Quantum Physics

1901 Submissions

[39] viXra:1901.0256 [pdf] submitted on 2019-01-17 06:04:53

Quantum Materials for Superconductivity

Authors: George Rajna
Comments: 42 Pages.

Some iron-based superconductors could benefit from a tuneup, according to two studies by Rice University physicists and collaborators. [24] Two teams of scientists from the Technion-Israel Institute of Technology have collaborated to conduct groundbreaking research leading to the development of a new and innovative scientific field: Quantum Metamaterials. [23] An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have created the world's first quantum metamaterial that can be used as a control element in superconducting electrical circuits. [22]
Category: Quantum Physics

[38] viXra:1901.0245 [pdf] submitted on 2019-01-16 23:10:59

Space, Time and Quantum Mechanics: A Process Approach

Authors: Blazej Kot
Comments: 27 Pages. Previously published in Prespacetime Journal, December 2018, Volume 9, Issue 10, pp. 1018-1048

Since the time of Newton, physicists have imagined a background "stage" called space and time (later spacetime) permeating the entire universe. The contents of the world around us are then seen as objects embedded in this background at a defined location, and with a defined size and other properties (color, mass, spin etc.). We refer to this traditional view as the Objects in Space and Time (OST) model. It works very well for picturing classical physics; but once we move into the quantum domain it is no longer of much use. In the quantum realm objects no longer have defined locations at all times, their properties can become entangled and undefined until observed. In this paper, we seek to present an alternative to the OST model in which the "weirdness" of quantum phenomena goes away and is replaced by clarity, obviousness and inescapability. In this model the world is viewed as a network of fundamental processes by which indivisible units called tomas bring each other into and out of existence. We show that this model yields the same equations and predictions as the current OST-based formalism of quantum mechanics. While not contradicting the success of quantum theory, the toma model lets us get rid of the "weirdness" of the quantum world and understand reality at a deeper level than the OST model. We illustrate this by discussing two classic quantum experiments and their interpretations.
Category: Quantum Physics

[37] viXra:1901.0236 [pdf] submitted on 2019-01-16 07:58:39

Entropy Production in Quantum Systems

Authors: George Rajna
Comments: 36 Pages.

"We studied two systems: a Bose-Einstein condensate with 100,000 atoms confined in a cavity and an optomechanical cavity that confines light between two mirrors," Gabriel Teixeira Landi, a professor at the University of São Paulo's Physics Institute (IF-USP), told. [21] Search engine entropy is thus important not only for the efficiency of search engines and those using them to find relevant information as well as to the success of the companies and other bodies running such systems, but also to those who run websites hoping to be found and visited following a search. [20] "We've experimentally confirmed the connection between information in the classical case and the quantum case," Murch said, "and we're seeing this new effect of information loss." [19] It's well-known that when a quantum system is continuously measured, it freezes, i.e., it stops changing, which is due to a phenomenon called the quantum Zeno effect. [18]
Category: Quantum Physics

[36] viXra:1901.0231 [pdf] submitted on 2019-01-16 10:01:30

Quantum World for Business

Authors: George Rajna
Comments: 42 Pages.

With a new era of quantum technology beckoning, James McKenzie examines the opportunities it offers for business and industry. [23] With the newfound ability to recreate these structures in the lab, earth-based scientists finally have a way to study some of the possible scenarios that might have taken place in the early universe more closely. [22] "We studied two systems: a Bose-Einstein condensate with 100,000 atoms confined in a cavity and an optomechanical cavity that confines light between two mirrors," Gabriel Teixeira Landi, a professor at the University of São Paulo's Physics Institute (IF-USP), told. [21]
Category: Quantum Physics

[35] viXra:1901.0228 [pdf] submitted on 2019-01-16 11:36:02

Fixing Dirac Theory's Relativity and Correspondence Errors

Authors: Steven Kenneth Kauffmann
Comments: 12 Pages.

Dirac tied his relativistic quantum free-particle Hamiltonian to requiring space-time symmetry of the Schroedinger equation in configuration representation; he ignored Lorentz covariance of the particle's energy-momentum. Consequently, a Dirac free particle's velocity is independent of its momentum, breaching dynamical fundamentals. Dirac also made solutions of his equation satisfy the Klein-Gordon equation by imposing ten requirements on its operators; three of those fix the speed of Dirac particles to the unphysical value of c times the square root of three. Moreover, Dirac's six anticommutation operator requirements prevent such observables as velocity components from commuting when Planck's constant goes to zero, a correspondence-principle breach which is responsible for Dirac zitterbewegung spontaneous free-particle acceleration that becomes infinite when Planck's constant vanishes. Nonrelativistic Pauli theory is contrariwise physically sensible, and its particle rest-frame action can be extended to become Lorentz invariant. The consequent Lagrangian yields the corresponding closed-form relativistic Hamiltonian when magnetic field is absent, otherwise a successive-approximation regime applies.
Category: Quantum Physics

[34] viXra:1901.0215 [pdf] submitted on 2019-01-15 10:57:34

Evidence of Superconductivity Near Room Temperature

Authors: George Rajna
Comments: 30 Pages.

Researchers at the George Washington University have taken a major step toward reaching one of the most sought-after goals in physics: room temperature superconductivity. [41] NUS physicists have developed a methodology to control the electromigration of oxygen atoms in the buried interfaces of complex oxide materials for constructing high mobility oxide heterostructures. [40] This electronic super fluidity is a quantum state of matter, so it behaves in a very exotic way that is different from classical physics, Comin says. [39] The Fermi-Hubbard model, which is believed to explain the basis for high-temperature superconductivity, is extremely simple to describe, and yet has so far proven impossible to solve, according to Zwierlein. [38]
Category: Quantum Physics

[33] viXra:1901.0214 [pdf] submitted on 2019-01-15 11:06:48

Einstein – De Haas Effect

Authors: George Rajna
Comments: 52 Pages.

More than 100 years ago, Albert Einstein and Wander Johannes de Haas discovered that when they used a magnetic field to flip the magnetic state of an iron bar dangling from a thread, the bar began to rotate. [36] Researchers at the Max Born Institute have now generated directed currents at terahertz (THz) frequencies, much higher than the clock rates of current electronics. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34]
Category: Quantum Physics

[32] viXra:1901.0208 [pdf] submitted on 2019-01-14 18:10:54

Close-Coupling: Generating Function and Fokker-Planck for Coherent Multilevel Cascades (Quantum Walks)

Authors: Mark Syrkin
Comments: 12 Pages.

Close-coupling in quantum systems induces cascade transitions that are not captured by simple perturbation theories and hence more relevant and complex methods are needed. However, the analytic tractability of the latter is limited to just a few highly stylized models, e.g. equidistant infinite systems. Showing that properly adjusted key modeling parameters enable an extension of analytic solutions across more realistic cases (e.g. non-uniform level spacing and finite and asymmetric boundary conditions) arising in various experimental set-ups. Also demonstrating that the Fokker-Planck approach applied to probability amplitudes rather than to probabilities themselves – the latter being a traditional kinetics approach – produces coarse-grained amplitudes “smoothed” over the fine structure of an exact solution and driven by lower order terms in the generating function. Models and results presented here naturally overlap with algorithms of Quantum Walks related to quantum computing studies.
Category: Quantum Physics

[31] viXra:1901.0206 [pdf] submitted on 2019-01-15 00:12:12

Interatomic Light Rectifier

Authors: George Rajna
Comments: 49 Pages.

Researchers at the Max Born Institute have now generated directed currents at terahertz (THz) frequencies, much higher than the clock rates of current electronics. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31]
Category: Quantum Physics

[30] viXra:1901.0197 [pdf] submitted on 2019-01-14 07:51:33

New Ways to Twist and Shift Light

Authors: George Rajna
Comments: 50 Pages.

The results from the National Physical Laboratory's (NPL) latest research in photonics could open doors to new quantum technologies and telecoms systems. [36] Researchers of the Institute of Photonic Integration of the Eindhoven University of Technology (TU/e) have developed a 'hybrid technology' which shows the advantages of both light and magnetic hard drives. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34]
Category: Quantum Physics

[29] viXra:1901.0184 [pdf] submitted on 2019-01-14 04:36:17

Einstein's Theory of Gravity is Incorrect

Authors: Peter V. Raktoe
Comments: 2 Pages.

It's obvious that Einstein's theory of gravity is unrealistic, but physicists fool themselves that it's realistic.
Category: Quantum Physics

[28] viXra:1901.0182 [pdf] submitted on 2019-01-13 08:14:09

Intentionally Squashed Quantum Dots

Authors: George Rajna
Comments: 40 Pages.

Intentionally "squashing" colloidal quantum dots during chemical synthesis creates dots capable of stable, "blink-free" light emission that is fully comparable with the light produced by dots made with more complex processes. [29] Researchers successfully integrated the systems—donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27]
Category: Quantum Physics

[27] viXra:1901.0179 [pdf] submitted on 2019-01-12 16:16:53

Dirac's Equation (And the Alleged Fourth Dimension)

Authors: Leonardo Rubino
Comments: 5 Pages.

This is a proof that the d’Alembert’s Wave Equation, that of Schrodinger, of Klein-Gordon and of Dirac are all related one another and show the oscillation of the universe. Moreover, the Klein-Gordon’s Equation gives us a three dimensional interpretation of either all relativistic fourth components or the rest energy.
Category: Quantum Physics

[26] viXra:1901.0174 [pdf] submitted on 2019-01-12 06:25:53

Dark Objects

Authors: J.A.J. van Leunen
Comments: 3 Pages. This is part of the Hilbert Book Model Project

Dark objects are field excitations that are caused by point-shaped actuators. The carrier field reacts with shock fronts. The effect of these excitations is so tiny that in isolation these phenomena cannot be observed.
Category: Quantum Physics

[25] viXra:1901.0172 [pdf] submitted on 2019-01-12 09:17:53

Quantum Computer Like a Brain

Authors: George Rajna
Comments: 47 Pages.

The human brain has amazing capabilities making it in many ways more powerful than the world's most advanced computers. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30]
Category: Quantum Physics

[24] viXra:1901.0158 [pdf] submitted on 2019-01-12 02:43:07

Heterostructure Interface Superconductors

Authors: George Rajna
Comments: 33 Pages.

NUS physicists have developed a methodology to control the electromigration of oxygen atoms in the buried interfaces of complex oxide materials for constructing high mobility oxide heterostructures. [40] This electronic super fluidity is a quantum state of matter, so it behaves in a very exotic way that is different from classical physics, Comin says. [39] The Fermi-Hubbard model, which is believed to explain the basis for high-temperature superconductivity, is extremely simple to describe, and yet has so far proven impossible to solve, according to Zwierlein. [38]
Category: Quantum Physics

[23] viXra:1901.0148 [pdf] submitted on 2019-01-11 09:53:29

Feynman Diagrams of the QED Vacuum Polarization

Authors: Richard J. Mathar
Comments: 59 Pages.

The Feynman diagrams of Quantum Electrodynamics are assembled from vertices where three edges meet: an incoming fermion, an outgoing fermion and an interaction line. If all vertices are of degree 3, the graphs are 3-regular (cubic), defining the vacuum polarization diagrams. Cutting an edge -- a fermion line or an interaction line -- generates fairly cubic graphs where two vertices have degree 1. These emerge in the perturbation theory for the Green's function (self energy) and for the effective interaction (polarization). The manuscript plots these graphs for up to 8 internal vertices.
Category: Quantum Physics

[22] viXra:1901.0147 [pdf] submitted on 2019-01-11 11:18:03

Spintronics Miracle Material

Authors: George Rajna
Comments: 46 Pages.

In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31]
Category: Quantum Physics

[21] viXra:1901.0146 [pdf] submitted on 2019-01-11 11:56:27

Saving Energy Inside Transistors

Authors: George Rajna
Comments: 47 Pages.

Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31]
Category: Quantum Physics

[20] viXra:1901.0130 [pdf] submitted on 2019-01-09 07:49:28

3-D Photonic Topological Insulator

Authors: George Rajna
Comments: 92 Pages.

Physicists have also devised photonic topological insulators, synthetic materials that impart light waves with distinct topological features, allowing light (rather than electric currents) to flow via topological surface states. [53] "This research highlights the cutting-edge research being done at WVU, and we are very excited to see their work appear in the very high-profile journal Nature Communications." [52] By constructing a hybrid device made from two different types of qubit—the fundamental computing element of quantum computers—they have created a device that can be quickly initialized and read out, and that simultaneously maintains high control fidelity. [51] Researchers have demonstrated that an amoeba—a single-celled organism consisting mostly of gelatinous protoplasm—has unique computing abilities that may one day offer a competitive alternative to the methods used by conventional computers. [50] For the first time, researchers have used tiny gears made of germanium to generate a vortex of twisted light that turns around its axis of travel much like a corkscrew. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48]
Category: Quantum Physics

[19] viXra:1901.0125 [pdf] submitted on 2019-01-09 10:26:45

Conversion of Photons from Particles to Linked Waves and Back: a Hypothesis

Authors: Bruce A. Lutgen
Comments: 3 Pages.

In microphysics, how do photons behave like both waves and particles? It is called wave-particle duality. The wave-particle duality inference would appear to be counter intuitive. Are waves really a cluster of particles, as is often stated, yet like the waves that radiate in a disturbed pool of water as is often demonstrated? The answer to wave-particle duality may lie through the following proposed solid torus or possibly ellipsoid ringform field explanation, which is derived in part using classical physics. A solid torus or ellipsoid ringform hypothesis is contrary to string theory and at least to some extent accepted particle physics.
Category: Quantum Physics

[18] viXra:1901.0120 [pdf] submitted on 2019-01-09 14:48:01

Toward Unification

Authors: Alexandre Neto
Comments: 9 Pages.

A universe based on a fully deterministic, Euclidean, 4-torus cellular automaton is presented using a constructive approach. Each cell contains one integer number forming bubble-like patterns propagating at the speed of light, interacting and being reissued constantly. The collective behavior of these integers is conjectured to form patterns similar to classical and quantum physics, including the mass spectrum. Although essentially non-local, it preserves the non-signaling principle. This flexible model predicts that gravity is not quantized. Being a causal theory, it can potentially explain the emergence of the classical world and macroscopic observers.
Category: Quantum Physics

[17] viXra:1901.0119 [pdf] submitted on 2019-01-09 15:44:40

Spin½ 'plane' & Simple

Authors: David Colasante
Comments: 6 Pages.

To fully characterize any spin requires identification of its primary spin axis and its plane of rotation. Classical presumptions obscure both for “intrinsic” spin. Here, Euclidean interval-time coordinates literally 'lift the veil' of space to reveal it. Probability amplitude is also physically realized.
Category: Quantum Physics

[16] viXra:1901.0114 [pdf] submitted on 2019-01-08 07:43:35

Quantum Optic Networks Reality

Authors: George Rajna
Comments: 100 Pages.

The ability to precisely control the interactions of light and matter at the nanoscale could help such a network transmit larger amounts of data more quickly and securely than an electrical network. [59] Researchers in Italy have demonstrated the feasibility of quantum communications between high-orbiting global navigation satellites and a ground station, with an exchange at the single photon level over a distance of 20,000km. [58] Living cells, regardless of the type, can be kept around for a long time and because they move constantly, can be photographed repeatedly to create new encryption keys. [57] A new electronic device can developed at the University of Michigan can directly model the behaviors of a synapse, which is a connection between two neurons. [56] "The atom-scale devices we are developing create a new basis for HYPERLINK "https://phys.org/tags/computer/" computer electronics that will be able to run at least 100 times faster or operate at the same speed as today but using 100 times less energy," continued Wolkow. [55] Significant technical and financial issues remain towards building a large, fault-tolerant quantum computer and one is unlikely to be built within the coming decade. [54] Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer. [53] The research team developed the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is essential for HYPERLINK "https://phys.org/tags/quantum/" quantum computation. [52] Australian scientists have investigated new directions to scale up qubits-utilising the spin-orbit coupling of atom qubits-adding a new suite of tools to the armory. [51]
Category: Quantum Physics

[15] viXra:1901.0105 [pdf] submitted on 2019-01-08 16:20:29

The Emperor Has no Clothes: a Classical Interpretation of Quantum Mechanics

Authors: Jean Louis Van Belle
Comments: 60 Pages.

This voluminous paper organizes all of my previous viXra papers in one volume – which might become a book if my intended co-author (Ines Urdaneta) will manage to structure, rationalize and clean up.
Category: Quantum Physics

[14] viXra:1901.0093 [pdf] submitted on 2019-01-07 09:37:03

Rovibrational Quantum State

Authors: George Rajna
Comments: 50 Pages.

A central objective of chemical and molecular physics is to understand molecules as quantum mechanical systems. [30] After developing a method to control exciton flows at room temperature, EPFL scientists have discovered new properties of these quasiparticles that can lead to more energy-efficient electronic devices. [29] To build tomorrow's quantum computers, some researchers are turning to dark excitons, which are bound pairs of an electron and the absence of an electron called a hole. [27] Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator. [26] Achieving strong light-matter interaction at the quantum level has always been a central task in quantum physics since the emergence of quantum information and quantum control. [25] Operation at the single-photon level raises the possibility of developing entirely new communication and computing devices, ranging from hardware random number generators to quantum computers. [24] Considerable interest in new single-photon detector technologies has been scaling in this past decade. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices-small enough to install on a chip. [19]
Category: Quantum Physics

[13] viXra:1901.0085 [pdf] submitted on 2019-01-06 07:04:33

Newer Holograhic Acoustic Tweezers (Hat)

Authors: George A Ranja
Comments: 53 Pages.

This newer holographic acoustic tweezers (HAT) system achieves simultaneous suspension of 2,500 objects in mid-air at the Max Planck Institute, making a new world record.
Category: Quantum Physics

[12] viXra:1901.0066 [pdf] submitted on 2019-01-05 10:51:51

Can a Human Brain be a Quantum Computer?

Authors: Oleg Kupervasser, Roman Yavich
Comments: 8 Pages. presented at World Quantum Physics Congress 10-13 Dec 2018 (WQPC 2018) Stockholm, Sweden

This paper is based on the book (O. Kupervasser, Application of New Cybernetics in Physics, Elsevier, 2017). Human brain has very powerful intellect. Indeed, it seems that its intellectual possibilities are much more than possibilities of usual computers using genetic algorithm and random search (A.S. Potapov, Artificial Intellect and Universal Intelligence, Polytechnics, Saint Petersburg, 2012 (in Russian).). Our brain has also such especial property as consciousness. Some researchers suppose that these properties are a result of special structures of brain. Really, may be our brain is a quantum computer (R. Penrose, The Emperor’s New Mind, Oxford University Press, New York, 1989, R. Penrose, Shadows of the Mind, Oxford University Press, New York, 1994)? We know that a quantum computer is highly parallel device with principally insuperable protection from external observation. A quantum computer can resolve some tasks that are inaccessible for usual computers. However, it can be demonstrated that continuous unstable classical computer has the same properties as a quantum computer (O. Kupervasser, Application of New Cybernetics in Physics, Elsevier, 2017). Moreover, it seems that the main properties of a brain (powerful intellect and consciousness) can be explained by invisible correlation with surround world. Similarly, clock’s gear wheel very accurately operates in spite of absence of any intellect only because the gear wheel is a part of the highly correlated clock. We usually suppose that our world is some random set of low correlated events. However, the world, may be, is some highly correlated device (L. Susskind, J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe, World Scientific Publishing Company, 2004). And human beings are its “gear wheels”. It seems that Big Bang theory suppose such point of view. This pure philosophical reasonings can lead to some practical conclusions. We suppose to use instead of usual random search for computers some random number generators which are in complex correlations with surround world. It can give to computers some prototype of the such especial “human intuition”, described above.
Category: Quantum Physics

[11] viXra:1901.0056 [pdf] replaced on 2019-01-14 03:09:13

This Contagious Error Voids Bell-1964, CHSH-1969, Etc.

Authors: Gordon Watson
Comments: 4 Pages.

Elementary instance-tracking identifies a contagious error in Bell (1964). To wit, and against his own advice: in failing to match instances, Bell voids his own conclusions. The contagion extends to Aspect, Griffiths, Levanto, Motl, Peres and each of CHSH.
Category: Quantum Physics

[10] viXra:1901.0053 [pdf] submitted on 2019-01-04 07:47:18

Fast, Tiny Controllable Magnetic Bits

Authors: George Rajna
Comments: 97 Pages.

In separate papers published this month in the journals Nature Nanotechnology and Advanced Materials, researchers in the group of MIT Professor Geoffrey S.D. Beach and colleagues in California, Germany, Switzerland, and Korea, showed that they can generate stable and fast moving skyrmions in specially formulated layered materials at room temperature, setting world records for size and speed. [53] Researchers from MIT and elsewhere have recorded, for the first time, the "temporal coherence" of a graphene qubit-meaning how long it can maintain a special state that allows it to represent two logical states simultaneously. [52] By constructing a hybrid device made from two different types of qubit-the fundamental computing element of quantum computers-they have created a device that can be quickly initialized and read out, and that simultaneously maintains high control fidelity. [51] Researchers have demonstrated that an amoeba-a single-celled organism consisting mostly of gelatinous protoplasm-has unique computing abilities that may one day offer a competitive alternative to the methods used by conventional computers. [50] For the first time, researchers have used tiny gears made of germanium to generate a vortex of twisted light that turns around its axis of travel much like a corkscrew. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48] In a similar vein, scientists are working to create twisting helical electromagnetic waves whose curvature allows more accurate imaging of the magnetic properties of different materials at the atomic level and could possibly lead to the development of future devices. [47] In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45]
Category: Quantum Physics

[9] viXra:1901.0052 [pdf] submitted on 2019-01-04 08:10:20

Quantum Spin Liquid Pathway

Authors: George Rajna
Comments: 45 Pages.

With potential roles in quantum computation, high-temperature superconductivity and a range of exotic anyonic states, why quantum spin liquids (QSLs) attract interest is no great mystery. [31] Now, for the first time ever, researchers from Aalto University, Brazilian Center for Research in Physics (CBPF), Technical University of Braunschweig and Nagoya University have produced the superconductor-like quantum spin liquid predicted by Anderson. [30] Electrons in graphene-an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike-move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21]
Category: Quantum Physics

[8] viXra:1901.0049 [pdf] submitted on 2019-01-04 09:18:53

Excitons for Electronics

Authors: George Rajna
Comments: 46 Pages.

After developing a method to control exciton flows at room temperature, EPFL scientists have discovered new properties of these quasiparticles that can lead to more energy-efficient electronic devices. [29] To build tomorrow's quantum computers, some researchers are turning to dark excitons, which are bound pairs of an electron and the absence of an electron called a hole. [27] Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator. [26] Achieving strong light-matter interaction at the quantum level has always been a central task in quantum physics since the emergence of quantum information and quantum control. [25] Operation at the single-photon level raises the possibility of developing entirely new communication and computing devices, ranging from hardware random number generators to quantum computers. [24] Considerable interest in new single-photon detector technologies has been scaling in this past decade. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices-small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18]
Category: Quantum Physics

[7] viXra:1901.0048 [pdf] submitted on 2019-01-04 10:23:00

Hidden Spin for High-Temperature Superconductors

Authors: George Rajna
Comments: 33 Pages.

Now, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have unveiled a clue into the cuprates' unusual properties—and the answer lies within an unexpected source: the electron spin. [40] This electronic super fluidity is a quantum state of matter, so it behaves in a very exotic way that is different from classical physics, Comin says. [39] The Fermi-Hubbard model, which is believed to explain the basis for high-temperature superconductivity, is extremely simple to describe, and yet has so far proven impossible to solve, according to Zwierlein. [38] Researchers at Karlsruhe Institute of Technology (KIT) have carried out high-resolution inelastic X-ray scattering and have found that high uniaxial pressure induces a long-range charge order competing with superconductivity. [37] Scientists mapping out the quantum characteristics of superconductors-materials that conduct electricity with no energy loss-have entered a new regime. [36] Now, in independent studies reported in Science and Nature, scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity. [35] At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34] The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31]
Category: Quantum Physics

[6] viXra:1901.0043 [pdf] submitted on 2019-01-05 00:45:19

Theory of Natural Ontology: 2. Horizon Generators and Superphase Evolutions

Authors: Wei Xu
Comments: 26 Pages.

Applying neutrally to everything of being in physical states, this manuscript gives birth to a newborn scientific theory of Natural Ontology, which is scoped at Superphase Dynamics and developed for horizon infrastructure of physical world with principles of evolutional events or classically known as dark energy. As the groundbreaking, it reveals exceptional intrinsics of the universe, prevailing over and unifying with modern physics of Gauge Theory, Quantum physics of Electrodynamics and Chromodynamics, Spontaneous Field Breaking, Standard Model, cosmology, and beyond, orchestrating all types of life events essential to the operations and processes of creation, annihilations, reproduction and communication for physical formations and virtual evolutions. 


Category: Quantum Physics

[5] viXra:1901.0022 [pdf] submitted on 2019-01-02 07:42:22

Quantum Computer for Quantum Chemistry

Authors: George Rajna
Comments: 61 Pages.

Among many important and fundamental issues in science, solving the Schroedinger equation (SE) of atoms and molecules is one of the ultimate goals in chemistry, physics and their related fields. [36] The standard approach to building a quantum computer with majoranas as building blocks is to convert them into qubits. However, a promising application of quantum computing-quantum chemistry-would require these qubits to be converted again into so-called fermions. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29]
Category: Quantum Physics

[4] viXra:1901.0021 [pdf] submitted on 2019-01-02 08:08:27

Photonic Integrated Circuits

Authors: George Rajna
Comments: 41 Pages.

The transition from electronic integrated circuits to faster, more energy-efficient and interference-free optical circuits is one of the most important goals in the development of photon technologies. [26] With novel optoelectronic chips and a new partnership with a top silicon-chip manufacturer, MIT spinout Ayar Labs aims to increase speed and reduce energy consumption in computing, starting with data centers. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23]
Category: Quantum Physics

[3] viXra:1901.0016 [pdf] submitted on 2019-01-02 10:09:58

Ultrathin Digital Camera

Authors: George Rajna
Comments: 88 Pages.

The ultrathin digital camera offers a wide field of view and high resolution in a slimmer body compared to existing imaging systems. [50] The special feature of the Kiel system is its extremely high temporal resolution of 13 femtoseconds. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48] In a similar vein, scientists are working to create twisting helical electromagnetic waves whose curvature allows more accurate imaging of the magnetic properties of different materials at the atomic level and could possibly lead to the development of future devices. [47] In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz "could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates," Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42] A new instrument lets researchers use multiple laser beams and a microscope to trap and move cells and then analyze them in real-time with a sensitive analysis technique known as Raman spectroscopy. [41]
Category: Quantum Physics

[2] viXra:1901.0005 [pdf] submitted on 2019-01-02 00:54:59

Acoustic Plank Units Derived to Friedmann Units Incorporating Hubble Expansion & Photon Extinction Radius

Authors: David E. Fuller, Dahl Winters, Ruud Loeffen
Comments: 3 Pages.

ACOUSTIC Plank Units derived to Friedmann Units incorporating Hubble Expansion & Photon Extinction Radius of 13.888 billion light years Minkowski Spatial geometry & the Lorentz Transformation are Inadequate as they produce a Photon that travels Eternally, Ignoring Hubble Red Shift.
Category: Quantum Physics

[1] viXra:1901.0003 [pdf] submitted on 2019-01-01 01:53:17

Lifetime of Graphene Qubits

Authors: George Rajna
Comments: 92 Pages.

Researchers from MIT and elsewhere have recorded, for the first time, the "temporal coherence" of a graphene qubit-meaning how long it can maintain a special state that allows it to represent two logical states simultaneously. [52] By constructing a hybrid device made from two different types of qubit-the fundamental computing element of quantum computers-they have created a device that can be quickly initialized and read out, and that simultaneously maintains high control fidelity. [51] Researchers have demonstrated that an amoeba-a single-celled organism consisting mostly of gelatinous protoplasm-has unique computing abilities that may one day offer a competitive alternative to the methods used by conventional computers. [50] For the first time, researchers have used tiny gears made of germanium to generate a vortex of twisted light that turns around its axis of travel much like a corkscrew. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48] In a similar vein, scientists are working to create twisting helical electromagnetic waves whose curvature allows more accurate imaging of the magnetic properties of different materials at the atomic level and could possibly lead to the development of future devices. [47] In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz "could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates," Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44]
Category: Quantum Physics