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Abstract

It is our pleasure to say that some of theoretical analyses on quantum mechanics are scientifically
beautifully and comprehensibly represented using the Kronecker delta notation. It happens that
Nagata and Nakamura discuss a novel inconsistency within quantum mechanics when accepting we
use the property of the Kronecker delta without extra assumptions about the reality of observables.
Based on the argumentations, we propose an experimental accessible inconsistency in terms of
imperfect source and detector. In more detail, we encounter an imperfect quantum state, the dark
count, and the quantum efficiency, which cannot be avoidable from a real experimental situation.
However, such an error of the number of particles becomes less and less important as we increase
trials more and more by using the strong law of large numbers. One of the objectives of this paper
is for us to remain wondering the extension of quantum mechanical axiom to concrete commuting
observables themselves.
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I. INTRODUCTION

Quantum mechanics (cf. [1—7]) gives explanations for
the microscopic behaviors of the nature. We see re-
searches concerning the mathematical formulations of
quantum mechanics. Mackey studies the mathematical
foundations of quantum mechanics [8]. Gudder discusses
on the quantum logic approach to quantum mechanics
[9]. Conditional probability and the axiomatic structure
of quantum mechanics are also reported by Guz [10].

We notice [4, 11] that von Neumann’s mathematical
model for quantum mechanics is logically successful. And
the axiomatic system for the mathematical model is a
consistent one. Thus, we cannot say that von Neumann’s
mathematical model has an inconsistency. What is the
inconsistency to be discussed in this paper? We cannot
expand the von Neumann’s mathematical model more in
handling real experimental data. Mathematically, von
Neumann’s model is logically consistent, which fact is
true. However, von Neumann’s theory is questionable
in the sense that the mathematical model does not al-
ways expand to real experimental data. And there is
the inconsistency if we apply the von Neumann’s model
to expanding even a simple physical situation. In short,
von Neumann’s mathematical model might not be useful
in that case.

The inconsistency to be discussed in this paper is sig-
nificant. von Neumann’s mathematical model has the
qualification to be true axiomatic system for quantum
mechanics. Therefore, we cannot modify the axioms
based on the nature of Matrix theory. Nevertheless, we
encounter an inconsistency, probably due to the nature
of Matrix theory, within von Neumann’s theory.

Einstein, Podolsky, and Rosen discuss the incomplete-

ness argument to quantum mechanics itself [12]. A
hidden-variable interpretation of quantum mechanics is
a topic of research [2, 3] and the no-hidden-variable the-
orem is discussed by Bell, Kochen, and Specker [13, 14].
The Kochen-Specker theorem based on the Kronecker
delta is also discussed by Nagata, Patro, and Nakamura
[15].
The Kronecker delta is necessary for quantum mechan-

ics that is based on Matrix and Vector. The Kronecker
delta is explained as follows: The two-variable function
δll′ that takes the value 1 when l = l′ and the value 0
otherwise. If the elements of a square matrix are defined
by the delta function, the matrix produced will be the
identity matrix [16]. The name of Kronecker is also used
in the Kronecker product. However, in this paper, we
dare to use the concept of the Kronecker delta.
Recently, Nagata and Nakamura discuss a novel incon-

sistency within quantum mechanics when accepting we
use the property of the Kronecker delta without extra
assumptions about the reality of observables [17]. Based
on the argumentations, here, we propose an experimental
accessible inconsistency in terms of imperfect source and
detector.
In more detail, we encounter an imperfect quantum

state, the dark count, and the quantum efficiency, which
cannot be avoidable from a real experimental situation.
If we use the quantum predictions by 2N trials, then the
inconsistency increases by an amount that grows linearly
with 2N . In fact, such an error of the number of parti-
cles becomes less and less important as we increase trials
more and more by using the strong law of large numbers.
One of the objectives of this paper is for us to remain
wondering the extension of quantum mechanical axiom
to concrete commuting observables themselves.
We define [17] an inconsistency as follows, when con-
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sidering only two commuting Hermitian matrices:

1. Define two commuting Hermitian matrices A1, A2.

2. Define a two-variable function f(X,Y ), where f is
an appropriate function andX,Y are two variables.

3. Derive a value of f(A1, A2) = a by substituting
A1, A2 into X,Y , respectively, without using the
property of the Kronecker delta.

4. Introduce the property of the Kronecker delta.

5. Derive another value of f(A1, A2) = b(�= a) un-
der the supposition that we use the property of the
Kronecker delta.

6. We cannot assign simultaneously the same two val-
ues (“1” and “1”) or (“0” and “0”) for the two
suppositions f(A1, A2) = a and f(A1, A2) = b.

7. Confirm the inconsistency derived only by the two
commuting Hermitian matrices A1, A2.

II. EXPERIMENTALLY FEASIBLE

INCONSISTENCY WITHIN FOUNDATIONS OF

QUANTUM MECHANICS

Let σ1
z
, σ2
z

be two z-component Pauli observables,
where they are also supposed to be commutative. They
could be defined respectively as follows:

σ1
z
≡

�
1 0
0 −1

�
and σ2

z
≡

�
1 0
0 −1

�
. (1)

Let | ↑� and | ↓� be eigenstates of σz such that σz| ↑� =
+1| ↑� and σz | ↓� = −1| ↓�. The measured results of
trials are either +1 or −1 in the ideal case.
When we consider a quantum optical experiment, we

have the following relation with the photon polarization
states:

| ↑� ↔ |H�,

| ↓� ↔ |V �, (2)

where |H� is a quantum state interpreted by a horizon-
tally polarized photon and |V � is a quantum state inter-
preted by a vertically polarized photon.
Let us introduce the random noise admixture ρnoise(=

1

2
I) into the quantum states, where I is the two-

dimensional identity operator. We consider the noisy
quantum states emerged from an imperfect source as fol-
lows:

|Ψ1�	Ψ1| = (1− ǫ)| ↑�	↑ |+ ǫ× ρnoise,

|Ψ2�	Ψ2| = (1− ǫ)| ↓�	↓ |+ ǫ× ρnoise. (3)

The value of ǫ(≪ 1) is interpreted as the reduction fac-
tor of the contrast observed in the single-particle ex-
periment. Then we have tr[|Ψ1�	Ψ1|σz] = +1 − ǫ and
tr[|Ψ2�	Ψ2|σz ] = −1 + ǫ.

We might be an inconsistency when the first result is
+1− ǫ by measuring Pauli observable σ1

z
in the quantum

state |Ψ1�	Ψ1|, the second result is −1 + ǫ by measur-
ing the same Pauli observable σ2

z
in the quantum state

|Ψ2�	Ψ2|, and then [σ1
z
, σ2
z
] = 0.

We consider a value V which is the sum of two data in
an experiment. The measured results of trials are either
+1− ǫ or −1+ ǫ. We suppose the number of trials of ob-
taining the result −1 + ǫ is equal to the number of trials
of obtaining the result +1− ǫ. We can depict experimen-
tal data r1, r2 as follows: r1 = +1 − ǫ and r2 = −1 + ǫ.
Let us write V as follows:

V =

2�

l=1

rl. (4)

We are very interested in the following value:

V × V =

�
2�

l=1

rl

�2
=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

. (5)

Surprisingly, we cannot define V × V as zero as shown
below.
Without using the property of the Kronecker delta, we

have

V × V × δll′ =

�
2�

l=1

rl

�2
δll′

= ((+1− ǫ) + (−1 + ǫ))2δll′ = 0× δll′ = 0. (6)

We derive a necessary condition of the product (V ×V ×
δll′) of the value V without using the property of the
Kronecker delta. In this case, we have the calculation
result as

(V × V × δll′) = 0. (7)

This is the necessary condition without using the prop-
erty of the Kronecker delta.
In the following, we evaluate another value of (V ×V ×

δll′) and derive another necessary condition when we use
the property of the Kronecker delta.
We introduce the property of the Kronecker delta then

we have

V × V × δll′

=

�
2�

l=1

rl

�2
× δll′

=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

× δll′

= (+1− ǫ)2 + (−1 + ǫ)2 = 2(+1− ǫ)2. (8)

Clearly, we have the calculation result as

(V × V × δll′) = 2(+1− ǫ)2. (9)

These argumentations are possible for the case that we
utilize the property of the Kronecker delta. We cannot
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assign simultaneously the same two values (“1” and “1”)
or (“0” and “0”) for the two suppositions (7) and (9). We
derive the inconsistency when we utilize the property of
the Kronecker delta.
In summary, we have been the inconsistency when the

first result is +1− ǫ by measuring Pauli observable σ1
z
in

the quantum state |Ψ1�	Ψ1|, the second result is −1+ǫ by
measuring the same Pauli observable σ2

z
in the quantum

state |Ψ2�	Ψ2|, and then [σ1
z
, σ2
z
] = 0.

III. DARK COUNT, QUANTUM EFFICIENCY,

AND STRONG LAW OF LARGE NUMBERS

In a real experiment, a perfect detector is not feasible.
There is an unforeseen effect that an imperfect detector
does not count even though the particle indeed passes
through the detector (the quantum efficiency). There
is also an unforeseen effect that an imperfect detector
counts even though the particle does not pass through
the detector (the dark count). In this case, we increase
measurement outcomes to 2N(≫ 1) and then we change
such errors into trivial things. If we use the quantum
predictions by 2N trials, then the inconsistency increases
by an amount that grows linearly with 2N . In fact, such
an error of the number of particles becomes less and less
important as we increase trials more and more by using
the strong law of large numbers.
We might be an inconsistency when the odd number

results are +1 − ǫ by measuring Pauli observable σ1
z
in

the quantum state |Ψ1�	Ψ1|, the even number results are
−1+ ǫ by measuring the same Pauli observable σ2

z
in the

quantum state |Ψ2�	Ψ2|, and then [σ1
z
, σ2
z
] = 0.

We consider a value V which is the sum of 2N data in
an experiment. The measured results of trials are either
+1 − ǫ or −1 + ǫ. We suppose the number of trials of
obtaining the result −1 + ǫ is N that is equal to the
number (N) of trials of obtaining the result +1− ǫ. We
can depict experimental data r1, r2, r3, ... as follows: r1 =
+1− ǫ, r2 = −1+ ǫ, r3 = +1− ǫ and so on. Let us write
V as follows:

V =

2N�

l=1

rl. (10)

Notice the following value:

V × V =

�
2N�

l=1

rl

�2

=

�
2N�

l=1

rl

�

×

�
2N�

l′=1

rl′

�

. (11)

Again, we cannot define V × V as zero as shown below.
Without using the property of the Kronecker delta, we

have

V × V × δll′ =

�
2N�

l=1

rl

�2

δll′

= ((+1− ǫ) + (−1 + ǫ) + ...+ (−1 + ǫ))2δll′

= 0× δll′ = 0. (12)

We derive a necessary condition of the product (V ×V ×
δll′) of the value V without using the property of the
Kronecker delta. In this case, we have the calculation
result as

(V × V × δll′) = 0. (13)

This is the necessary condition without using the prop-
erty of the Kronecker delta.
In the following, we evaluate another value of (V ×V ×

δll′) and derive another necessary condition when we use
the property of the Kronecker delta.
We introduce the property of the Kronecker delta then

we have

V × V × δll′

=

�
2N�

l=1

rl

�2

× δll′

=

�
2N�

l=1

rl

�

×

�
2N�

l′=1

rl′

�

× δll′

= (+1− ǫ)2 + (−1 + ǫ)2 + ...+ (−1 + ǫ)2

= 2N(+1− ǫ)2. (14)

Clearly, we have the calculation result as

(V × V × δll′) = 2N(+1− ǫ)2. (15)

These argumentations are possible for the case that we
utilize the property of the Kronecker delta. We cannot
assign simultaneously the same two values (“1” and “1”)
or (“0” and “0”) for the two suppositions (13) and (15).
We derive the inconsistency when we utilize the property
of the Kronecker delta. If we use the quantum predic-
tions by 2N trials, then the inconsistency increases by
an amount that grows linearly with 2N . In fact, such
an error of the number of particles becomes less and less
important as we increase trials more and more by using
the strong law of large numbers.
In summary, we have been the inconsistency when the

odd number results are +1−ǫ by measuring Pauli observ-
able σ1

z
in the quantum state |Ψ1�	Ψ1|, the even number

results are −1+ǫ by measuring the same Pauli observable
σ2
z
in the quantum state |Ψ2�	Ψ2|, and then [σ1

z
, σ2
z
] = 0.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusions, recently, Nagata and Nakamura have
discussed a novel inconsistency within quantum mechan-
ics when accepting we use the property of the Kronecker
delta without extra assumptions about the reality of ob-
servables. Based on the argumentations, we have pro-
posed an experimental accessible inconsistency in terms
of imperfect source and detector.
In more detail, we have encountered an imperfect

quantum state, the dark count, and the quantum effi-
ciency, which cannot be avoidable from a real experi-
mental situation. However, such an error of the number
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of particles has become less and less important as we
increase trials more and more by using the strong law
of large numbers. One of the objectives of this paper
has been for us to remain wondering the extension of
quantum mechanical axiom to concrete commuting ob-
servables themselves.

The inconsistency is derived only by commuting ob-
servables. Thus, non-commutativeness of Matrix theory
is needless for the derivation of the inconsistency based
on the property of the Kronecker delta. The important
of deriving the inconsistency is only commutativeness of
Matrix theory for our purpose. The property of the Kro-
necker delta mainly is related to commutativeness of Ma-
trix and Vector theory of Linear algebra and we see such
an inconsistency based on the Kronecker delta. It may be
much likely that Matrix mechanics is not always efficient
for describing properly quantum mechanics.
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