Quantum Physics

1811 Submissions

[86] viXra:1811.0522 [pdf] submitted on 2018-11-30 08:41:32

Macroscopic Quantum Physics

Authors: George Rajna
Comments: 68 Pages.

Researchers at Delft University of Technology and the University of Vienna have now devised a macroscopic system that exhibits entanglement between mechanical phonons and optical photons. [41] The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40] The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39] A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32]
Category: Quantum Physics

[85] viXra:1811.0517 [pdf] submitted on 2018-11-30 14:23:49

Discussions of the Weak ‘Force’ and More

Authors: Salvatore Gerard Micheal
Comments: 4 Pages.

the weak 'force' is discussed relative to other 'forces' we claim exist in our universe; a viable alternative is presented
Category: Quantum Physics

[84] viXra:1811.0513 [pdf] submitted on 2018-11-29 07:51:05

Light Using Spatiotemporal Boundary

Authors: George Rajna
Comments: 77 Pages.

A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45] Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41]
Category: Quantum Physics

[83] viXra:1811.0511 [pdf] submitted on 2018-11-29 09:52:03

Dipolar Quantum Matter

Authors: George Rajna
Comments: 73 Pages.

Researchers at the Institute for Quantum Optics and Quantum Information in Austria have succeeded in creating the first ever dipolar quantum mixture in which two Bose-Einstein condensates made of two different highly magnetic species coexist and interact with each other over a long range. [41] Harvard Assistant Professor of Chemistry and Chemical Biology Kang-Kuen Ni and colleagues have combined two atoms for the first time into what researchers call a dipolar molecule. [40]
Category: Quantum Physics

[82] viXra:1811.0509 [pdf] submitted on 2018-11-29 10:17:41

Silicon Qubits for Quantum Computers

Authors: George Rajna
Comments: 76 Pages.

A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45]
Category: Quantum Physics

[81] viXra:1811.0502 [pdf] replaced on 2018-12-02 08:34:19

Stochastic Space-Time and Quantum Theory: Part a

Authors: Carlton Frederick
Comments: 11 Pages.

Abstract Much of quantum mechanics may be derived if one adopts a very strong form of Mach's Principle, requiring that in the absence of mass, space-time becomes not flat but stochastic. This is manifested in the metric tensor which is considered to be a collection of stochastic variables. The stochastic metric assumption is sufficient to generate the spread of the wave packet in empty space. If one further notes that all observations of dynamical variables in the laboratory frame are contravariant components of tensors, and if one assumes that a Lagrangian can be constructed, then one can derive the uncertainty principle. Finally, the superposition of stochastic metrics and the identification of the square root of minus the determinant of the metric tensor as the indicator of relative probability yields the phenomenon of interference, as will be described for the two-slit experiment.
Category: Quantum Physics

[80] viXra:1811.0500 [pdf] submitted on 2018-11-29 20:36:42

Refutation of the Frauchiger-Renner Thought Experiment with Modal Operators as a Paradox

Authors: Colin James III
Comments: 1 Page. © Copyright 2018 by Colin James III All rights reserved. Respond to the author by email at: info@ersatz-systems dot com.

We use modal logic to evaluate a quantum rendition of the Frauchiger-Renner thought experiment to refute it as paradox (contradiction) and as tautology.
Category: Quantum Physics

[79] viXra:1811.0492 [pdf] submitted on 2018-11-28 07:25:46

A New Cosmic Establishment

Authors: Savior F. Eason
Comments: 13 Pages. All claims in this document have been scientifically proven under controlled experiments through my own research using DIY-SOTA tech, as explained in the document. Mechanical Methods of research, such as nuclear acceleration, are authorized by the NSA.

The cosmic mandelbrot scan, how neurotomic waves were used to map out the entire universe in my laboratory, what this map actually is, and the spatially tessellated void of space-time and other models. Also explains temporal fields, the detection of chronon radiation, and the latest scientific report from inside the lab.
Category: Quantum Physics

[78] viXra:1811.0490 [pdf] submitted on 2018-11-28 09:14:43

Completely Secure Quantum Communication Network

Authors: George Rajna
Comments: 70 Pages.

Researchers at the Niels Bohr Institute, University of Copenhagen, have recently succeeded in boosting the storage time of quantum information, using a small glass container filled with room temperature atoms, taking an important step towards a secure quantum encoded distribution network. [42] New work by a team at the University of Bristol's Centre for Quantum Photonics has uncovered fundamental limits on the quantum operations which can be carried out with postselection. [41] The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40] The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39] A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33]
Category: Quantum Physics

[77] viXra:1811.0488 [pdf] submitted on 2018-11-28 09:24:36

Postselectability of Optical Graph

Authors: George Rajna
Comments: 68 Pages.

New work by a team at the University of Bristol's Centre for Quantum Photonics has uncovered fundamental limits on the quantum operations which can be carried out with postselection. [41] The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40] The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39]
Category: Quantum Physics

[76] viXra:1811.0485 [pdf] submitted on 2018-11-28 10:27:29

Broadening Possibilities in Science

Authors: George Rajna
Comments: 73 Pages.

Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a light beam by 400 times. [44] There's little doubt the information technology revolution has improved our lives. But unless we find a new form of electronic technology that uses less energy, computing will become limited by an "energy crunch" within decades. [43] Researchers at the Niels Bohr Institute, University of Copenhagen, have recently succeeded in boosting the storage time of quantum information, using a small glass container filled with room temperature atoms, taking an important step towards a secure quantum encoded distribution network. [42] New work by a team at the University of Bristol's Centre for Quantum Photonics has uncovered fundamental limits on the quantum operations which can be carried out with postselection. [41] The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40] The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39] A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35]
Category: Quantum Physics

[75] viXra:1811.0481 [pdf] replaced on 2018-12-19 12:28:35

Further Analysis of the Schrdinger Cat; Who is the Observer and Why it Sounds Impossible to Reach to the Final Theory of Physics

Authors: Mohammad Sharifi
Comments: 10 Pages. i am under mind control. mk ultra darpa mind reader mind control. behsharifi@gmx.com ut.ac.ir only publish as second version thanks alot

In this paper we analyze the subject of the wave function and observer. we propose a solution to the problem of the Schrdinger cat. we elucidate the relation between consciousness, identity and the nal theory of physics and nally explain the hardship that we face in reaching to the nal theory of physics in passing from the quantum model to another mechanism that admit the nal reasonable and universal answer to the paradox of the Schrdinger cat.
Category: Quantum Physics

[74] viXra:1811.0474 [pdf] submitted on 2018-11-28 20:27:03

Higgs in the Standard Model and More

Authors: Salvatore Gerard Micheal
Comments: 7 Pages.

the history of the Higgs taken from Wikipedia launches a detailed analysis of the etiology of the concept as part of the Standard Model, the circular logic of the weak 'force', and steps toward remediation
Category: Quantum Physics

[73] viXra:1811.0469 [pdf] submitted on 2018-11-27 08:27:27

Ultracold Quantum Matter

Authors: George Rajna
Comments: 65 Pages.

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40] The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39] A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30]
Category: Quantum Physics

[72] viXra:1811.0466 [pdf] submitted on 2018-11-27 09:00:38

Compact, Sensitive Qubit Readout

Authors: George Rajna
Comments: 52 Pages.

Professor Michelle Simmons' team at UNSW Sydney has demonstrated a compact sensor for accessing information stored in the electrons of individual atoms—a breakthrough that brings us one step closer to scalable quantum computing in silicon. [37] Using micromagnetic simulation, scientists have found the magnetic parameters and operating modes for the experimental implementation of a fast racetrack memory module that runs on spin current, carrying information via skyrmionium, which can store more data and read it out faster. [36]
Category: Quantum Physics

[71] viXra:1811.0465 [pdf] submitted on 2018-11-27 09:35:26

New Technique Make Objects Invisible

Authors: George Rajna
Comments: 73 Pages.

This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33]
Category: Quantum Physics

[70] viXra:1811.0463 [pdf] replaced on 2018-12-02 08:39:05

Stochastic Space-Time and Quantum Theory: Part C: Five-Dimensional Space-Time

Authors: Carlton Frederick
Comments: 12 Pages.

This is a continuation of Parts A and B which describe a stochastic, granular space-time model. In this, Part C, in order to tessellate the space-time manifold, it was necessary to introduce a fifth dimension which is 'rolled up' at the Planck scale. The dimension is associated with mass and energy (in a non-trivial way). Further, it addresses other problems in the granular space-time model.
Category: Quantum Physics

[69] viXra:1811.0455 [pdf] submitted on 2018-11-27 10:19:14

Moving Tiny Objects with Light

Authors: George Rajna
Comments: 75 Pages.

Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser light, to control and manipulate minute objects such as single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35]
Category: Quantum Physics

[68] viXra:1811.0454 [pdf] submitted on 2018-11-27 10:44:41

Star Wars-like Tractor Beam

Authors: George Rajna
Comments: 76 Pages.

Physicists from ITMO University have developed a model of an optical tractor beam to capture particles based on new artificial materials. [45] Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41]
Category: Quantum Physics

[67] viXra:1811.0448 [pdf] submitted on 2018-11-27 16:04:09

Biggest Thing Since the Split Atom

Authors: Savior F. Eason
Comments: 67 Pages.

My research and theory of programmable matter, the science behind, how we could mass-produce the stuff, and dimensionkinetic technology; Using my theory of everything for Pocket dimension creation, Tech allowing Extra-dimensional access, novistic technology and how it would render the magical as basic tech taken for granted by the time many children are seniors, a logopolitan computer and how we could one day turn ourselves into them, real mother-boxes and infinity stones in a few decades, how we could give ourselves editing access to the cosmic html in just a few years if this proposal was accepted, perhaps the most profound of these propositions, dimensional transmutation; How we could "magically" one day transform ourselves into multi-dimensional beings. Godhood just around the corner. A radical set of proposals in quantum technology. But they truly would be the grandest advancement in science since the splitting of the atom, or perhaps even our discovery of fire.
Category: Quantum Physics

[66] viXra:1811.0432 [pdf] replaced on 2018-12-03 14:47:34

Modularity, Consciousness, and Intelligence

Authors: J.A.J. van Leunen
Comments: 8 Pages. The document is part of the Hilbert Book Model Project

Physical reality has a modular structure. Consciousness gets introduced in the higher levels of the module hierarchy. Intelligence is introduced at the top level.
Category: Quantum Physics

[65] viXra:1811.0430 [pdf] submitted on 2018-11-26 09:14:29

Molecule Turns into a Switch

Authors: George Rajna
Comments: 65 Pages.

The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39] A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36]
Category: Quantum Physics

[64] viXra:1811.0429 [pdf] submitted on 2018-11-26 09:40:23

Accelerator on a Microchip

Authors: George Rajna
Comments: 73 Pages.

Electrical engineers in the accelerator physics group at TU Darmstadt have developed a design for a laser-driven electron accelerator so small it could be produced on a silicon chip. [42] Using short laser pulses, a research team led by Misha Ivanov of the Max Born Institute in Berlin, together with scientists from the Russian Quantum Center in Moscow, has shed light on the extremely rapid processes taking place within these novel materials. [41] Trapping light with an optical version of a whispering gallery, researchers at the National Institute of Standards and Technology (NIST) have developed a nanoscale coating for solar cells that enables them to absorb about 20 percent more sunlight than uncoated devices. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37]
Category: Quantum Physics

[63] viXra:1811.0419 [pdf] submitted on 2018-11-26 20:00:37

Quantum Physics, an Abstract Universe and the Human Mind.

Authors: Royan Rosche
Comments: 4 Pages.

An in-depth explanation of an Abstract Universe. the Human Mind, sense organs and living creatures and their relation to Quantum Physics. In this paper, I hone in on how Quantum Physics explains the true Nature of Reality. Note: For serious inquiring minds only.
Category: Quantum Physics

[62] viXra:1811.0401 [pdf] submitted on 2018-11-25 06:35:57

Fads and Fashions in Physics vs Conspiracies

Authors: Salvatore Gerard Micheal
Comments: 5 Pages.

some recent fads/fashions in physics are discussed relative to a hybrid framework incorporating concepts from both sides: determinism & randomness
Category: Quantum Physics

[61] viXra:1811.0399 [pdf] replaced on 2018-11-29 14:19:35

The Metaphysics of Physics

Authors: Jean Louis Van Belle
Comments: No. of pages includes title page and page with references

This is a didactic exploration of the basic assumptions and concepts of the Zitterbewegung interpretation of quantum mechanics. Its novelty is in applying the concepts to photons and relating it to other uses of the wavefunction. As such, we could have chosen another title for this paper: the physics of quantum physics. However, we only present interpretations, hypotheses and assumptions. As such, we thought we should stick to the title above: the metaphysics of physics - which sounds somewhat less arrogant.
Category: Quantum Physics

[60] viXra:1811.0396 [pdf] replaced on 2019-04-21 07:46:08

5 Different Superposition Principles With/without Test Charge, Retarded Waves/advanced Waves Applied to Electromagnetic Fields or the Photons

Authors: Shuang-Ren Zhao
Comments: 61 Pages.

Abstract In electromagnetic theory and quantum theory, there are superposition principle. Traditionally there are only one kind superposition principle. However, in this author's theory the retarded wave and advanced wave are all involved, the superposition become multiple. For example the author need to deal the problem how to superpose the retarded wave and the advanced wave. The author found that there are 5 different kinds of superpositions. The superposition principles have some differences. The research about these differences is a key to open the door of many physical difficulties. For example the particle and wave duality problem, and to judge which interpretation of the quantum mechanics is a correct one. The first two superposition principles are the superpositions with and without the test charges. The slight different superposition principles are the superposition with a retarded wave alone and the superposition with the advanced wave alone. According to theory of this author, the emitter sends the retarded wave, the absorber sends the advance wave. Hence, normal electromagnetic field actually is consist of retarded wave and advanced wave. This two waves together become the traditional electromagnetic fields. This kind of electromagnetic fields can be seen approximately as retarded wave only, this kind wave also has its own superposition. This kind of superposition is also different with the superposition when we consider the retarded waves alone and also the advanced waves alone. In this article this author will discuss the differences of these different superpositions. This author will also discuss the different physical result with a few different superposition principles. In this article this author will prove the superposition with test charge and the superposition with retarded waves alone or advance wave alone can be see one kind of superposition. This superposition is correct and can be derived from the mutual energy principle. This will be referred as first kind of superposition. The superposition without test charge and the superposition with the retarded waves and advanced waves can be seen as one kind of superposition. For this kind of superpositions are not correct naturally. This kind of super position are applied to N-charge's Poynting theorem. In order to make this superposition work, the self-energy principle have to be applied. Without self-energy principle this kind of superpositions will violate the energy conservation law. Considering the self-energy conservation this kind of superposition become the superposition of first kind. This is referred as second kind of superposition. The third kind of superposition is for the traditional electromagnetic field. Here the traditional electromagnetic field means the electromagnetic field where the advanced waves are omit. When the advanced waves are omit doesn't mean the advanced waves do not exist, that is only means the retarded wave and the advanced wave are with nearly same intensity and can be treated together in some situation, for example, in wave guide, or in the free space where the absorber are uniformly distributed at infinite big sphere. Abstract Only when the self-energy principle is accept, all kinds of superposition can be accept. However different superposition has different physical meanings. Otherwise only the superposition with test charge or the superposition with only one kind wave either retarded waves or advanced waves can be accepted. Hence, the discussion about the superposition also support the concept of the self-energy principle which means there must exist the time reversal waves. That also means the waves do not collapse but collapse back. Wave collapse means collapse to its target, for example, the retarded wave will collapse to an absorber and the advanced wave will collapse to an emitter. Wave collapse back means the retarded wave sent from emitter will collapse back to an emitter; The advanced wave sent from the absorber will collapse back to an absorber. Hence, one purpose of this article is to clarify the superposition principles, and another purpose is to support this author's electromagnetic field theory which is started from two new axioms the self-energy principle and the mutual energy principle.
Category: Quantum Physics

[59] viXra:1811.0394 [pdf] submitted on 2018-11-24 08:46:58

Ferent Equation for Elementary Particles

Authors: Adrian Ferent
Comments: 257 Pages. © 2014 Adrian Ferent

“Ferent equation for elementary particles” Adrian Ferent “Ferent equation for elementary particle, made of 2 particles, a Matter particle and a Dark Matter particle, is the Unification between Matter and Dark Matter!” Adrian Ferent “Ferent equation for Dark Matter particle of the elementary particle:” Adrian Ferent The most general form is the time-dependent Ferent equation, which gives a description of a quantum system made of Matter and Dark Matter evolving in time. “Unification between Matter and Dark Matter:” Adrian Ferent Where: |Ψ(r,t)> - is the state vector of the quantum system r and t are the position vector and time h – is the Planck constant a - is the Ferent constant This equation describes the changes over time of an elementary particle as quantum systems. “The elementary particles contain Dark Matter” Adrian Ferent “Ferent time-dependent equation for Dark Matter particles:” Adrian Ferent The nonrelativistic time-dependent Ferent equation for the wave function, of a single Dark Matter particle moving in a potential V(r,t). The wave function is the most complete description that can be given of a quantum system. Because the elementary particles contain Dark Matter particles, I consider each elementary particle as a quantum system made of 2 equations: The total energy equals kinetic energy plus potential energy of the dark matter particles. The equation for Matter of the elementary particle: Where Ψ(r,t) is the wave function, m1 is Matter mass, V is the potential energy. “Ferent equation for Dark Matter particle of the elementary particle:” Adrian Ferent Where m2 is Dark Matter mass. The equation for an elementary particle made of 2 particles, a Matter particle and a Dark Matter particle, is the Ferent equation for elementary particle as a quantum system: “Ferent equation for elementary particles:” Adrian Ferent “Ferent equation for elementary particle, made of 2 particles, a Matter particle and a Dark Matter particle, is the Unification between Matter and Dark Matter!” Adrian Ferent 153. I am the first who discovered the Ferent equation for elementary particles 154. I am the first who explained that Ferent equation for elementary particle, made of 2 particles, a Matter particle and a Dark Matter particle, is the Unification between Matter and Dark Matter! 155. I am the first who discovered the Ferent equation for Dark Matter particle of the elementary particle
Category: Quantum Physics

[58] viXra:1811.0393 [pdf] submitted on 2018-11-24 08:57:36

Golden ‘Children’ of Physics and More

Authors: Salvatore Gerard Micheal
Comments: 2 Pages.

three darlings of physics are illuminated, in particular Peter Higgs and his infamous God particle, presenting a viable alternative with more evidence
Category: Quantum Physics

[57] viXra:1811.0376 [pdf] submitted on 2018-11-23 09:33:19

Quantum Chaos Theory

Authors: Savior F. Eason
Comments: 36 Pages. All claims in this document have been scientifically proven under controlled experiments through my own research using DIY-SOTA tech, as explained in the document. Mechanical Methods of research, such as nuclear acceleration, are authorized by the NSA.

Proposes how a previous theory solving dark matter(Stating that all gravity has mass as all mass has gravity, and this mass would be 5th-dimensional) and dark energy(Suggesting this mass could cause the super-fluid displacement of space-time) could prove a vibrational Quantum multiverse numbering infinitely, as well as another theory of Quantum chaos, which proposes a new state of "weirdness" devoid of any consistent physical state or laws, would provide concrete evidence of an infinite multiverse and hyperspace(Proving the bulk-mass of dark matter), and ending with a brief exploration of possibilities for Inter-universal travel using infinite improbability particles.
Category: Quantum Physics

[56] viXra:1811.0369 [pdf] replaced on 2018-12-26 01:15:00

Proceedings on Qualitative and Quantitative Psychology I

Authors: Johan Noldus
Comments: 42 Pages.

Quantum theory is extended towards the spiritual domain.
Category: Quantum Physics

[55] viXra:1811.0368 [pdf] replaced on 2018-12-26 01:16:56

Proceedings in Qualitative and Quantitative Psychology: Restrictions on Extra Senses.

Authors: Johan Noldus
Comments: 65 Pages.

Quantum theory is extended towards the spiritual domain.
Category: Quantum Physics

[54] viXra:1811.0364 [pdf] submitted on 2018-11-24 04:45:05

Einstein’s Mass-Energy Equivalence Relation: an Explanation in Terms of the Zitterbewegung

Authors: Jean Louis Van Belle
Comments: No. of pages includes title page and page with references

The radial velocity formula and the Planck-Einstein relation give us the zbw frequency (E = ħω = E/ħ) and zbw radius (a = c/ω = cħ/mc2 = ħ/mc) of the electron. We interpret this by noting that the c = aω identity gives us the E = mc2 = ma2ω2 equation, which suggests we should combine the total energy (kinetic and potential) of two harmonic oscillators to explain the electron mass. We do so by interpreting the elementary wavefunction as a two-dimensional (harmonic) electromagnetic oscillation in real space which drives the pointlike charge along the zbw current ring. This implies a dual view of the reality of the real and imaginary part of the wavefunction: 1.The x = a·cos(ωt) and y = a·sin(ωt) equations describe the motion of the pointlike charge. 2.As an electromagnetic oscillation, we write it as E = E·cos(ωt+π/2) + i·E·sin(ωt+π/2). The magnitudes of the oscillation a and E are expressed in distance (m) and force per unit charge (N/C) respectively and are related because the energy of both oscillations is one and the same. The model – which implies the energy of the oscillation and, therefore, the effective mass of the electron is spread over the zbw disk – offers an equally intuitive explanation for the angular momentum, magnetic moment and the g-factor of charged spin-1/2 particles. Most importantly, the model also offers us an intuitive interpretation of Einstein’s enigmatic mass-energy equivalence relation. Going from the stationary to the moving reference frame, we argue that the plane of the zbw oscillation should be parallel to the direction of motion so as to be consistent with the results of the Stern-Gerlach experiment.
Category: Quantum Physics

[53] viXra:1811.0360 [pdf] submitted on 2018-11-22 08:24:17

Tricks of Quantum Technology

Authors: George Rajna
Comments: 63 Pages.

A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36]
Category: Quantum Physics

[52] viXra:1811.0345 [pdf] submitted on 2018-11-21 10:48:37

Quantum Cybersecurity Revolution

Authors: George Rajna
Comments: 50 Pages.

Scientists at the RDECOM Research Laboratory, the Army's corporate research laboratory (ARL) have found a novel way to safeguard quantum information during transmission, opening the door for more secure and reliable communication for warfighters on the battlefield. [35] Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems—donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24]
Category: Quantum Physics

[51] viXra:1811.0344 [pdf] submitted on 2018-11-21 11:16:28

Symmetry Breaking Optical Nonlinearity

Authors: George Rajna
Comments: 51 Pages.

Second-order nonlinear optical processes play a pivotal role in both classical and quantum applications, ranging from extension of the accessible frequencies to generation of quantum entangled photon pairs and squeezed states. [36] Scientists at the RDECOM Research Laboratory, the Army's corporate research laboratory (ARL) have found a novel way to safeguard quantum information during transmission, opening the door for more secure and reliable communication for warfighters on the battlefield. [35] Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems—donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25]
Category: Quantum Physics

[50] viXra:1811.0342 [pdf] submitted on 2018-11-21 12:28:12

Quantum Theory of Dispersion of Light

Authors: Miroslav Pardy
Comments: 9 Pages. the original article

We derive the index of refraction of light from quantum theory of atoms and from the Dirac equation with the plane wave. The result is the integral a part of the mainstream of the quantum optics. The article involves also discussion on the possibility to create the electron-positron pairs during the Cherenkov process with the adequate intex of refraction.
Category: Quantum Physics

[49] viXra:1811.0341 [pdf] submitted on 2018-11-21 12:50:52

Radical Brighter LED

Authors: George Rajna
Comments: 75 Pages.

Scientists have discovered that semiconducting molecules with unpaired electrons, termed 'radicals' can be used to fabricate very efficient organic-light-emitting diodes (OLEDs), exploiting their quantum mechanical 'spin' property to overcome efficiency limitations for traditional, non-radical materials. [43] Research led by a University of Sussex scientist has turned a 156-year-old law of physics on its head in a development which could lead to more efficient recharging of batteries in cars and mobile phones. [42] Using short laser pulses, a research team led by Misha Ivanov of the Max Born Institute in Berlin, together with scientists from the Russian Quantum Center in Moscow, has shed light on the extremely rapid processes taking place within these novel materials. [41] Trapping light with an optical version of a whispering gallery, researchers at the National Institute of Standards and Technology (NIST) have developed a nanoscale coating for solar cells that enables them to absorb about 20 percent more sunlight than uncoated devices. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35]
Category: Quantum Physics

[48] viXra:1811.0337 [pdf] submitted on 2018-11-21 16:40:19

Understanding Uncertainty

Authors: Royan Roshce
Comments: 2 Pages.

I outline why Quantum Uncertainty exists and how it applies to living creatures.
Category: Quantum Physics

[47] viXra:1811.0333 [pdf] submitted on 2018-11-22 01:19:06

Concept of Fast Non-Volatile Memory

Authors: George Rajna
Comments: 51 Pages.

Using micromagnetic simulation, scientists have found the magnetic parameters and operating modes for the experimental implementation of a fast racetrack memory module that runs on spin current, carrying information via skyrmionium, which can store more data and read it out faster. [36] Scientists at the RDECOM Research Laboratory, the Army's corporate research laboratory (ARL) have found a novel way to safeguard quantum information during transmission, opening the door for more secure and reliable communication for warfighters on the battlefield. [35] Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems—donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25]
Category: Quantum Physics

[46] viXra:1811.0328 [pdf] submitted on 2018-11-22 03:58:13

Quantum Sound Waves Sensors

Authors: George Rajna
Comments: 31 Pages.

In a first, scientists with the Institute for Molecular Engineering at the University of Chicago and Argonne National Laboratory have built a mechanical system—a tiny "echo chamber" for sound waves—that can be controlled at the quantum level, by connecting it to quantum circuits. [19] A team of researchers has devised a simple way to tune a hallmark quantum effect in graphene—the material formed from a single layer of carbon atoms—by bathing it in light. [18] Researchers from the University of Cambridge have taken a peek into the secretive domain of quantum mechanics. [17] Scientists at the University of Geneva (UNIGE), Switzerland, recently reengineered their data processing, demonstrating that 16 million atoms were entangled in a one-centimetre crystal. [15] The fact that it is possible to retrieve this lost information reveals new insight into the fundamental nature of quantum measurements, mainly by supporting the idea that quantum measurements contain both quantum and classical components. [14] Researchers blur the line between classical and quantum physics by connecting chaos and entanglement. [13] Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information. [12] Using lasers to make data storage faster than ever. [11] Some three-dimensional materials can exhibit exotic properties that only exist in "lower" dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, electrons can separate into three distinct entities, each carrying information about just one aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries information about electron spin, has been known to control magnetism in certain insulating materials whose electron spins can point in any direction and easily flip direction. Now, a new study just published in Science reveals that spinons are also present in a metallic material in which the orbital movement of electrons around the atomic nucleus is the driving force behind the material's strong magnetism. [10] Currently studying entanglement in condensed matter systems is of great interest. This interest stems from the fact that some behaviors of such systems can only be explained with the aid of entanglement. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[45] viXra:1811.0322 [pdf] submitted on 2018-11-20 06:47:27

Quantum World Error Correction

Authors: George Rajna
Comments: 49 Pages.

Sebastian Krinner is the first winner of the Lopez-Loreta Prize at ETH Zurich. The physicist has a clear goal: he wants to build a quantum computer that is not only powerful, but also works without errors. [35] Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31]
Category: Quantum Physics

[44] viXra:1811.0317 [pdf] submitted on 2018-11-20 10:50:44

Quantum Adiabatic and Circuit Equivalent

Authors: George Rajna
Comments: 50 Pages.

Practical quantum computers could be one step closer thanks to physicists in China, who have published a rigorous proof that “quantum circuit” algorithms can be transformed into algorithms that can be executed at the same running time on adiabatic quantum computers. [36] Sebastian Krinner is the first winner of the Lopez-Loreta Prize at ETH Zurich. The physicist has a clear goal: he wants to build a quantum computer that is not only powerful, but also works without errors. [35] Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31]
Category: Quantum Physics

[43] viXra:1811.0312 [pdf] replaced on 2019-03-09 19:11:09

A Model of an Electron Including Two Perfect Black Bodies

Authors: Satoshi Hanamura
Comments: 13 Pages.

This paper modifies two significant points of existing quantum electrodynamics. First, the image of a virtual photon is replaced with a real one, i.e., till date, we consider virtual photon as being capable of exchanging its energy between two particles along with self interaction, and that it is a transient fluctuation. We shall change this definition such that what we call “an electron” would include two bare electrons and these two would interact within a real photon. The virtual photon in this study is the same as the real photon which is not to observe, but difference from traditional virtual photon because the re-imaged virtual photon would exist continuously not temporally. Second, it is assumed that the bare electron is a perfect black body. To meet the constraints of charge conservation, a virtual photon must include two bare electrons. There is a temperature gradient between the two because the two particles alternate between behaving as emitters and absorbers. The proposed study extends this model by considering that an electron comprises two blinking bare electrons and at least one real photon by exchanging the energies within the three. Consequently, we attempt to create an electron model that exhibits spinor behavior by setting and modifying a trigonometric function which could periodically achieve the value of zero-point energy.
Category: Quantum Physics

[42] viXra:1811.0305 [pdf] submitted on 2018-11-19 09:46:36

X-ray Microscopy 10 Times Faster

Authors: George Rajna
Comments: 51 Pages.

Now, scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have developed a TXM that can image samples 10 times faster than previously possible. [36] In a new study published Aug. 17 in Nature Communications, Nemsak, Fadley, Schneider and colleagues demonstrate the use of new techniques in X-ray spectroscopy to illuminate the internal structure of manganese-doped gallium arsenide. [35] With the publication of the first experimental measurements performed at the facility, the European X-ray Free-Electron Laser (EuXFEL) has passed another critical milestone since its launch in September 2017. [34] Purdue University researchers are developing a novel biomedical imaging system that combines optical and ultrasound technology to improve diagnosis of life-threatening diseases. [33] Heart scans for patients with chest pains could save thousands of lives in the UK, research suggests. [32] Unnecessary heart procedures can be avoided with a non-invasive test, according to late breaking research presented today at ESC Congress 2018 and published in Journal of the American College of Cardiology. [31] Now, Columbia University researchers report a new way to zoom in at the tiniest scales to track changes within individual cells. [30] One of the main challenges in tissue engineering today is to create a complete network of blood vessels and capillaries throughout an artificial tissue. [29] Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. [28] Nanotechnology may provide an effective treatment for Parkinson's disease, a team of researchers suggests. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26]
Category: Quantum Physics

[41] viXra:1811.0285 [pdf] submitted on 2018-11-18 15:04:00

The Formless Nature of Matter

Authors: Royan rosche
Comments: 2 Pages.

I outline why the Universe is not a set concrete physical thing.
Category: Quantum Physics

[40] viXra:1811.0279 [pdf] submitted on 2018-11-17 06:20:43

Anomaly in Sign Function Probability Function Integration

Authors: Han Geurdes
Comments: 5 Pages.

In the paper it is demonstrated that integration of products of sign functions and probability density functions such as in Bell's formula for +/-1 measurement functions, leads to inconsistencies.
Category: Quantum Physics

[39] viXra:1811.0267 [pdf] submitted on 2018-11-17 14:36:06

Refutation of Tropical Sum for Bell's Theorem

Authors: Colin James III
Comments: 1 Page. © Copyright 2018 by Colin James III All rights reserved. Respond to the author by email at: info@ersatz-systems dot com.

We evaluate the tropical sum definition to show topped summing is refuted by mathematical logic and hence cannot occur in physics realty.
Category: Quantum Physics

[38] viXra:1811.0266 [pdf] replaced on 2018-11-19 10:31:32

White Spots in Physics

Authors: J.A.J. van Leunen
Comments: 5 Pages. The document is part of the Hilbert Book Model Project

Physics appears to include quite a few white holes. Apparently, this is not very essential for the proper functioning of applied physics. Through some clever steps, some of the white patches can be addressed. That delivers striking and not thought results
Category: Quantum Physics

[37] viXra:1811.0255 [pdf] submitted on 2018-11-16 07:32:20

Quantum Artificial Life

Authors: George Rajna
Comments: 51 Pages.

A project by the UPV/EHU-University of the Basque Country has for the first time implemented a model of quantum artificial life on a quantum computer. [30] Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment through multiplayer collaboration and in real time. [29] "As crazy as all this looks, there appears to be strong reliability in these behaviors that could even be predictably and practically manipulated," Landman said. [28] A team of physicists from ICTP-Trieste and IQOQI-Innsbruck has come up with a surprisingly simple idea to investigate quantum entanglement of many particles. [27] For the first time, physicists have experimentally demonstrated ternary—rather than binary—quantum correlations between entangled objects. [26] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new HYPERLINK "https://phys.org/tags/quantum/" quantum HYPERLINK "https://phys.org/tags/probability/" probability rule in the New Journal of Physics. [25] Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new HYPERLINK "https://phys.org/tags/quantum/" quantum HYPERLINK "https://phys.org/tags/probability/" probability rule in the New Journal of Physics. [21]
Category: Quantum Physics

[36] viXra:1811.0254 [pdf] submitted on 2018-11-16 08:14:49

Magnetic Properties of Cuprates

Authors: George Rajna
Comments: 27 Pages.

An international team of researchers has identified and proved that adding impurities with a lower concentration of electrons stabilizes the antiferromagnetic state of cuprates, high-temperature superconducting compounds based on copper. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[35] viXra:1811.0247 [pdf] replaced on 2018-11-19 01:19:09

On Bell's Experiment

Authors: Han Geurdes
Comments: 5 Pages.

With the use of tropical algebra operators and a d=2 parameter vectors space, Bell's theorem does not forbid a, physics vvalid, reproduction of the quantum correlation.
Category: Quantum Physics

[34] viXra:1811.0243 [pdf] submitted on 2018-11-15 07:08:10

Social Quantum Science

Authors: George Rajna
Comments: 48 Pages.

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment through multiplayer collaboration and in real time. [29] "As crazy as all this looks, there appears to be strong reliability in these behaviors that could even be predictably and practically manipulated," Landman said. [28] A team of physicists from ICTP-Trieste and IQOQI-Innsbruck has come up with a surprisingly simple idea to investigate quantum entanglement of many particles. [27] For the first time, physicists have experimentally demonstrated ternary—rather than binary—quantum correlations between entangled objects. [26] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [25] Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19]
Category: Quantum Physics

[33] viXra:1811.0230 [pdf] submitted on 2018-11-14 07:48:20

Hubble Expansion & CMBR & Bekenstein Hawking Entropy

Authors: David E. Fuller, Ruud Loeffen
Comments: 7 Pages.

Universe as a Self Similar Fractal Friedmann Density, Electron Compton Density, Planck Density
Category: Quantum Physics

[32] viXra:1811.0229 [pdf] submitted on 2018-11-14 08:46:13

Resonance Tuning of Optics

Authors: George Rajna
Comments: 73 Pages.

A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32]
Category: Quantum Physics

[31] viXra:1811.0218 [pdf] replaced on 2018-11-19 10:29:18

Witte Vlekken in de Natuurkunde

Authors: J.A.J. van Leunen
Comments: 5 Pages. The document is part of the Hilbert Book Model Project

De natuurkunde blijkt nog een flink aantal witte plekken te omvatten. Kennelijk is dat niet erg essentieel voor de goede werking van de toegepaste natuurkunde. Via wat slimme stappen kunnen een aantal van de witte vlekken worden aangepakt. Dat levert frappante en niet gedachte resultaten op.
Category: Quantum Physics

[30] viXra:1811.0217 [pdf] replaced on 2018-12-13 03:25:53

Fluid State of Dirac Quantum Particles

Authors: Vu B Ho
Comments: 18 Pages. This paper has been published in Journal of Modern Physics,9, 2402-2419, 2018.

In our previous works we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.
Category: Quantum Physics

[29] viXra:1811.0213 [pdf] submitted on 2018-11-13 07:07:23

Chiral Majorana Fermions

Authors: George Rajna
Comments: 53 Pages.

Now, researchers have proposed a scheme to control the transport of chiral Majorana edge modes in a ring-shaped Josephson junction of a topological superconductor using magnetic flux. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31]
Category: Quantum Physics

[28] viXra:1811.0209 [pdf] submitted on 2018-11-13 08:25:23

Encrypted Quantum Keys Record

Authors: George Rajna
Comments: 48 Pages.

Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems—donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22]
Category: Quantum Physics

[27] viXra:1811.0173 [pdf] submitted on 2018-11-10 05:45:15

Calculation of the Atomic Masses

Authors: Dezso Sarkadi
Comments: 3 Pages.

According to the generally accepted physical theory, the synthesis of the elements may happen at a very high temperature in supernova explosions. In consequence of nuclear fusion, the supernova stars emit a very strong electromagnetic (EM) radiation, predominantly in form of X-rays and gamma rays. The intensive EM radiation drastically decreases the masses of the exploding stars, directly causing mass defects of the resulting atoms. The description of black body EM radiation is based on the famous Planck's radiation theory, which supposes the existence of independent quantum oscillators inside the black body. In this paper, it is supposed that in exploding supernova stars, the EM radiating oscillators can be identied with the nascent elements losing their specic yields of their own rest masses in consequence of the radiation process. The nal binding energy of the atoms (nuclei) is additionally determined by the strong neutrino radiation what also follows the Maxwell- Boltzmann distribution in the extremly high temperature. Extending Planck's radiation law for discrete radiation energies, a very simple formula is obtained for the theoretical determination of the atomic masses. In addition, the newly introduced theoretical model gives the fusion temperature what is necessary for the generation of the atoms of the Periodic Table. Keywords: nuclear binding energy, Planck radiation law, generation of atoms, the origin of the elements, new theoretical model of the nuclear synthesis, fusion temperature.
Category: Quantum Physics

[26] viXra:1811.0152 [pdf] submitted on 2018-11-09 10:04:25

Spin Waves in 2-D Magnet

Authors: George Rajna
Comments: 58 Pages.

In a recently published paper in Science, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), were able to both excite and detect spin waves in a quantum Hall ferromagnet, demonstrating a new platform to investigate some of the possibilities of this promising material. [34] Taichi Goto at the Toyohashi University of Technology and Caroline Ross of the Massachusetts Institute of Technology and others collaborated to create a single-crystalline yttrium iron garnet (YIG) film as a magnetic insulator on multiple substrates, and transmit the spin waves. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits
Category: Quantum Physics

[25] viXra:1811.0151 [pdf] submitted on 2018-11-09 10:32:00

Quantum Compass Navigation

Authors: George Rajna
Comments: 51 Pages.

The UK's first quantum accelerometer for navigation has been demonstrated by a team from Imperial College London and M Squared. [31] The optical tweezer is revealing new capabilities while helping scientists understand quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23]
Category: Quantum Physics

[24] viXra:1811.0143 [pdf] submitted on 2018-11-10 04:41:02

Quantum Duet

Authors: George Rajna
Comments: 54 Pages.

Different systems behave identically in many ways, if they belong to the same "universality class."]32] Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. [31] The optical tweezer is revealing new capabilities while helping scientists understand HYPERLINK "https://phys.org/tags/quantum+mechanics/" quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23]
Category: Quantum Physics

[23] viXra:1811.0141 [pdf] submitted on 2018-11-08 08:03:06

Nanocrystals as Quantum Light Source

Authors: George Rajna
Comments: 51 Pages.

Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. [31] The optical tweezer is revealing new capabilities while helping scientists understand quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative.
Category: Quantum Physics

[22] viXra:1811.0140 [pdf] submitted on 2018-11-08 08:18:52

Same but Different Quantum Systems

Authors: George Rajna
Comments: 53 Pages.

Different systems behave identically in many ways, if they belong to the same "universality class."]32] Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. [31] The optical tweezer is revealing new capabilities while helping scientists understand HYPERLINK "https://phys.org/tags/quantum+mechanics/" quantum mechanics , the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26]
Category: Quantum Physics

[21] viXra:1811.0120 [pdf] submitted on 2018-11-07 10:46:07

Optical Test of Quantum Mechanics

Authors: George Rajna
Comments: 49 Pages.

The optical tweezer is revealing new capabilities while helping scientists understand quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21]
Category: Quantum Physics

[20] viXra:1811.0086 [pdf] submitted on 2018-11-05 08:10:16

Complex Quantum Teleportation

Authors: George Rajna
Comments: 44 Pages.

Scientists from the University of Vienna and the Austrian Academy of Sciences have broken new ground. They sought to use more complex quantum systems than two-dimensionally entangled qubits and thus can increase the information capacity with the same number of particles. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist – a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19]
Category: Quantum Physics

[19] viXra:1811.0084 [pdf] submitted on 2018-11-05 08:30:31

Certify Quantum Computer

Authors: George Rajna
Comments: 45 Pages.

"The power of quantum computers is what makes them difficult to certify," says Sangouard. "Even the fastest ordinary computers are too slow to check the calculations made by such devices." [29] Scientists from the University of Vienna and the Austrian Academy of Sciences have broken new ground. They sought to use more complex quantum systems than two-dimensionally entangled qubits and thus can increase the information capacity with the same number of particles. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist – a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20]
Category: Quantum Physics

[18] viXra:1811.0082 [pdf] submitted on 2018-11-05 10:08:40

Laser Blasting Antimatter

Authors: George Rajna
Comments: 65 Pages.

Antimatter is an exotic material that vaporizes when it contacts regular matter. If you hit an antimatter baseball with a bat made of regular matter, it would explode in a burst of light. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29]
Category: Quantum Physics

[17] viXra:1811.0079 [pdf] submitted on 2018-11-05 12:32:09

Quantum Ontology Suggested by a Kochen-Specker Loophole

Authors: Archibald Ulrich Thor
Comments: 5 Pages.

We discuss a specific way in which the conclusions of the Kochen-Specker theorem may be avoided while, at the same time, closing the gap in a practical but usually neglected matter regarding scientific methodology in general. Implications of the possibilities of hidden variables thus defined are discussed, and a tentative connexion with cosmology is delineated.
Category: Quantum Physics

[16] viXra:1811.0074 [pdf] replaced on 2019-01-20 11:07:51

The Physics of Life: Flipping a Quantum Coin

Authors: D. Chakalov
Comments: 14 Pages. Typos corrected.

If Schrödinger’s cat paradox is difficult to understand, consider flipping a quantum coin. At the end of the day, the physics of life shows a hit to quantum gravity and spacetime engineering.
Category: Quantum Physics

[15] viXra:1811.0070 [pdf] submitted on 2018-11-06 03:18:04

Quantum Hard Drive for Light

Authors: George Rajna
Comments: 73 Pages.

Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37]
Category: Quantum Physics

[14] viXra:1811.0069 [pdf] submitted on 2018-11-06 04:29:15

Silicon Device and Quantum Information

Authors: George Rajna
Comments: 75 Pages.

Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' HYPERLINK "https://phys.org/tags/light/" light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40]
Category: Quantum Physics

[13] viXra:1811.0058 [pdf] submitted on 2018-11-04 20:19:54

Gravitational Angels

Authors: Evgeny A. Novikov
Comments: 1 Page.

Based on the quantum modification of general relativity (Qmoger), gravitational angel (gravitangel) is introduced as a cloud of the background gravitons hovering over the ordinary matter (OM). According to Qmoger, the background gravitons are ultralight and they form the quantum condensate even for high temperature. The quantum entanglement of OM particles is explained in terms of splitting gravitangels. A hierarchy of gravitangels of different scale is considered. One of the simplest gravitangel is hovering over neutrino, which explains the neutrino oscillations. A more large-scale gravitangels are hovering over the neuron clusters in the brain, which explains the subjective experiences (qualia). The global gravitangel (GG) is connected to all processes happening with OM in the universe. GG can be considered as a gigantic quantum supercomputer.
Category: Quantum Physics

[12] viXra:1811.0056 [pdf] submitted on 2018-11-05 03:50:29

Linear and Circular Photon Polarization States in the Mach-Zehnder Interference Experiment

Authors: Jean Louis Van Belle
Comments: 8 Pages.

This paper continues to explore a possible physical interpretation of the wavefunction but with a focus on the wavefunction(s) of a single photon in the Mach-Zehnder experiment. It focuses, in particular, on how one might visualize linear and circular polarization states for photon waves, and how beam splitters may or may not split a circular polarization state into two independent linear polarization states or – vice versa – recombine two linear polarization states into one circular state. As such, it attempts to provide a more refined approach to the rather crude hidden-variable theory for explaining quantum-mechanical interference that was presented in a previous paper (http://vixra.org/pdf/1811.0005v1.pdf). The outcome is the same, however: the theory does not work. Hence, this paper again shows the limit of such physical interpretations, thereby confirming the intuition behind Bell’s Theorem.
Category: Quantum Physics

[11] viXra:1811.0054 [pdf] submitted on 2018-11-03 07:01:06

Plasmons in Superconductors

Authors: George Rajna
Comments: 46 Pages.

US researchers studying high-temperature cuprate superconductors outside the superconducting regime have used cutting-edge X-ray scattering to detect long-predicted – but never previously observed – excitations called plasmons perpendicular to the material's atomic planes. [27] Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S. Department of Energy's Ames Laboratory discovered a new quantum criticality in a superconducting material, leading to a greater understanding of the link between magnetism and unconventional superconductivity. [26] Improving these devices could mean more powerful computers, better detectors of disease and technological advances scientists can't even predict yet. [25] Researchers at the Schliesser Lab at the Niels Bohr Institute, University of Copenhagen, have demonstrated a new way to address a central problem in quantum physics: at the quantum scale, any measurement disturbs the measured object. [24] An answer to a quantum-physical question provided by the algorithm Melvin has uncovered a hidden link between quantum experiments and the mathematical field of Graph Theory. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices— small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18]
Category: Quantum Physics

[10] viXra:1811.0041 [pdf] submitted on 2018-11-02 07:37:32

Powerful Quantum Sensors

Authors: George Rajna
Comments: 42 Pages.

Improving these devices could mean more powerful computers, better detectors of disease and technological advances scientists can't even predict yet. [25] Researchers at the Schliesser Lab at the Niels Bohr Institute, University of Copenhagen, have demonstrated a new way to address a central problem in quantum physics: at the quantum scale, any measurement disturbs the measured object. [24] An answer to a quantum-physical question provided by the algorithm Melvin has uncovered a hidden link between quantum experiments and the mathematical field of Graph Theory. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices— small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17] A crystalline material that changes shape in response to light could form the heart of novel light-activated devices. [16] Now a team of Penn State electrical engineers have a way to simultaneously control diverse optical properties of dielectric waveguides by using a two-layer coating, each layer with a near zero thickness and weight. [15]
Category: Quantum Physics

[9] viXra:1811.0037 [pdf] submitted on 2018-11-02 10:28:11

Quantum Monte Carlo Predictions

Authors: George Rajna
Comments: 43 Pages.

To take QMC to the next level, Kent and colleagues start with materials such as vanadium dioxide that display unusual electronic behavior. [25] Researchers at the Schliesser Lab at the Niels Bohr Institute, University of Copenhagen, have demonstrated a new way to address a central problem in quantum physics: at the quantum scale, any measurement disturbs the measured object. [24] An answer to a quantum-physical question provided by the algorithm Melvin has uncovered a hidden link between quantum experiments and the mathematical field of Graph Theory. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices— small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17] A crystalline material that changes shape in response to light could form the heart of novel light-activated devices. [16] Now a team of Penn State electrical engineers have a way to simultaneously control diverse optical properties of dielectric waveguides by using a two-layer coating, each layer with a near zero thickness and weight. [15]
Category: Quantum Physics

[8] viXra:1811.0035 [pdf] submitted on 2018-11-02 11:05:08

Quantum Criticality in Superconductivity

Authors: George Rajna
Comments: 43 Pages.

Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S. Department of Energy's Ames Laboratory discovered a new quantum criticality in a superconducting material, leading to a greater understanding of the link between magnetism and unconventional superconductivity. [26] Improving these devices could mean more powerful computers, better detectors of disease and technological advances scientists can't even predict yet. [25] Researchers at the Schliesser Lab at the Niels Bohr Institute, University of Copenhagen, have demonstrated a new way to address a central problem in quantum physics: at the quantum scale, any measurement disturbs the measured object. [24] An answer to a quantum-physical question provided by the algorithm Melvin has uncovered a hidden link between quantum experiments and the mathematical field of Graph Theory. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices— small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17]
Category: Quantum Physics

[7] viXra:1811.0028 [pdf] submitted on 2018-11-03 03:35:09

Precise Diode Laser Measurements

Authors: George Rajna
Comments: 73 Pages.

This makes their device a useful replacement for the more complex and expensive single-frequency lasers, enabling the creation of compact chemical analyzers that can fit into smartphones, cheap lidars for self-driving cars, as well as security and structural health monitoring systems on bridges, gas pipelines and elsewhere. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42] A new instrument lets researchers use multiple laser beams and a microscope to trap and move cells and then analyze them in real-time with a sensitive analysis technique known as Raman spectroscopy. [41] All systems are go for launch in November of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission, which will use high-resolution laser ranging to study Earth's forests and topography from the International Space Station (ISS). [40] Scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin combined state-of-the-art experiments and numerical simulations to test a fundamental assumption underlying strong-field physics. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35]
Category: Quantum Physics

[6] viXra:1811.0024 [pdf] submitted on 2018-11-01 07:53:31

Quantum Drum Noise Control

Authors: George Rajna
Comments: 40 Pages.

Researchers at the Schliesser Lab at the Niels Bohr Institute, University of Copenhagen, have demonstrated a new way to address a central problem in quantum physics: at the quantum scale, any measurement disturbs the measured object. [24] An answer to a quantum-physical question provided by the algorithm Melvin has uncovered a hidden link between quantum experiments and the mathematical field of Graph Theory. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices— small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17] A crystalline material that changes shape in response to light could form the heart of novel light-activated devices. [16] Now a team of Penn State electrical engineers have a way to simultaneously control diverse optical properties of dielectric waveguides by using a two-layer coating, each layer with a near zero thickness and weight. [15] Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. [14]
Category: Quantum Physics

[5] viXra:1811.0022 [pdf] submitted on 2018-11-01 08:48:56

Key Factors of Superconductivity

Authors: George Rajna
Comments: 22 Pages.

University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity. [35] At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34] The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[4] viXra:1811.0019 [pdf] submitted on 2018-11-01 11:11:19

Topological Insulator and Superconductor

Authors: George Rajna
Comments: 57 Pages.

"This is the first time that the exact same material can be tuned either to a topological insulator or to a superconductor," says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. [34] For the first time, a group of researchers from Universidad Complutense de Madrid, IBM, ETH Zurich, MIT and Harvard University have observed topological phases of matter of quantum states under the action of temperature or certain types of experimental imperfections. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[3] viXra:1811.0015 [pdf] submitted on 2018-11-01 13:19:13

New Pathway to Quantum Computer

Authors: George Rajna
Comments: 65 Pages.

Scientists in Australia have for the first time demonstrated the protection of correlated states between paired photons—packets of light energy—using the intriguing physical concept of topology. [40] A team of scientists, led by Professor Winfried Hensinger at the University of Sussex, have made a major breakthrough concerning one of the biggest problems facing quantum computing: how to reduce the disruptive effects of environmental "noise" on the highly sensitive function of a large-scale quantum computer. [39] Watch a movie backwards and you'll likely get confused—but a quantum computer wouldn't. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31]
Category: Quantum Physics

[2] viXra:1811.0005 [pdf] submitted on 2018-11-02 04:20:13

Polarization States as Hidden Variables?

Authors: Jean Louis Van Belle
Comments: 6 Pages.

This paper explores a possible physical interpretation of the wavefunction by examining if it can be used to provide a hidden-variable theory for explaining quantum-mechanical interference. The hidden variable is the polarization state of the photon. The outcome is as expected: the theory does not work. Hence, this paper clearly shows the limits of such physical interpretations.
Category: Quantum Physics

[1] viXra:1811.0001 [pdf] submitted on 2018-11-01 03:44:46

Environmental Effects on Quantum Computer

Authors: George Rajna
Comments: 62 Pages.

A team of scientists, led by Professor Winfried Hensinger at the University of Sussex, have made a major breakthrough concerning one of the biggest problems facing quantum computing: how to reduce the disruptive effects of environmental "noise" on the highly sensitive function of a large-scale quantum computer. [39] Watch a movie backwards and you'll likely get confused—but a quantum computer wouldn't. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30]
Category: Quantum Physics