must have
P (S1∪S2) = P (S1)+P (S2) = 1/2. Again, when sin2(x/2) is the probability
function it follows, P (S1) = 1. But this leads, via P (S1) + P (S2) = 1/2, to
P (S2) = −1/2 which is outside [0, 1]. Hence, sin2(x/2) cannot be a proba-
bility function for a continuous random variable. This is because negative
probabilities arise from the additivity which is a basic part of probability
theory [11].

Discreteness

Special attention again is given to the coarse graining and discreteness point
above. Here we might use P (x,=) in discrete points x. With coarse graining
and/or discreteness the sum of discrete probabilities sin2(x/2) over x in
nontrivial partitioning X , cardinality e.g. > 5 that contains x = π, always
is larger than 1. The X is the discretisation of U = [0, 2π). There is a
discrete sigma-algebra Φ′ associated. We have,∑

x∈X∪{π}

sin2(x/2) > 1 (6)

This means there are sets A with P (A) > 1 and A ∈ Φ′. For P (U ′) we also
might find> 1. For comparison, the discrete Poisson probability distribution
is an example of a probability distribution of a discrete random variable with
a summation to unity. And please note that the Einstein hidden variables
concept, [3, page 320, ..unvolständig..], wasn’t rejected for a finite number of
x. The claim was that for every possible x ∈ [0, 2π), we have no go Einstein
variables.

Conclusion

A classical probability is a function that projects a set into the interval
[0, 1]. Bell’s experiment requires a Kolmogorovian probability to be not
Kolmogorovian in order to meet the quantum correlation. This remains
true, even if one claims that Bell’s formula is quantum mechanics. The only
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thing in the latter case is that there is a disconnect between experiment
probability and the (supposed quantum) Bell theoretical correlation formula.
Note also, we only may know the quantum world through the use of classical
probability.

The points raised in the paper demonstrate that we always will findH1 in
(5), in an experiment where the rpm correlation (2) is employed. This is not
because Einstein variables are impossible or that inequalities demonstrated
that Einstein variables do not exist. It is because it is not possible in the
data to find H0 is true. Data based on negative probability doesn’t exist.

We conclude that the statistics of Bell’s experiment doesn’t allow any
sensible conclusion about go, or, no go Einstein.
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