[60] **viXra:1705.0345 [pdf]**
*submitted on 2017-05-23 07:52:50*

**Authors:** Fenton John Doolan

**Comments:** 16 pages

Since Isaac Newton first described gravity as a force of attraction between masses in the late seventeenth century mankind has been trying to explain the mechanism which creates it. Albert Einstein in 1915 proposed that matter tells space and time how to bend in his mathematical theory of General Relativity. Since then scientists have suggested the existence of the graviton a particle that creates the force of attraction between two objects. This paper suggests that gravity is a by-product of electromagnetism. The Sun and the Earth are acting like inverter magnets which creates an attractive and repulsive force.

**Category:** Quantum Physics

[59] **viXra:1705.0336 [pdf]**
*submitted on 2017-05-22 07:35:58*

**Authors:** Johan Noldus

**Comments:** 3 Pages. temporary notes about laws behind consciousness.

I give away two simple principles indicating the cause for spiritual
disruptions of different kinds of severity.

**Category:** Quantum Physics

[58] **viXra:1705.0335 [pdf]**
*submitted on 2017-05-22 08:00:19*

**Authors:** George Rajna

**Comments:** 30 Pages.

The physicists in Göttingen are part of a German-Italian collaboration which has now published an amazing discovery in Nature Communications: even quantum systems can synchronize through self-organization, without any external control. This synchronization manifests itself in the strangest property of the quantum world – entanglement. [17] The quantum internet, which connects particles linked together by the principle of quantum entanglement, is like the early days of the classical internet – no one can yet imagine what uses it could have, according to Professor Ronald Hanson, from Delft University of Technology, the Netherlands, whose team was the first to prove that the phenomenon behind it was real. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]

**Category:** Quantum Physics

[57] **viXra:1705.0331 [pdf]**
*submitted on 2017-05-22 05:05:19*

**Authors:** George Rajna

**Comments:** 17 Pages.

Quantum light emitters, or quantum dots, are of interest for many different applications, including quantum communication and networks. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[56] **viXra:1705.0322 [pdf]**
*submitted on 2017-05-21 18:45:35*

**Authors:** Koji Nagata, Tadao Nakamura, Han Geurdes, Ahmed Farouk, Josep Batle, Soliman Abdalla, Germano Resconi

**Comments:** 4 Pages

We present
a new quantum algorithm. It determines the property of a function.
It is $f(x)=f(-x)$.
How fast can we succeed?
The quantum algorithm does not use the Hadamard transformation.
All we need is of evaluating $|\overbrace{0,0,...,1}^N\rangle$.
And we can know the global property, that is,
we can realize $f(x)=f(-x)$
for numbers.
Our quantum algorithm overcomes a classical counterpart
by a factor of $O(2^N)$.

**Category:** Quantum Physics

[55] **viXra:1705.0312 [pdf]**
*submitted on 2017-05-21 10:34:05*

**Authors:** George Rajna

**Comments:** 23 Pages.

Of the many 'white whales' that theoretical physicists are pursuing, the elusive magnetic monopole-a magnetic with only one pole-is one of the most confounding. [14] The transformation of a quantum monopole into a Dirac monopole has been observed for the first time by physicists at Amherst College in the US and Aalto University in Finland. [13] Scientists at Amherst College (USA) and Aalto University (Finland) have made the first experimental observations of the dynamics of isolated monopoles in quantum matter. [12] Building on his own previous research, Amherst College professor David S. Hall '91 and a team of international collaborators have experimentally identified a pointlike monopole in a quantum field for the first time. The discovery, announced this week, gives scientists further insight into the elusive monopole magnet, an elementary particle that researchers believe exists but have not yet seen in nature. [11] For the first time, physicists have achieved interference between two separate atoms: when sent towards the opposite sides of a semi-transparent mirror, the two atoms always emerge together. This type of experiment, which was carried out with photons around thirty years ago, had so far been impossible to perform with matter, due to the extreme difficulty of creating and manipulating pairs of indistinguishable atoms. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[54] **viXra:1705.0308 [pdf]**
*submitted on 2017-05-20 20:27:04*

**Authors:** Peter V. Raktoe

**Comments:** 4 Pages.

There is a reason why general relativity cannot be unified with quantum mechanics, physicists don't realize that Einstein's reason for gravity is not real. Einstein's gravity is a mathematical gravity, you cannot unify something that is based on mathematical fiction (general relativity) with reality (quantum mechanics). I will show you how I unified general relativity with quantum mechanics, I was able to do it because I found the origin of gravity and time.

**Category:** Quantum Physics

[53] **viXra:1705.0284 [pdf]**
*submitted on 2017-05-19 04:31:59*

**Authors:** George Rajna

**Comments:** 30 Pages.

Particle-free quantum communication is achieved in the lab. [18] In the non-intuitive quantum domain, the phenomenon of counterfactuality is defined as the transfer of a quantum state from one site to another without any quantum or classical particle transmitted between them. [17] The quantum internet, which connects particles linked together by the principle of quantum entanglement, is like the early days of the classical internet – no one can yet imagine what uses it could have, according to Professor Ronald Hanson, from Delft University of Technology, the Netherlands, whose team was the first to prove that the phenomenon behind it was real. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[52] **viXra:1705.0282 [pdf]**
*submitted on 2017-05-19 05:39:30*

**Authors:** George Rajna

**Comments:** 21 Pages.

The transformation of a quantum monopole into a Dirac monopole has been observed for the first time by physicists at Amherst College in the US and Aalto University in Finland. [13] Scientists at Amherst College (USA) and Aalto University (Finland) have made the first experimental observations of the dynamics of isolated monopoles in quantum matter. [12] Building on his own previous research, Amherst College professor David S. Hall '91 and a team of international collaborators have experimentally identified a pointlike monopole in a quantum field for the first time. The discovery, announced this week, gives scientists further insight into the elusive monopole magnet, an elementary particle that researchers believe exists but have not yet seen in nature. [11] For the first time, physicists have achieved interference between two separate atoms: when sent towards the opposite sides of a semi-transparent mirror, the two atoms always emerge together. This type of experiment, which was carried out with photons around thirty years ago, had so far been impossible to perform with matter, due to the extreme difficulty of creating and manipulating pairs of indistinguishable atoms. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[51] **viXra:1705.0270 [pdf]**
*submitted on 2017-05-18 06:20:19*

**Authors:** George Rajna

**Comments:** 28 Pages.

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits—or qubits—that are stable, meaning they are not much affected by changes in their environment. [18] The global race towards a functioning quantum computer is on. With future quantum computers, we will be able to solve previously impossible problems and develop, for example, complex medicines, fertilizers, or artificial intelligence. [17] The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[50] **viXra:1705.0269 [pdf]**
*submitted on 2017-05-18 06:40:53*

**Authors:** J.A.J. van Leunen

**Comments:** 2 Pages.

This document introduces the Wikiversity Hilbert Book Model Project and describes its current state.

**Category:** Quantum Physics

[49] **viXra:1705.0268 [pdf]**
*submitted on 2017-05-17 13:12:14*

**Authors:** George Rajna

**Comments:** 20 Pages.

Scientists at Amherst College (USA) and Aalto University (Finland) have made the first experimental observations of the dynamics of isolated monopoles in quantum matter. [12] Building on his own previous research, Amherst College professor David S. Hall '91 and a team of international collaborators have experimentally identified a pointlike monopole in a quantum field for the first time. The discovery, announced this week, gives scientists further insight into the elusive monopole magnet, an elementary particle that researchers believe exists but have not yet seen in nature. [11] For the first time, physicists have achieved interference between two separate atoms: when sent towards the opposite sides of a semi-transparent mirror, the two atoms always emerge together. This type of experiment, which was carried out with photons around thirty years ago, had so far been impossible to perform with matter, due to the extreme difficulty of creating and manipulating pairs of indistinguishable atoms. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[48] **viXra:1705.0267 [pdf]**
*submitted on 2017-05-17 13:30:31*

**Authors:** George Rajna

**Comments:** 22 Pages.

Quantum field theories are often hard to verify in experiments. Now, there is a new way of putting them to the test. [13] Scientists at Amherst College (USA) and Aalto University (Finland) have made the first experimental observations of the dynamics of isolated monopoles in quantum matter. [12] Building on his own previous research, Amherst College professor David S. Hall '91 and a team of international collaborators have experimentally identified a pointlike monopole in a quantum field for the first time. The discovery, announced this week, gives scientists further insight into the elusive monopole magnet, an elementary particle that researchers believe exists but have not yet seen in nature. [11] For the first time, physicists have achieved interference between two separate atoms: when sent towards the opposite sides of a semi-transparent mirror, the two atoms always emerge together. This type of experiment, which was carried out with photons around thirty years ago, had so far been impossible to perform with matter, due to the extreme difficulty of creating and manipulating pairs of indistinguishable atoms. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[47] **viXra:1705.0259 [pdf]**
*submitted on 2017-05-17 07:21:45*

**Authors:** Tamas Lajtner

**Comments:** 7 Pages.

The de Broglie wavelength describes the wave-particle duality. The de Broglie wavelength formula and the Planck law seem to be contradicted in the University of Rochester's experiment of fast light. The fast light has longer wavelengths than the "normal" light. According to the de Broglie formula, longer wavelength means smaller momentum (smaller energy) and/or increasing Planck constant. But the fast light has the same amount of energy as the normal light. It is a contradiction between the de Broglie function and the Planck law. Here we show that the 'rest action', 'rest energy' of the fast light can resolve this contradiction. This 'rest action' of the light is a new concept that hasn't been considered. It is hidden in the Planck constant. In uncovering this part we find that the Planck constant has two parts; one part shows the 'rest action', 'rest energy' of the fast light and an other part shows the 'kinetic action', 'kinetic energy' of fast light. Fast light is a kind of fast wave. The Fast Wave–Wave–Particle Triality describes a new kind of metamorphosis of matter, for example how tunneling electrons travels faster than light without violating the special relativity. Using the Fast Wave–Wave–Particle Triality, we can realize that the speed of light is not a speed limit for particles with mass, since they can be transformed into fast waves. This model allows us to preserve the special relativity while we can accept particles with mass that may travel faster than light.

**Category:** Quantum Physics

[46] **viXra:1705.0250 [pdf]**
*submitted on 2017-05-17 02:27:13*

**Authors:** Antonio Puccini

**Comments:** 4 Pages.

The discovery of the Higgs boson (HB) has revealed a highly massive particle, the value of which lies between 125 and 126.5 GeV/c2. Bearing in mind the basic concepts of Quantum Field Theory, and in full compliance with the Heisemberg Uncertainy Principle, we were able to calculate the maximum limit of the HB’s range: in perfect agreement with its high mass, it presents a value really very small, of slightly less than 10-15[cm], namely 9.8828 ∙ 10-16[cm].

**Category:** Quantum Physics

[45] **viXra:1705.0248 [pdf]**
*submitted on 2017-05-16 09:00:51*

**Authors:** George Rajna

**Comments:** 25 Pages.

Precision measurement on heavy ions contradicts theory of interaction between atomic nucleus and electron. [15] For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. [14] International team solves mystery of colloidal chains. [13] An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons-thought to be indivisible building blocks of nature-to break into pieces. [12] In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[44] **viXra:1705.0246 [pdf]**
*submitted on 2017-05-15 14:14:41*

**Authors:** L.saidani

**Comments:** 8 Pages.

The nokton theory is an attempt to construct a theory adapted to every physical phenomenon. Space and time have been discretized. Its laws are iterative and precise. Probability plays an important role here.
At first I defined the notion of image function and its mathematical framework. The notion of nokton and its state are the basis of several definitions. I later defined the canonical image function and the canonical contribution.
Two constants have been necessary to define the dynamics of this theory. With its combinatorial complexity, the theory has at present given no result which seems to me interesting. The document is only a foundation.
Among the merits of this theory the absence of the infinites and its interpretation that is contrary to the quantum mechanics or the general relativity does not strike the common sense of the physicist.

**Category:** Quantum Physics

[43] **viXra:1705.0232 [pdf]**
*submitted on 2017-05-15 10:06:53*

**Authors:** George Rajna

**Comments:** 33 Pages.

When we look at a painting, how do we know it's a genuine piece of art? [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21] Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20] Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14]

**Category:** Quantum Physics

[42] **viXra:1705.0231 [pdf]**
*submitted on 2017-05-15 06:37:31*

**Authors:** George Rajna

**Comments:** 21 Pages.

The research team recently succeeded for the first time in precisely controlling the transition temperature of superconducting atomic layers using organic molecules. [31] For the first time, physicists have experimentally validated a 1959 conjecture that places limits on how small superconductors can be. [30] A new finding by physicists at MIT and in Israel shows that under certain specialized conditions, electrons can speed through a narrow opening in a piece of metal more easily than traditional theory says is possible. [29] Researchers have found a way to trigger the innate, but previously hidden, ability of graphene to act as a superconductor-meaning that it can be made to carry an electrical current with zero resistance. [28] Researchers in Japan have found a way to make the 'wonder material' graphene superconductive-which means electricity can flow through it with zero resistance. The new property adds to graphene's already impressive list of attributes, like the fact that it's stronger than steel, harder than diamond, and incredibly flexible. [27] Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain materials, and even then it can only be achieved under controlled conditions of low temperatures and high pressures. New research from a team including Carnegie's Elissaios Stavrou, Xiao-Jia Chen, and Alexander Goncharov hones in on the structural changes underlying superconductivity in iron arsenide compounds—those containing iron and arsenic. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[41] **viXra:1705.0220 [pdf]**
*submitted on 2017-05-14 08:02:21*

**Authors:** George Rajna

**Comments:** 20 Pages.

For the first time, scientists have subjected quantum entanglement to extreme levels of acceleration, and there's nothing fragile about this "spooky action at a distance"-it's way more robust than we thought. [13] Now, new research in the American Physical Society's journal Physical Review Letters brings aspects of the two together in an experiment that shows, for the first time, that gravity stretches and squeezes quantum objects through tidal forces. [12] Physicists have performed a test designed to investigate the effects of the expansion of the universe—hoping to answer questions such as "does the expansion of the universe affect laboratory experiments?", "might this expansion change the lengths of solid objects and the time measured by atomic clocks differently, in violation of Einstein's equivalence principle?", and "does spacetime have a foam-like structure that slightly changes the speed of photons over time?", an idea that could shed light on the connection between general relativity and quantum gravity. [11] Einstein's equivalence principle states that an object in gravitational free fall is physically equivalent to an object that is accelerating with the same amount of force in the absence of gravity. This principle lies at the heart of general relativity and has been experimentally tested many times. Now in a new paper, scientists have experimentally demonstrated a conceptually new way to test the equivalence principle that could detect the effects of a relatively new concept called spin-gravity coupling. [10] A recent peer-reviewed paper by physicist James Franson from the University of Maryland in the US has initiated a stir among physics community. Issued in the New Journal of Physics, the paper points to evidence proposing that the speed of light as defined by the theory of general relativity, is slower than originally thought. [9] Gravitational time dilation causes decoherence of composite quantum systems. Even if gravitons are there, it's probable that we would never be able to perceive them. Perhaps, assuming they continue inside a robust model of quantum gravity, there may be secondary ways of proving their actuality. [7] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[40] **viXra:1705.0218 [pdf]**
*submitted on 2017-05-14 09:42:59*

**Authors:** Madonna-Megara Holloway

**Comments:** 10 Pages.

The Unification of Quantum Mechanics, General Relativity and Consciousness – An Excerpt from The Secret Doctrine Volume IV, The Nature of Everything

**Category:** Quantum Physics

[39] **viXra:1705.0214 [pdf]**
*submitted on 2017-05-13 20:48:18*

**Authors:** Haytham Chibani

**Comments:** 5 Pages.

Single atom cavity quantum electrodynamics grants access to nonclassical photon statistics, while electromagnetically induced transparency exhibits a dark state of long coherence time. The combination of the two produces a new light ﬁeld via four-wave mixing that shows long-lived quantum statistics. We observe the new ﬁeld in the emission from the cavity as a beat with the probe light that together with the control beam and the cavity vacuum is driving the four-wave mixing process. Moreover, the control ﬁeld allows us to tune the new light ﬁeld from antibunching to bunching, demonstrating our all-optical control over the photon-pair emission.

**Category:** Quantum Physics

[38] **viXra:1705.0211 [pdf]**
*submitted on 2017-05-13 12:24:55*

**Authors:** Rodolfo A. Frino

**Comments:** 4 Pages.

This work refers to a method of generalizing incomplete physical laws through the scale law. Generalization can only be applied when the general law exists but has not yet been discovered. It is remarkable that the very simple methodology described in this paper turns out to be so powerful.

**Category:** Quantum Physics

[37] **viXra:1705.0206 [pdf]**
*submitted on 2017-05-12 15:03:41*

**Authors:** George Rajna

**Comments:** 22 Pages.

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. [14] International team solves mystery of colloidal chains. [13] An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons-thought to be indivisible building blocks of nature-to break into pieces. [12] In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[36] **viXra:1705.0199 [pdf]**
*submitted on 2017-05-12 11:51:49*

**Authors:** Rodolfo A. Frino

**Comments:** 14 Pages.

This paper explores the scale factors of three laws: (a) the Einstein's relativistic energy
law, (b) Newton's law of universal gravitation and (c) the special universal uncertainty
principle. Two new concepts are defined: complete energy laws and incomplete energy
laws. This investigation shows that the first two laws have scale factors of 1 while the third one has a scale factor of -1. These results could be useful in the future to predict scale factors of new laws of nature.

**Category:** Quantum Physics

[35] **viXra:1705.0197 [pdf]**
*submitted on 2017-05-12 08:21:12*

**Authors:** George Rajna

**Comments:** 15 Pages.

By precisely measuring the entropy of a cerium copper gold alloy with baffling electronic properties cooled to nearly absolute zero, physicists in Germany and the United States have gleaned new evidence about the possible causes of high-temperature superconductivity and similar phenomena. [28]
Physicists have theoretically shown that a superconducting current of electrons can be induced to flow by a new kind of transport mechanism: the potential flow of information. [27]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[34] **viXra:1705.0196 [pdf]**
*submitted on 2017-05-12 09:17:02*

**Authors:** George Rajna

**Comments:** 26 Pages.

Researchers at ETH have now developed a method by which such frequency combs can be created much more simply and cheaply than before. [17]
A novel way to harness lasers and plasmas may give researchers new ways to explore outer space and to examine bugs, tumors and bones back on planet Earth. [16]
A team of researchers at Harvard University has successfully cooled a three-atom molecule down to near absolute zero for the first time. [15]
A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14]
UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13]
Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12]
Electrons fingerprint the fastest laser pulses. [11]
A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10]
As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9]
New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.

**Category:** Quantum Physics

[33] **viXra:1705.0195 [pdf]**
*submitted on 2017-05-12 09:45:21*

**Authors:** God Bo

**Comments:** 3 Pages.

A new theory of quantum MASM, approved by hundreds of professors.

**Category:** Quantum Physics

[32] **viXra:1705.0181 [pdf]**
*submitted on 2017-05-10 13:18:27*

**Authors:** George Rajna

**Comments:** 27 Pages.

National Institute of Standards and Technology (NIST) physicists have solved the seemingly intractable puzzle of how to control the quantum properties of individual charged molecules, or molecular ions. [20] Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]

**Category:** Quantum Physics

[31] **viXra:1705.0174 [pdf]**
*submitted on 2017-05-10 11:02:05*

**Authors:** George Rajna

**Comments:** 30 Pages.

Einstein's "spooky action at a distance" persists even at high accelerations, researchers of the Austrian Academy of Sciences and the University of Vienna were able to show in a new experiment. [19] Researchers have devised an improved method for checking whether two particles are entangled. [18] A group of researchers from the Faculty of Physics at the University of Warsaw has shed new light on the famous paradox of Einstein, Podolsky and Rosen after 80 years. They created a multidimensional entangled state of a single photon and a trillion hot rubidium atoms, and stored this hybrid entanglement in the laboratory for several microseconds. [17] Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information,

**Category:** Quantum Physics

[30] **viXra:1705.0171 [pdf]**
*submitted on 2017-05-10 08:05:54*

**Authors:** George Rajna

**Comments:** 30 Pages.

Jarvis Loh, Gan Chee Kwan and Khoo Khoong Hong from the Agency for Science, Technology and Research (A*STAR) Institute of High Performance Computing, Singapore, have modeled these minute spin spirals in nanoscopic crystal layers. [18]
Some of the world's leading technology companies are trying to build massive quantum computers that rely on materials super-cooled to near absolute zero, the theoretical temperature at which atoms would cease to move. [17]
While technologies that currently run on classical computers, such as Watson, can help find patterns and insights buried in vast amounts of existing data, quantum computers will deliver solutions to important problems where patterns cannot be seen because the data doesn't exist and the possibilities that you need to explore to get to the answer are too enormous to ever be processed by classical computers. [16]
Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15]
Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14]
A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13]
A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]
With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10]
Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[29] **viXra:1705.0169 [pdf]**
*submitted on 2017-05-10 09:44:23*

**Authors:** George Rajna

**Comments:** 13 Pages.

Physicists have theoretically shown that a superconducting current of electrons can be induced to flow by a new kind of transport mechanism: the potential flow of information. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[28] **viXra:1705.0168 [pdf]**
*submitted on 2017-05-10 05:52:48*

**Authors:** Solomon Budnik

**Comments:** 1 Page. CREATION OF LEVITATING MATERIALS AND DEVICES

Lunar dust is levitated from the surface by powerful electrostatic charges generated by interplanetary radiation swirling across the landscape. In fact, electrical charges might even produce dust 'fountains'. As the rising Sun's light and radiation sweeps across the lunar surface it could generate large positive charges, enough to levitate dust particles of active metals a mile high, until they drop back, only to get levitated again like a pulsing fountain

**Category:** Quantum Physics

[27] **viXra:1705.0159 [pdf]**
*submitted on 2017-05-10 03:04:07*

**Authors:** George Rajna

**Comments:** 30 Pages.

Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22]
City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21]
Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20]
Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19]
Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18]
A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17]
Scientists at the University of Sussex have invented a ground-breaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16]
Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15]
Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14]
A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13]
A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]
With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10]
Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[26] **viXra:1705.0149 [pdf]**
*submitted on 2017-05-09 07:55:33*

**Authors:** George Rajna

**Comments:** 29 Pages.

Some of the world's leading technology companies are trying to build massive quantum computers that rely on materials super-cooled to near absolute zero, the theoretical temperature at which atoms would cease to move. [17] While technologies that currently run on classical computers, such as Watson, can help find patterns and insights buried in vast amounts of existing data, quantum computers will deliver solutions to important problems where patterns cannot be seen because the data doesn't exist and the possibilities that you need to explore to get to the answer are too enormous to ever be processed by classical computers. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[25] **viXra:1705.0148 [pdf]**
*submitted on 2017-05-09 08:27:57*

**Authors:** George Rajna

**Comments:** 26 Pages.

The power of big data is used in a strategy developed by A*STAR to improve the security of networks of internet-connected objects, known as the Internet of Things (IoT), technology which will make everything from streetlights to refrigerators 'smart'. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[24] **viXra:1705.0143 [pdf]**
*submitted on 2017-05-09 06:25:08*

**Authors:** Dhananjay P. Mehendale

**Comments:** 11 pages

An important application of Grover's search algorithm [2] in the domain of experimental
physics is its use in the synthesis of any selected superposition state [3]. This paper is about
showing the utility of factorisation using [1] of the quantum state to be synthesised. We first factorise the given quantum state to be synthesised when it is factorable. We then make use of these factors and construct the corresponding operators useful for synthesis of those factors.
We then build the operator called synthesizer by taking tensor product of these operators constructed using factors and useful for synthesis of those factors. We then apply the synthesizer
made up of the tensor product of the operators that we built using the corresponding factors on
the suitable register whose all the qubits have been initialised to |0>: Further, this register is also
made up of tensor product of registers of suitable lengths and the first qubit of all these registers
is ancilla qubit initialised to |0>: We show that we can achieve the speeding up of the process of
synthesising the desired quantum state with our modified algorithm when the state is factorable
and has at least two factors. It is shown here that the greater the number of factors of the
quantum state, the easier it is to synthesise. We will see that in fact the task of synthesising an
n-qubit quantum state which is completely factorable into n single qubit factors is exponentially
easier than the task of synthesising an n-qubit completely entangled quantum state having no
factors.

**Category:** Quantum Physics

[23] **viXra:1705.0141 [pdf]**
*submitted on 2017-05-09 06:35:32*

**Authors:** George Rajna

**Comments:** 26 Pages.

The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[22] **viXra:1705.0139 [pdf]**
*submitted on 2017-05-09 07:01:48*

**Authors:** George Rajna

**Comments:** 27 Pages.

The global race towards a functioning quantum computer is on. With future quantum computers, we will be able to solve previously impossible problems and develop, for example, complex medicines, fertilizers, or artificial intelligence. [17] The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[21] **viXra:1705.0137 [pdf]**
*submitted on 2017-05-08 18:10:41*

**Authors:** H. J. Spencer

**Comments:** 82 Pages. A milestone paper in the author's research programme.

This paper re-opens the debate on the failure of quantum mechanics to provide an understandable view of micro-reality. A critique is offered of the commonly accepted ‘Copenhagen Interpretation’ of a theory that is only a mathematical approach to the level of reality characterized by atoms and electrons. This critique is based on the oldest approach to thinking about nature for over 2500 years, known as Natural Philosophy.
Quantum mechanics (QM) was developed over the first quarter of the 20th Century, when scientists were enthralled by a new philosophy known as Positivism, whose foundations were based on the assumption that material objects exist only when measured by humans – this central assumption conflates epistemology (knowledge) with ontology (existence). The present critique rejects this human-centered view of reality by assuming material reality has existed long before (and will persist long after) human beings (“Realism”). The defensive view that the micro-world is too different to understand using regular thinking (and only a mathematical approach is possible) is rejected totally.
At least 12 earlier QM interpretations are critically analyzed, indicating the broad interest in “what does QM mean?”
The standard theory of quantum mechanics is thus constructed on only how the micro-world appears to macro measurements - as such, it cannot offer any view of how the foundations of the world are acting when humans are not observing it - this has generated almost 100 years of confusion and contradiction at the very heart of physics. Significantly, we live in a world that is not being measured by scientists but is interacting with itself and with us.
QM has failed to provide explanations: only recipes (meaningless equations), not insights. Physics has returned to the pre-Newtonian world of Ptolemaic phenomenology: only verifiable numbers without real understanding.
The focus needs to be on an explicit linkage between the micro-world, when left to itself, and our mental models of this sphere of material reality, via the mechanism of measurement. This limits the role of measurement to confirming our mental models of reality but never confusing these with a direct image of ‘the thing in itself’. This implies a deep divide between reality and appearances, as Kant suggested.
This paper includes an original analysis of several major assumptions that have been implicit in Classical Mechanics (CM) that were acceptable in the macroscopic domain of reality, demonstrated by its proven successes. Unfortunately, only a few of these assumptions were challenged by the developers of QM. We now show that these other assumptions are still generating confusions in the interpretation of QM and blocking further progress in the understanding of the microscopic domain. Several of these flawed assumptions were introduced by Newton to support the use of continuum mathematics as a model of nature. This paper proposes that it is the attempt to preserve continuum mathematics (especially calculus), which drives much of the mystery and confusion behind all attempts at understanding quantum mechanics. The introduction of discrete mathematics is proposed to help analyze the discrete interactions between the quintessential quantum objects: the electrons and their novel properties.
A related paper demonstrates that it is possible to create a point-particle theory of electrons that explains all their peculiar (and ‘paradoxical’) behavior using only physical hypotheses and discrete mathematics without introducing the continuum mathematical ideas of fields or waves. Another (related) paper proves that all the known results for the hydrogen atom can also be exactly calculated from this new perspective with the discrete mathematics.
* Surrey, B.C. Canada (604) 542-2299 spsi99@telus.net
Version 2.015 08-05-2017 Begun 23-06-2008 {pp. 82, 70.2 Kw; 800 KB}

**Category:** Quantum Physics

[20] **viXra:1705.0134 [pdf]**
*submitted on 2017-05-08 07:46:32*

**Authors:** George Rajna

**Comments:** 27 Pages.

While technologies that currently run on classical computers, such as Watson, can help find patterns and insights buried in vast amounts of existing data, quantum computers will deliver solutions to important problems where patterns cannot be seen because the data doesn't exist and the possibilities that you need to explore to get to the answer are too enormous to ever be processed by classical computers. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[19] **viXra:1705.0132 [pdf]**
*submitted on 2017-05-08 07:59:29*

**Authors:** George Rajna

**Comments:** 17 Pages.

Quantum entanglement, one of the most intriguing features of multi-particle quantum systems, has become a fundamental building block in both quantum information processing and quantum computation. [10]
The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. [9]
For the past 100 years, physicists have been studying the weird features of quantum physics, and now they're trying to put these features to good use. One prominent example is that quantum superposition (also known as quantum coherence)—which is the property that allows an object to be in two states at the same time—has been identified as a useful resource for quantum communication technologies. [8]
Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7]
A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[18] **viXra:1705.0131 [pdf]**
*submitted on 2017-05-08 08:59:21*

**Authors:** George Rajna

**Comments:** 21 Pages.

Jie Ma, a professor from Shanghai Jiao Tong University in China, is using neutrons at Oak Ridge National Laboratory's High Flux Isotope Reactor to discover a three-dimensional image of the magnetic lattice of an oxide material (Ba2CoTeO6) containing quantum properties that could provide new insight into how electron "spins" can improve data processing and storage in computers. [13]
An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons - thought to be indivisible building blocks of nature - to break into pieces. [12]
In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11]
Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[17] **viXra:1705.0124 [pdf]**
*submitted on 2017-05-07 16:49:38*

**Authors:** Rodolfo A. Frino

**Comments:** 5 Pages.

In this paper I derive the expression for the Planck force from the Heisenberg uncertainty
relations.

**Category:** Quantum Physics

[16] **viXra:1705.0123 [pdf]**
*submitted on 2017-05-07 18:43:23*

**Authors:** Osvaldo F. Schilling

**Comments:** 8 Pages. 1 table and 2 figures

In previous papers the author has analyzed data for leptons and baryons which converges to the association of magnetic energy to the rest enegies of these particles. In this paper a crucial parameter in this model, the number of flux quanta n trapped inside the region covered by an intrinsic motion of a particle, is considered in detail. Strictly fitting theory to experiment for baryons results in fractionary n which lie close but deviate from the expected numbers from a classical calculation. We show that the data diaplay a tendency to form Shapiro-like steps at integer numbers of flux quanta, which seems at least in part responsible for the observed deviations from the classical prediction.

**Category:** Quantum Physics

[15] **viXra:1705.0118 [pdf]**
*submitted on 2017-05-06 11:30:37*

**Authors:** Uwe Kayser-Herold

**Comments:** 2 Pages.

A transformation of the conditional equation for the magnetic flux quantum $\vec{\Phi}_{0} = \frac{2\pi}{e} \hspace{2} \vec{\hbar}/2$ yields the conditional equation for the quantum of electromagnetic canonical angular momentum: $ \frac{e}{2 \pi} \hspace{2} \vec{\Phi}_{0} = \vec{\hbar}/2$.

**Category:** Quantum Physics

[14] **viXra:1705.0111 [pdf]**
*submitted on 2017-05-05 11:00:03*

**Authors:** George Rajna

**Comments:** 27 Pages.

Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20] Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]

**Category:** Quantum Physics

[13] **viXra:1705.0110 [pdf]**
*submitted on 2017-05-05 11:36:44*

**Authors:** George Rajna

**Comments:** 28 Pages.

City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21]
Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20]
Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19]
Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18]
A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17]
Scientists at the University of Sussex have invented a ground-breaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16]
Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15]
Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14]
A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13]
A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11]
With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10]
Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9]
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[12] **viXra:1705.0109 [pdf]**
*submitted on 2017-05-05 09:04:13*

**Authors:** George Rajna

**Comments:** 28 Pages.

In the non-intuitive quantum domain, the phenomenon of counterfactuality is defined as the transfer of a quantum state from one site to another without any quantum or classical particle transmitted between them. [17] The quantum internet, which connects particles linked together by the principle of quantum entanglement, is like the early days of the classical internet – no one can yet imagine what uses it could have, according to Professor Ronald Hanson, from Delft University of Technology, the Netherlands, whose team was the first to prove that the phenomenon behind it was real. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[11] **viXra:1705.0105 [pdf]**
*submitted on 2017-05-04 11:52:29*

**Authors:** George Rajna

**Comments:** 27 Pages.

The quantum internet, which connects particles linked together by the principle of quantum entanglement, is like the early days of the classical internet – no one can yet imagine what uses it could have, according to Professor Ronald Hanson, from Delft University of Technology, the Netherlands, whose team was the first to prove that the phenomenon behind it was real. [16] Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometers using The City of Calgary's fiber optic cable infrastructure. [15] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible. Current single-photon sources using semiconductor quantum dots inserted into photonic structures produce photons that are ultrabright but have limited indistinguishability due to charge noise, which results in a fluctuating electric field. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[10] **viXra:1705.0103 [pdf]**
*submitted on 2017-05-04 08:01:49*

**Authors:** Dmitri Martila

**Comments:** 7 Pages.

With all diversity of the Theoretical Physics, there is no problem to reconcile the Nature
with reality.

**Category:** Quantum Physics

[9] **viXra:1705.0038 [pdf]**
*submitted on 2017-05-04 03:34:37*

**Authors:** George Rajna

**Comments:** 25 Pages.

Researchers at Sandia National Laboratories have developed new mathematical techniques to advance the study of molecules at the quantum level. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[8] **viXra:1705.0036 [pdf]**
*submitted on 2017-05-03 08:57:59*

**Authors:** George Rajna

**Comments:** 24 Pages.

A team of researchers at Sandia Labs in the U.S. has developed a type of atom interferometer that does not require super-cooled temperatures. [15] By taking advantage of a phenomenon known as "quantum mechanical squeezing," researchers have conceptually designed a new method of applying atomic force microscopy. [14] In modern physics of the past century, understanding the electronic properties and interactions between electrons inside matter has been a major challenge. [13] An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons-thought to be indivisible building blocks of nature-to break into pieces. [12] In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[7] **viXra:1705.0033 [pdf]**
*submitted on 2017-05-03 06:34:14*

**Authors:** George Rajna

**Comments:** 23 Pages.

By taking advantage of a phenomenon known as "quantum mechanical squeezing," researchers have conceptually designed a new method of applying atomic force microscopy. [14] In modern physics of the past century, understanding the electronic properties and interactions between electrons inside matter has been a major challenge. [13] An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons-thought to be indivisible building blocks of nature-to break into pieces. [12] In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[6] **viXra:1705.0024 [pdf]**
*submitted on 2017-05-02 08:30:38*

**Authors:** George Rajna

**Comments:** 24 Pages.

By replacing the phosphor screen in a laser phosphor display (LPD) with a luminescent solar concentrator (LSC), one can harvest energy from ambient light as well as display high-resolution images. [34] A team of researchers from Japan reports this week in Applied Physics Letters, that they have discovered a phenomenon called the photodielectric effect, which could lead to laser-controlled touch displays. [33] Researchers from the ARC Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) in the University of Sydney's Australian Institute for Nanoscale Science and Technology have made a breakthrough achieving radio frequency signal control at sub-nanosecond time scales on a chip-scale optical device. [32] The shrinking of electronic components and the excessive heat generated by their increasing power has heightened the need for chip-cooling solutions, according to a Rutgers-led study published recently in Proceedings of the National Academy of Sciences. Using graphene combined with a boron nitride crystal substrate, the researchers demonstrated a more powerful and efficient cooling mechanism. [31] Materials like graphene can exhibit a particular type of large-amplitude, stable vibrational modes that are localised, referred to as Discrete Breathers (DBs). [30] A two-dimensional material developed by Bayreuth physicist Prof. Dr. Axel Enders together with international partners could revolutionize electronics. [29] Researchers have found a way to trigger the innate, but previously hidden, ability of graphene to act as a superconductor-meaning that it can be made to carry an electrical current with zero resistance. [28] Researchers in Japan have found a way to make the 'wonder material' graphene superconductive-which means electricity can flow through it with zero resistance. The new property adds to graphene's already impressive list of attributes, like the fact that it's stronger than steel, harder than diamond, and incredibly flexible. [27] Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain materials, and even then it can only be achieved under controlled conditions of low temperatures and high pressures. New research from a team including Carnegie's Elissaios Stavrou, Xiao-Jia Chen, and Alexander Goncharov hones in on the structural changes underlying superconductivity in iron arsenide compounds—those containing iron and arsenic. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[5] **viXra:1705.0020 [pdf]**
*submitted on 2017-05-02 10:17:04*

**Authors:** Mugur B. Răuţ

**Comments:** 7 Pages.

In this paper I propose an explanation of the double slit experiment results, considered in a general form, in terms of the Doppler effect, as a consequence of applying the complementarity principle. It is shown that, if we accept the fact that both particle and wave are manifestations of the same conceptual whole, in the general form of the particle-wave dualism, then the Doppler effect will be a manifestation for both wave and particle, and the double slit experiment will be a qualitative illustration of this fact.

**Category:** Quantum Physics

[4] **viXra:1705.0009 [pdf]**
*submitted on 2017-05-01 11:29:39*

**Authors:** George Rajna

**Comments:** 25 Pages.

Physicists have learned how they could breed Schrödinger cats in optics. Scientists tested a method that could potentially amplify superpositions of classical states of light beyond microscopic limits and help determine the boundaries between the quantum and classical worlds. [19] Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[3] **viXra:1705.0008 [pdf]**
*submitted on 2017-05-01 05:20:29*

**Authors:** George Rajna

**Comments:** 23 Pages.

Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, two researchers proposed a property-testing problem involving Forrelation for studying the query complexity of quantum devices. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[2] **viXra:1705.0005 [pdf]**
*replaced on 2017-05-08 12:24:02*

**Authors:** Peter V. Raktoe

**Comments:** 4 Pages.

There are a lot of unsolved mysteries in modern theoretical physics, physicists don't realize that most mysteries in the universe are in fact man-made. I will show you that the foundation of modern theoretical physics is based on fallacies, the foundation is mathematical fiction (it's not real). When you base your theory on mathematical fiction then you can only end up in mathematical fiction, your theory will always describe something that's unrealistic. Most theories in modern theoretical physics are intertwined with Einstein's theory of gravity, so Einstein's theory of gravity can be seen as the foundation of modern theoretical physics. Physicists didn't notice that Einstein made several mistakes in his mathematical model of gravity (curved spacetime), those mistakes were devastating to modern theoretical physics. Why?, physicists based their theories on something that's unrealistic and all those theories resulted in Einstein's maze of mathematical fiction.

**Category:** Quantum Physics

[1] **viXra:1705.0003 [pdf]**
*submitted on 2017-05-01 09:18:51*

**Authors:** George Rajna

**Comments:** 24 Pages.

Physicists have theoretically shown that, when multiple nanoscale batteries are coupled together, they can be charged faster than if each battery was charged individually. [15] Researchers have shown how to create a rechargeable "spin battery" made out of materials called topological insulators, a step toward building new spintronic devices and quantum computers. [14] Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics