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Abstract 

We seek to present a novel model of motion which underlies, and provides interpretations for, 

both the theory of relativistic motion (including gravity) and quantum mechanics. We reject the 

continuity of space and instead treat motion and space as discrete phenomena. Crucially, we also 

allow space to have "holes" and "branches" in it in the sense of it being a non-Hausdorff 

manifold. Thus space is not an all-pervading background "stage" but rather a dynamic entity built 

up as particles interact with each other. Only paths a particle may physically take enter into 

building this manifold. We reject the idea of space existing for a particle even where it cannot 

physically be present, such as inside the barrier in the double-slit experiment. We present our 

theory of motion then show the key phenomena and equations of special and general relativity as 

well as quantum mechanics can be recovered from it. 

 

1. Introduction 

The unifying theme of all physics is that it consists of, in essence, the careful observation and 

analysis of various types of motion. The study of motion is very old, having been discussed by 

the ancient philosophers. We particularly wish to draw attention to the ancient "Dichotomy" 

paradox of Zeno [1]. The argument goes as follows: "Suppose Atalanta wishes to walk to the end 

of a path. Before she can get there, she must get halfway there. Before she can get halfway there, 

she must get a quarter of the way there. Before travelling a quarter, she must travel one-eighth; 

before an eighth, one-sixteenth; and so on." [2] Thus, Atalanta must complete an infinite 

sequence of steps to cover a finite distance, something that seems nonsensical. Also, it is unclear 

how big Atalanta's first step is, as any "first" step must be completed by first covering half of it, 

thus it is not being a "first" step after all. The standard way out of the paradox is through the 

observation that a sum of infinitely many decreasing fractions can, and in this case does, 

converge to a finite sum. This we call the continuum solution to Zeno's paradox, as in it we posit 

a finite interval of space is made up of an infinite number of infinitesimally closely spaced 

points. 

But the solution to Zeno's paradox we wish to study in the present paper is that of discrete space. 

We posit that the points in space exist a small, but finite, distance apart. Therefore Atalanta 

reaches the end of the path by completing a large, but finite, number of hops from point to 

successive point in space. 
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Modern physics follows the continuum solution, hence we talk of the spacetime continuum. The 

tools of calculus, which are based on continuous functions, are all-pervasive in the formulation 

of the basic laws of motion in quantum mechanics, quantum field theory and relativity. 

As successful as the continuum approach has been, it has not yielded a solution to all problems 

of motion. Quantum phenomena, such as path interference in the double-slit experiment [3] and 

the superposition and collapse of the wavefunction are notoriously hard to interpret. More 

seriously, trying to combine the quantum world of superpositions and stochastic collapses with 

the continuum of general relativity has not been successful due to the non-linearity of the 

equations involved. Whereas general relativity deals in the "world-lines" of particles, there is no 

such concept in quantum mechanics where a particle's wavepacket will disperse during its 

motion [4]. 

In the present paper we examine the discrete solution to Zeno's paradox in detail. We start by 

studying one dimensional discrete motion along a path. We then study the case where multiple 

paths exist between the same start and end positions. We do this by gluing parts of the paths 

together in a discrete analogy of how continuous coordinate patches are glued together to build 

up a continuous manifold. We then show how we can embed such glued-together paths in a 

Euclidean space and assign Euclidean coordinates to positions on the discrete paths. We then 

discuss more complex cases, where multiple particles moving along multiple discrete paths can 

interact with each other. We then discuss the statistics and probabilities of different choices of 

path when multiple paths are available to a particle to travel on after an interaction. We then turn 

to applications of our theory, by making connections with the existing theories of special 

relativity, general relativity and quantum mechanics. 

 

2. One-Dimensional Discrete Motion 

Let us consider one-dimensional motion at a constant velocity 𝑣. In the familiar case of 

continuous space and time, the position coordinate 𝑥 is a real number, as is the time 𝑡 and 

velocity 𝑣. The equation of motion is then 

𝑥 = 𝑣𝑡 + 𝑥0                      𝑥, 𝑥0 , 𝑣, 𝑡 ∈ ℝ                                             (1) 

where 𝑥0 is a real number being the position at time zero. 

In the discrete approach to motion we propose in this work, we make space discrete, but keep 

time continuous. Thus we keep the time 𝑡 and velocity 𝑣 as real numbers, but use integers only 

for the position coordinates 𝑥 and 𝑥0. The equation of motion becomes: 

𝑥 =  𝑣𝑡 + 𝑥0                          
𝑥, 𝑥0 ∈ ℤ 
𝑣, 𝑡  ∈ ℝ

                                              (2) 

where  𝑣𝑡  is the floor of 𝑣𝑡, that is, the largest integer not greater than 𝑣𝑡. 

The difference between the continuous and discrete motions given by (1) and (2) is shown in 

figure 1 for the case when 𝑣 = 2 and 𝑥0 = 0. 
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 Fig. 1: Position vs. time. Continuous motion (dashed line) and discrete motion (solid 

line segments). 

In the discrete case, the position coordinate 𝑥 increases in discrete hops of one unit as time 

increases continuously. The position remains constant for a period of time 𝜏 in between these 

jumps, given by: 

𝜏 =  
1

𝑣
                                                                                        (3) 

In the example of figure 1, 𝑣 = 2 so 𝜏 = 0.5 and we see each discrete step in space has a duration 

of 0.5 units in time. Using (3) the equation of discrete motion (2) can also be written as: 

𝑥 =  
𝑡

𝜏
 + 𝑥0                          

𝑥, 𝑥0 ∈ ℤ 
𝑡, 𝜏  ∈ ℝ

                                       (4) 

We call a one-dimensional discrete space in which a particle, associated with a continuous time 

coordinate, moves according to (2) or (4) a path. We call 𝑣 = 1 𝜏    the path velocity. We call the 

finite section of a path between a given minimum position 𝑥𝑚𝑖𝑛  and maximum position 𝑥𝑚𝑎𝑥 , or, 

equivalently, between a minimum time 𝑡𝑚𝑖𝑛  and maximum time 𝑡𝑚𝑎𝑥  a path segment. 

𝑡𝑚𝑎𝑥  is defined to be the biggest real number, and 𝑡𝑚𝑖𝑛  the smallest real number, such that the 

following two equations hold: 

𝑥𝑚𝑎𝑥 =  
𝑡𝑚𝑎𝑥

𝜏
 + 𝑥0                𝑥𝑚𝑖𝑛 =  

𝑡𝑚𝑖𝑛

𝜏
 + 𝑥0                                         (5) 

We define the length of a path segment to be ∆𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛  and the duration to be ∆𝑡 =
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 . Note that ∆𝑥 =  𝑣 ∆𝑡  as expected. We define the distance between two positions 

with spatial coordinates 𝑦 and 𝑧 along a path to be |𝑦 − 𝑧|. 

 

 Fig. 2: A path segment of length 4, duration 2.49  and path velocity 2, with 𝑥0 = 0. 
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We can represent a path segment in a diagram as shown in figure 2, for a path segment of length 

4, 𝑥0 = 0, path velocity 2 and duration 2.49 . The path segment, a one-dimensional space, is 

drawn as a line segment. It is divided with tick marks into five positions, labeled above the line 

with their coordinates 0, 1, 2, 3 and 4. Note that in discrete space a "point" is a single spatial 

coordinate which would be drawn as a finite line segment between two successive tick marks, 

even though its length is zero. That is why we refer to positions rather than points in discrete 

space. 

The tick marks in figure 2 are labeled below the line with the times they begin and end. So we 

can imagine a particle starting at tick mark 𝑡 = 0, and moving to the right continuously so that its 

time corresponds to the labels underneath the line, which form a continuous timeline. 

Meanwhile, the spatial position coordinate of the particle at any given time is given by the label 

above the line segment between whose tick marks the particle lies at this time. So figure 2 can be 

thought of as a vertically collapsed version of figure 1. 

 

3. Multiple Paths 

Suppose we have two path segments A and B with equal path velocity. The equations of motion 

are: 

𝑥𝐴 =  
𝑡𝐴
𝜏
 + 𝑥0𝐴                 𝑥𝐵 =  

𝑡𝐵
𝜏
 + 𝑥0𝐵                                                (6) 

For example, let us consider the case where 𝜏 = 0.5 and 𝑥0𝐴 = 𝑥0𝐵 = 0. Let us say path segment 

A has length 6 (𝑥𝐴𝑚𝑖𝑛  = 0, 𝑥𝐴𝑚𝑎𝑥  = 6) while B has length 5 (𝑥𝐵𝑚𝑖𝑛  = 0, 𝑥𝐵𝑚𝑎𝑥  = 5). It follows 

𝑡𝐴𝑚𝑖𝑛  = 𝑡𝐵𝑚𝑖𝑛  = 0 and 𝑡𝐴𝑚𝑎𝑥  = 3.49  and 𝑡𝐵𝑚𝑎𝑥  = 2.9 . 

So far these paths are totally separate and exist in no relation to each other―the positions 𝑥𝐴 and 

𝑥𝐵 are independent and there is no way to translate one into the other. 

We will now proceed to glue the starts of segments A and B together, and similarly their ends. 

We do this by setting up an identification or 1:1 map of positions with some values of 𝑥𝐴 with 

those of some values of 𝑥𝐵. For example, we make the following map: 

                    

𝑥𝐴 = 0  ∶   𝑥𝐵 = 0
𝑥𝐴 = 1  ∶   𝑥𝐵 = 1
𝑥𝐴 = 5  ∶   𝑥𝐵 = 4
𝑥𝐴 = 6  ∶   𝑥𝐵 = 5

                                                                      (7) 

Where the colon : indicates the positions on either side of it are to be considered equivalent. The 

process of gluing two paths together is shown in figure 3. 

We have thus glued the starts and ends of two path segments with each other. We now have two 

possible paths connecting the common start and end positions, so that a particle has a choice of 

which of two paths to take for travelling from the start to the end. In the language of manifolds, 

what we have created is a non-Hausdorff [5], [6] space, that is a manifold with "branches". We 

may in general glue together any number of paths into a manifold, thus giving the particle a large 

choice of paths to take between the same starting and ending positions. 
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 Fig. 3: a) two path segments, of length 6 and 5; b) an identification of some positions 

along both paths is made, 𝑡𝐴 and 𝑡𝐵 omitted for clarity; c) the resulting glued paths 

constitute a non-Hausdorff manifold. 

 

It is crucial to note that the laws and intuitions we have developed regarding motion in ordinary 

Hausdorff spacetime no longer hold in non-Hausdorff spaces, especially in regards to inertia. A 

particle travelling along either path segment of figure 2c does not "feel" that it is moving along 

some, possibly curved, trajectory in a space in which these path segments are embedded. Rather, 

the two path segments which branch and join to form the manifold are the ENTIRE reality - 

there is no "outside" space in which these path segments are embedded, in which their curvature 

can be defined, or in which a particle can "feel" a change in direction of motion as inertia. The 

particle's ENTIRE reality consists of the time elapsed, the path velocity, and one bit of 

information about which of the two path segments is being traversed. So we could say informally 

that the manifold of figure 2c has dimension "1 and 1 bit". The "1" being the continuous time 

coordinate and the "1 bit" being information about which path segment is being traversed. 

It is a general result that in any case where we glue together the starts and the ends of multiple 

path segments, the difference between the lengths of any two path segments must be an integer. 

This follows naturally from the spatial coordinates, and thus all lengths, being integers. It follows 
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also that the difference in durations of any pair of such path segments must be an integer 

multiple of the period 𝜏, since each spatial coordinate has a duration 𝜏 in time. 

4. Embedding in Euclidean Space 

Given a non-Hausdorff space built up by gluing together a number of discrete path segments of 

given lengths, we wish to discuss how these can be embedded in an ordinary Euclidean n-

dimensional space. This is a purely mathematical exercise, necessary to introduce a system of 

real coordinates into our model to match the spacetime of relativity and quantum mechanics. 

However, all physics continues to take place in a discrete non-Hausdorff manifold, where 

particles "feel" no inertia as discussed above. In an embedding the discrete spatial coordinates of 

the positions along the path segments are mapped to corresponding coordinates (𝑥1, 𝑥2 ,…  𝑥𝑛)  
where 𝑥1 …  𝑥𝑛  are all real numbers. This is a well-studied constraint satisfaction problem, of the 

type which involves embedding a graph with given edge lengths in a Euclidean space, see for 

example [7]. We will illustrate this embedding process through an example. 

Consider three path segments A, B and C with the same path velocity,  𝑣 = 2, and length 5. We 

glue them together by making the following identifications: 

                    

𝑥𝐴 = 0  ∶   𝑥𝐵 = 0
𝑥𝐴 = 1  ∶   𝑥𝐵 = 1
𝑥𝐴 = 4  ∶   𝑥𝐶 = 6
𝑥𝐴 = 5  ∶   𝑥𝐶 = 0
𝑥𝐵 = 4  ∶   𝑥𝐶 = 4
𝑥𝐵 = 5  ∶   𝑥𝐶 = 5

                                                                      (8) 

The result is shown in figure 4. 

 

 Fig. 4: Path segments A, B and C of length 5 glued together by the map (8). 
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Let us assign new labels a, b and c to three of the positions on the path segments shown in figure 

4. These labels are just new names for some of the positions thus far named by their spatial 

coordinates. Specifically, a is the position 𝑥𝐴 = 1  ∶   𝑥𝐵 = 1, b is the position 𝑥𝐴 = 4  ∶   𝑥𝐶 =
1 and c is the position 𝑥𝐵 = 4  ∶   𝑥𝐶 = 4. Note that the distance between positions a and b is 3, 

as is that between b and c and between a and c. 

Now we will embed our example in a Euclidean space. The space with two dimensions and 

coordinates (X, Y) where X, Y are real numbers will suffice. We wish to identify the three 

positions a, b and c of our discrete non-Hausdorff manifold with three points 𝛼, 𝛽 and 𝛾 of a 2-

dimensional Euclidean space. The key requirement for an embedding is that the distances 

between the positions a, b and c in the discrete space must match the Euclidean distances 

between the points 𝛼, 𝛽 and 𝛾 in the Euclidean space. 

The following points satisfy this criterion: 

𝛼 =  0, 0            𝛽 =  2.598, 1.5            𝛾 = (2.598,−1.5)                          (9) 

These points are plotted in figure 5. 

 

 Fig. 5: The three points 𝛼, 𝛽 and 𝛾 plotted in Euclidean space corresponding to the 

positions a, b and c of the discrete non-Hausdorff space shown in figure 4. 

An embedding is not unique. We could have chosen any three points in the Euclidean space to 

correspond to a, b and c, subject to their mutual distances being 3 in this space. If we also wished 

to map the position 𝑥𝐴 = 0  ∶   𝑥𝐵 = 0 of figure 4 to a point in our Euclidean space, we could 

have chosen any point lying a distance 1 from the point 𝛼. There are many such points, again 

highlighting that an embedding is not unique. In practice, we will not need to map every position 

of the discrete space to the Euclidean space, only doing this for a few positions of interest, 

corresponding to the sites of particle interactions. 

 

5. Interactions 

So far, we have only considered motion of constant velocity. We also implicitly assumed that we 

are only dealing with the motion of a single object or particle. Thus, we considered "the position" 

changing in time, implying there is only one particle we are keeping track of. 
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Now we turn to the case where the velocity of motion can vary. We posit, analogously to 

Newton's first law of motion, that the only thing that can cause the change in velocity of a 

particle is a disturbance to it. So an undisturbed particle will always travel at a constant velocity 

along a path. We posit that the only way a particle can be disturbed is by an interaction with 

other particles. We also posit that during any interaction, the sum of the path velocities of the 

incoming (mother) particles is equal to the sum of the path velocities of the outgoing (daughter) 

particles. That is, the sum of path velocities is a conserved quantity for every interaction. 

An example will help illustrate this. Let us consider the interaction where two incoming particles 

A and B interact to produce one outgoing particle C. Outside the interaction, each particle moves 

along a path with constant path velocity with the equation of motion (4). Let us say that the path 

velocity of particle A is 𝑣𝐴 = 3, and that of particle B is 𝑣𝐵  = 2. As before, we set 𝑥0𝐴 = 𝑥0𝐵 = 

𝑥0𝐶  = 0. The equations of motion for particles A and B are: 

𝑥𝐴 =  3𝑡𝐴                 𝑥𝐵 =  2𝑡𝐵                                                              (10) 

We posited that the sum of incoming path velocities is equal to the sum of outgoing path 

velocities. We know therefore that the outgoing particle C must have path velocity 𝑣𝐶  = 3 + 2 = 

5, with the equation of motion: 

𝑥𝐶 =  5𝑡𝐶                                                                              (11) 

While we take the conservation of total path velocity as a postulate, we feel it is a reasonable 

one. If particle A moves 3 units in space during one unit of time, and particle B moves 2 units in 

space during one unit of time, it seems reasonable that the union of particles A and B will move 

5 units in space in one unit of time. This is equivalent to the classical postulate of the 

conservation of momentum, where all particles are taken to have the same mass, and the motion 

is in one dimension, corresponding to our one-dimensional paths. 

We can draw our example as in figure 6, where the interaction is represented by a dot and the 

incoming and outgoing particles by lines or curves with arrows indicating direction. We can 

label the lines or curves with the name of the particles A, B and C and/or their velocities 𝑣𝐴, 𝑣𝐵  

and 𝑣𝐶 . 

 

 Fig. 6: The interaction of two incoming particles A and B joining into one outgoing 

particle C. 

As another example, consider the case where one incoming particle C with 𝑣𝐶  = 5 splits 

spontaneously into two daughter particles D and E with 𝑣𝐷  = 4 and 𝑣𝐸  = 1. Note that the total 

path velocity is conserved. This example is shown in figure 7. 
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 Fig. 7: One incoming particle C splitting into two outgoing particles D and E. 

We can combine the two examples of figures 6 and 7 into one, where the incoming particles A 

and B join into one particle C, which then splits into two particles D and E. This is shown in 

figure 8. 

 

 Fig. 8: A process involving two interactions: particles A and B join into C, which then 

splits into D and E. 

In this way, we can build up more complicated processes, involving many particles and 

interactions. Each such process can be represented as a graph, with each interaction being a 

vertex and each particle's path segment an edge of the graph. Note well that these processes and 

graphs correspond to Feynman diagrams in the field theory of scalar particles with the path 

velocity equal to the rest frame energy of each particle. Also, since in nature most if not all paths 

are of finite length, we will use the terms "path segment" and "path" interchangeably where this 

leads to no misunderstanding. 

Now we discussed in section 3 the case where a single undisturbed particle moving with constant 

path velocity may be able to travel along one of multiple possible paths. We discussed that this is 

done by gluing the starts and the ends of the multiple paths together. Consider the example 

shown in figure 3, where a particle can travel along a path of length 6 or of length 5. Let us 

suppose this is the case for a particle C with 𝑣𝐶  = 5 travelling between two interactions. We have 

drawn this in figure 9. As before, we represent the interactions by dots. We indicate the multiple 

paths by multiple curves between the interactions, each labeled by its length 𝛥𝑥𝐶1 = 6 and 𝛥𝑥𝐶1 

= 5. To indicate those curves represent alternative paths for one particle between two 

interactions, we draw an arc of a circle centered on each interaction vertex, intersecting each 

possible path. 
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 Fig. 9: A particle C can travel along one of two paths between two interactions, with 

path lengths 6 and 5. 

Now we can make a more complicated example based on that of figure 8, where particle C can 

travel along one of two paths. We thus combine figures 8 and 9 to obtain the process shown in 

figure 10. 

 

 Fig. 10: Two incoming particles A and B produce daughter particle C which can travel 

along one of two alternate paths of different lengths to an interaction where it splits into 

two particles D and E. 

In this way we can draw diagrams for very complicated processes, where multiple particles have 

multiple interactions and can travel between them along one of multiple possible paths. 

As one last example, consider the process illustrated in figure 11. Two particles A and B 

combine to form a particle C, which can travel along one of two paths of length 6. One path 

results in C splitting into two particles D and E with 𝑣𝐷  = 4 and 𝑣𝐸  = 1. The other path segment 

results in C splitting into F and G with 𝑣𝐹  = 3 and 𝑣𝐺  = 2. Even more complicated processes are 

possible, where there are multiple paths on either or both sides of an interaction, that is on the 

incoming and/or outgoing side. In all cases, however, all paths in a set of multiple incoming or 

outgoing paths must be of the same path velocity, with their start and/or segments glued together 

in the way discussed in section 3. 
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 Fig. 11: Two incoming particles A and B produce C, which can split into D and E, or F 

and G. 

In summary, in our model the ENTIRE reality of motion is composed of which particles interact 

with which particles, and the path velocity and duration of motion in a discrete one-dimensional 

space for each particle between interactions. These one-dimensional paths can be glued together 

into non-Hausdorff manifolds in the manner discussed in section 3. From the duration and path 

velocity, we can compute the distance between any pair of interactions, and through trilateration 

(graph embedding) assign coordinates to each interaction. We completely reject the idea of 

spacetime as an all-pervasive neutral "stage" upon which motion happens; rather, spacetime (the 

locations of particle interactions) is built up dynamically as particles interact with each other. 

 

6. Statistics 

Whenever there are multiple outgoing paths from an interaction vertex, we posit that the particle 

will choose one at random, with equal probability of choosing each possible path. An important 

detail, however, is that due to the process of gluing parts of paths together as described in section 

3, some path segments may be degenerate. That is to say, even though we are ostensibly dealing 

with a single path segment, there may actually be several path segments which have been glued 

together into one, and this will affect the probability of such a composite path segment being 

chosen as a result of an interaction. 

If we glue together N path segments together, we say the resulting composite path segment has 

amplitude 𝒜 = N. A simple path segment with no gluing has an amplitude 𝒜 = 1. 

A given spatial position on a path of amplitude 𝒜 has degeneracy 𝒜. That is, it is made up of 𝒜 

equivalent, but distinct, positions glued together. As we posited that space is discrete, and motion 

proceeds by discrete hops from one position to the next, it follows that any such hop can occur 

from one of 𝒜 distinct starting positions to one of 𝒜 distinct ending positions one step ahead. 

That is, the hop, and thus the motion, along a path of amplitude 𝒜 itself has a degeneracy of 𝒜2. 
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We will illustrate this with the example of three path segments A, B and C of length 5 with 𝑣 = 2 

and 𝑥0𝐴 = 𝑥0𝐵 = 𝑥0𝐶  = 0. We make the following identifications of the paths: 

                    

𝑥𝐴 = 0  ∶   𝑥𝐵 = 0
𝑥𝐴 = 1  ∶   𝑥𝐵 = 1
𝑥𝐴 = 2  ∶   𝑥𝐵 = 2
𝑥𝐴 = 3  ∶   𝑥𝐵 = 3
𝑥𝐴 = 4  ∶   𝑥𝐵 = 4
𝑥𝐴 = 5  ∶   𝑥𝐵 = 5
𝑥𝐶 = 0  ∶   𝑥𝐴 = 0
𝑥𝐶 = 1  ∶   𝑥𝐴 = 1
𝑥𝐶 = 4  ∶   𝑥𝐴 = 4
𝑥𝐶 = 5  ∶   𝑥𝐴 = 5

                                                               (12) 

 

 Fig. 12: Two path segments of length 5 between two interactions. The upper path has 

amplitude 2, with degeneracy 22 = 4, while the lower one has an amplitude 1 and 

degeneracy 12 = 1. 

We have drawn the result in figure 12. Path segments A and B have been glued together along 

their entire length by (12), yielding a path segment of amplitude 2 and degeneracy 22 = 4. Path C 

has only been glued to A and B along its starting and ending portions. The remainder has 

amplitude 1 and degeneracy 12 = 1. 

Since we posited a particle will choose any outgoing path with equal probability and the 

degeneracy of one path is 4 while that of the other is 1, it follows it will choose the first path with 

probability 4/5 and the latter with probability 1/5. The result is general: a particle will choose an 

outgoing path of amplitude 𝒜 with probability proportional to 𝒜2. The proportionality factor, or 

normalization factor, is chosen so that the sum of all probabilities of all outgoing paths is one; 

that is, the particle is certain to choose some path. 

This concludes our presentation of our theory with discrete space and continuous time on a non-

Hausdorff manifold. Next we turn to the application of the theory, specifically making 

connections with the existing formalisms of special relativity, general relativity and quantum 

mechanics. 

 

7. Special Relativity 

We discussed in section 5 that in general a graph of particle paths and interactions may be quite 

complex, involving many interactions among many particles. We also discussed in section 4 how 

we may embed the discrete non-Hausdorff path segments that particles travel along between 

0 

 

𝑥𝐴=𝑥𝐵  

 

1 

 

2 

 

3 

 
0 

 

𝑥𝐶  1 

 
2 

 

3 

 

4 

 

5 

 

4 

 

5 

 

𝒜=2 

𝒜=1 



13 

interactions in a Euclidean space. In this section, we consider the case of a simple yet non-trivial 

graph in the form of a triangle of path segments between three interactions and how such a graph 

may be embedded in a Euclidean space. In this way, we recover the formalism of the special 

theory of relativity. 

The form of the graph we will study is shown in figure 13. Incoming particles L and M interact 

at vertex a to produce two particles A and B. Particle B travels to vertex c where it interacts with 

another particle N to produce particles O and C. Particle C then interacts with particle A at vertex 

b to produce particles P and Q. 

 

 Fig. 13: A triangle of path segments among three interactions a, b and c. 

We will now consider how the three vertices a, b and c may be embedded in a Euclidean space. 

We will make this space three dimensional, as we seem to inhabit a world of three spatial 

dimensions, and also the space part of the spacetime of special relativity is three dimensional. So, 

we will assign three points in Euclidean 3-space to the vertices a, b and c respectively: 

𝑥 𝑎 =   

𝑥𝑎1

𝑥𝑎2

𝑥𝑎3

             𝑥 𝑏 =   

𝑥𝑏1

𝑥𝑏2

𝑥𝑏3

             𝑥 𝑐 =   

𝑥𝑐1

𝑥𝑐2

𝑥𝑐3

                                            (13) 

Note we use a superposed arrow to indicate a 3-vector, to distinguish it from the 4-vectors we 

will use later. 

Let us say the particles A, B and C travel with path velocities 𝑣𝐴, 𝑣𝐵  and 𝑣𝐶  along path segments 

of lengths 𝑥𝑎𝑏 , 𝑥𝑎𝑐  and 𝑥𝑐𝑏  and durations 𝑡𝑎𝑏 , 𝑡𝑎𝑐  and 𝑡𝑐𝑏  respectively: 

𝑥𝑎𝑏 =  𝑣𝐴𝑡𝑎𝑏             𝑥𝑎𝑐 =  𝑣𝐵𝑡𝑎𝑐             𝑥𝑐𝑏 =  𝑣𝐶𝑡𝑐𝑏                                            (14) 

So, the path segment from interaction a to b has length 𝑥𝑎𝑏 , and that from a to c, 𝑥𝑎𝑐 , and from c 

to b, 𝑥𝑐𝑏 . When we embed the vertices a, b and c, the following equations must hold between the 

lengths measured along the discrete path segments and the corresponding Euclidean distances in 

3-space: 

𝑥𝑎𝑏 =   𝑥 𝑏 − 𝑥 𝑎              𝑥𝑎𝑐 =   𝑥 𝑐 − 𝑥 𝑎              𝑥𝑐𝑏 =   𝑥 𝑏 − 𝑥 𝑐                               (15) 
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Next, we define the perigee point p of 𝑎𝑏    with respect to c with coordinates 𝑥 𝑝  as a point in our 

Euclidean 3-space along the line segment 𝑎𝑏    from which a line segment can be drawn to point c, 

this line segment being perpendicular to 𝑎𝑏   . Thus, p is the point lying on 𝑎𝑏    that is closest to c. 

The length of the line segment from p to c is denoted by 𝑥𝑝𝑐  and is given by: 

𝑥𝑝𝑐 =   𝑥 𝑐 − 𝑥 𝑝                                                                         (16) 

We define: 

𝑡𝑝𝑐 ≡  
1

𝑣𝐵
𝑥𝑝𝑐                                                                          (17) 

Note that we have used the path velocity of particle B in the definition of the time 𝑡𝑝𝑐 . That is, 

𝑡𝑝𝑐  is the time a particle travelling at the same path velocity as B would take to get from p to c if 

a path segment existed between these points. 

Similarly, the distance from a to p is denoted by 𝑥𝑎𝑝 : 

𝑥𝑎𝑝 =   𝑥 𝑝 − 𝑥 𝑎                                                                         (18) 

and we define: 

𝑡𝑎𝑝 ≡  
1

𝑣𝐵
𝑥𝑎𝑝                                                                        (19) 

The definition of the perigee point and the above distances are shown in figure 14. 

 

 Fig. 14: The triangle abc of figure 13 with the perigee point of 𝑎𝑏    with respect to c 

labeled p. 

Now let us define the following six 3-vectors: 

𝑥 𝑎𝑐 ≡  𝑥 𝑐 − 𝑥 𝑎             𝑥 𝑎𝑝 ≡  𝑥 𝑝 − 𝑥 𝑎             𝑥 𝑝𝑐 ≡  𝑥 𝑐 − 𝑥 𝑝

𝑡 𝑎𝑐 ≡  
1

𝑣𝐵
𝑥 𝑎𝑐               𝑡 𝑎𝑝 ≡  

1

𝑣𝐵
𝑥 𝑎𝑝                 𝑡 𝑝𝑐 ≡  

1

𝑣𝐵
𝑥 𝑝𝑐

                              (20) 

𝑥𝑎𝑐  

𝑎 𝑏 

𝑐 

 

𝑥𝑐𝑏  

𝑝 

𝑥𝑝𝑐  

𝑥𝑎𝑝  

𝑥𝑎𝑏  
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Consider the right-angle triangle apc in figure 14. Using the Pythagorean theorem, we have: 

𝑥 𝑎𝑐
2

 =  𝑥 𝑝𝑐
2

+ 𝑥 𝑎𝑝
2

                                                                       (21) 

or, 

𝑥 𝑎𝑝
2

𝑥 𝑎𝑐
2  =  1 −  

𝑥 𝑝𝑐
2

𝑥 𝑎𝑐
2                                                                        (22) 

Using (20), we have: 

𝑡 𝑎𝑝
2

𝑡 𝑎𝑐
2  =  1 −  

𝑡 𝑝𝑐
2

𝑡 𝑎𝑐
2                                                                        (23) 

Let us define: 

𝑣 𝑅  ≡   
𝑡 𝑝𝑐

 𝑡 𝑎𝑐  
                                                                       (24) 

so we can write (23) as: 

𝑡 𝑎𝑝
2

𝑡 𝑎𝑐
2  =  1 −  𝑣 𝑅

2
                                                                       (25) 

Now let us discuss the significance of the 3-vector 𝑣 𝑅  and its magnitude 𝑣𝑅 =  𝑣 𝑅 . Refer to 

figure 14. Particle B travels from interaction vertex a to c in time 𝑡𝑎𝑐 , while particle A travels 

from a to b. When particle B is at vertex c, it lies a distance 𝑥𝑝𝑐  from the nearest point on the 

path followed by particle A. So, 𝑡𝑝𝑐  is the time it would take for particle B, having reached 

vertex c, to then travel to the nearest point visited by particle A. The quantity 𝑣𝑅  is just the ratio 

of 𝑡𝑝𝑐  to 𝑡𝑎𝑐 . It can range from 0 to 1, and we call it the magnitude of the relative velocity. If it is 

0, the line segments 𝑎𝑐    and 𝑎𝑏    are parallel, and the perigee point p is identical with c. If 𝑣𝑅  is 1, 

it means 𝑎𝑐    and 𝑎𝑏    are perpendicular. Thus 𝑣𝑅  is a measure of how fast particle B moves away 

from the path followed by particle A. The relative velocity 𝑣 𝑅  is a 3-vector parallel to 𝑥 𝑝𝑐  with 

magnitude 𝑣𝑅 . 

Note that the relative velocity is an abstract quantity. We shouldn't think that particle A is 

"really" at point p when particle B is at c. Also, there is no direct physical way to measure, or 

even define, the relative velocity while B is at c; instead, a daughter particle of B must interact 

with A before this is possible. The relative velocity is derived from the embedding of a triangle 

of path segments abc, and is a function of the angle between 𝑎𝑐    and 𝑎𝑏   . The relative velocity we 

have defined is identical to the relative velocity of two observers in special relativity, an observer 

being equated with a particle. As in special relativity, there is a maximum possible magnitude of 

the relative velocity, 𝑣𝑅  = 1, corresponding to the speed of light c. (Our choice of units 

throughout this paper is such that the speed of light c = 1). 
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To make further connection with the special theory of relativity consider the ratio of the 

magnitude of 𝑡 𝑎𝑐  to 𝑡 𝑎𝑝 , from (25): 

 𝑡 𝑎𝑐  

 𝑡 𝑎𝑝  
 =  

1

 1 −  𝑣 𝑅
2

                                                                    (26) 

This equation (26) is the equation for time dilation in special relativity. The time  𝑡 𝑎𝑐   is the time 

it takes for particle or observer B to travel from a to c, while  𝑡 𝑎𝑝   is the time particle B would 

take to travel from a to p, that is if it were travelling with zero relative velocity with respect to 

particle or observer A, or in other words, if it were "at rest". 

Now consider the distance 𝑥𝑎𝑐 ′ =  𝑣𝐵𝑡𝑎𝑝 = 𝑥𝑎𝑝  as illustrated in figure 15. 

 

 Fig. 15: Two points c' and p' are added to the diagram of figure 14. Note that the time it 

takes for B to get from a to c' is equal to that it would take it to get from a to p, that is if it 

were "at rest" with respect to A. 

The distance 𝑥𝑝 ′ 𝑐 ′  is the perigee distance of point c' with respect to 𝑎𝑏   . Point c' is reached by 

particle B in time 𝑡𝑎𝑝 , the same time it would take to reach point p if it were "at rest" with 

respect to particle A. Referring to figure 15, we see that the triangles apc and ap'c' are similar, so 

we have: 

 𝑥 𝑝𝑐  

 𝑥 𝑎𝑐  
 =  

 𝑥 𝑝 ′ 𝑐 ′  

 𝑥 𝑎𝑐 ′  
= 𝑣𝑅                                                                 (27) 

Thus the ratio of the magnitude of 𝑥𝑝 ′ 𝑐 ′  to 𝑥𝑝𝑐  is given by: 

 𝑥 𝑝 ′ 𝑐 ′  

 𝑥 𝑝𝑐  
=

 𝑥 𝑎𝑐 ′  

 𝑥 𝑎𝑐  
 =  

𝑣𝐵 𝑡 𝑎𝑝  

𝑣𝐵 𝑡 𝑎𝑐  
=  1 −  𝑣 𝑅

2
                                                 (28) 

where we used (26). 

We recover in (28) the equation for Lorentz–FitzGerald contraction of special relativity. Thus in 

equations (26) and (28) we recover the basis for the Lorentz transform of space and time 

coordinates of special relativity, which we can summarize as follows. Consider two observers A, 

𝑥𝑎𝑐′=𝑥𝑎𝑝  

𝑎 𝑏 

𝑐 

 

𝑝 

𝑥𝑝𝑐  

𝑥𝑎𝑝  𝑝′ 

𝑐′ 

 

𝑥𝑝′𝑐′  
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the "lab frame", and B, with observer B travelling at relative velocity 𝑣𝑅  with respect to A. If A 

and B agree on the perigee distance between them, as shown in figure 14, they will disagree on 

the times at which this perigee distance holds, with these times being related by (26). In contrast, 

if the observers agree on the time they have travelled, they will disagree on the perigee distance 

between them, with these distances being related by (28). Here, we assume 𝑣𝐴 ≈ 𝑣𝐵  so we can 

ignore the stretching of space due to gravity, discussed in the next section. 

To make further connections to the special theory of relativity, we will now define 4-vectors. 

Consider the situation illustrated in figure 14. The distance particle B travels from point a to c is 

given by 𝑥𝑎𝑐 = 𝑣𝐵𝑡𝑎𝑐 . Relative to the nearest point visited by particle A, the displacement to 

particle B while it is at c is given by the vector 𝑥 𝑝𝑐 = 𝑣𝐵𝑡 𝑝𝑐  . So we can describe the motion of 

particle B with respect to particle A by the 4-vector  

𝒙𝐵𝐴 ≡   
𝑡𝑎𝑐
𝑡 𝑝𝑐

                                                                             (29) 

We use a bold letter to denote a 4-vector, to distinguish it from a 3-vector. 

Now recall equation (21) which we can combine with (20) to obtain: 

𝑡 𝑎𝑝
2

 =  𝑡𝑎𝑐
2 −  𝑡 𝑝𝑐

2
                                                                     (30) 

Thus, if we are given two fixed points a and p along the path travelled by particle A, the time 

particle B would have to travel for from a to p, were particle B at rest with respect to A, is 

always given by (30), irrespectively of the actual relative velocity of the two particles. In special 

relativity, the quantity  𝑡 𝑎𝑝   given by (30) is called the proper time. It is an invariant quantity, in 

that it does not depend on how fast the particles are moving with respect to each other. Also, 

somewhat confusingly, in special relativity the proper time between two points is used as the 

definition of the distance between those points in Minkowskian spacetime. This is not to be 

confused with the distance in Euclidean 3-space in which our graph is embedded, this distance 

being given by the path velocity multiplied by the path duration. 

The form of equation (30) inspires us to use the Lorentz metric to define the norm of a 4-vector, 

as is done in special relativity. That is, for a 4-vector (29) we define its norm to be: 

𝒙𝐵𝐴
2 ≡  𝑡𝑎𝑐

2 −  𝑡 𝑝𝑐
2

                                                                         (31) 

and using (30) we have: 

𝒙𝐵𝐴
2 =  𝑡 𝑎𝑝

2
                                                                                (32) 

Note that in (19) we defined 𝑡𝑎𝑝 =   1 𝑣𝐵  𝑥𝑎𝑝 . That is, 𝑡𝑎𝑝  is the time particle B would take to 

travel from a to p, were its relative velocity zero. Now we define the quantity 𝑇𝑎𝑝  which is the 

time particle A actually takes to travel from a to p. Note that particles A and B travel with path 

velocities 𝑣𝐴 and 𝑣𝐵  which in general may be different. 

𝑇𝑎𝑝 ≡  
1

𝑣𝐴
𝑥𝑎𝑝                                                                        (33) 
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We define the 4-vector 𝒑𝐵𝐴  as follows: 

𝒑𝐵𝐴 ≡  
𝒙𝐵𝐴

𝑇𝑎𝑝
                                                                        (34) 

which is the change in the position of particle B with respect to particle A (𝒙𝐵𝐴) divided by the 

time particle A takes to travel from a to p, that is the time in the lab frame or the "lab time". Now 

we can write: 

𝒑𝐵𝐴 =  
𝑡𝑎𝑝

𝑇𝑎𝑝

𝑡𝑎𝑐
𝑡𝑎𝑝

 
1
𝑣 𝑅

 =
𝑣𝐴
𝑣𝐵

1

 1 −  𝑣 𝑅
2

 
1
𝑣 𝑅

                                        (35) 

where we used (26). Using our definition of the norm of a 4-vector (31): 

𝒑𝐵𝐴
2 =   

𝑣𝐴
𝑣𝐵

 
2

                                                                    (36) 

We recognize 𝒑𝐵𝐴  as the energy-momentum of special relativity, and the quantity on the right 

hand side of (26) to be the square of the rest mass 𝜇: 

𝜇 ≡  
𝑣𝐴
𝑣𝐵

                                                                          (37) 

So in our theory we interpret the rest mass as the ratio of the path velocity of particle A to that of 

particle B. It measures how "shrunk" or "stretched out" the interval 𝑎𝑝     looks to particle A 

compared with particle B, that is how much less time particle A takes to cover this interval than 

particle B would take were it at rest with respect to A. This is intimately related to the role of 

mass as the curvature of spacetime in general relativity, a topic to which we will now turn. 

 

8. General Relativity 

In our approach to motion there is no fixed outside space and/or time "in" which motion occurs. 

Normally, general relativity presupposes an external spacetime, and equates its curvature with 

mass. This however leads to a chicken-and-egg type problem when trying to combine general 

relativity with the non-determinism of quantum mechanics. After all, if a massive particle can be 

in a superposition of being in two locations, then the curvature of the spacetime must also exist 

in superposition, so the two superposed locations must themselves exist in a superposition of 

different curvatures. The non-linearity of the equations involved means that this process does not 

converge, and the combination of quantum mechanics and general relativity is an open problem. 

In our approach, space is built up as particles interact by gluing together paths into a discrete 

non-Hausdorff manifold and then embedding it in a Euclidean space. There is no presupposed 

external space whose curvature we are to compute. Instead, particles can randomly choose any 

one of the outgoing paths from an interaction vertex. Thus the path chosen, the path velocity, and 

thus by (37) the mass, is decided locally at each vertex. So the curvature of the resulting space 

emerges as interactions occur, avoiding the chicken-and-egg problem of an infinite regress of 

superpositions. 
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We now wish to show that, given a certain approximation, our discrete approach to motion can 

recover the key equations of general relativity. We do this by first defining a metric on a graph of 

paths and interactions. We then show that this metric is correctly related to the mass of a particle 

in that particle's rest frame. 

Given a vertex i in the graph, we look at the set of outgoing path segments from it, which we 

denote 𝑃𝑖𝑗 , where j is the ending vertex of the path segment. The graph is embedded in a 

Euclidean 3-space, such that vertex i has coordinates 𝑥 𝑖  and vertex j has coordinates 𝑥 𝑗 . The 

vector from i to j is denoted 𝑥 𝑖𝑗  and is given by: 

𝑥 𝑖𝑗 ≡  𝑥 𝑗 − 𝑥 𝑖                                                                            (38) 

We define: 

𝑡 𝑖𝑗 ≡  
1

𝑣𝑖𝑗
𝑥 𝑖𝑗                                                                              (39) 

where 𝑣𝑖𝑗  is the path velocity of the path segment from i to j. 

Let us denote the distance from i to j by 𝑑𝑖𝑗  in accordance with the discussion immediately 

following (30): 

𝑑𝑖𝑗 ≡  𝑡 𝑖𝑗  =  
1

𝑣𝑖𝑗
 𝑥 𝑖𝑗                                                                        (40) 

Now the distance 𝑑𝑖𝑗  can be written as a function 𝑑𝑖 𝑥 𝑖𝑗   of the direction in which the path goes 

from i to j. So we have: 

𝑑𝑖 𝑥 𝑖𝑗  ≡  
1

𝑣𝑖𝑗
 𝑥 𝑖𝑗                                                                        (41) 

Or, squaring both sides: 

 𝑑𝑖 𝑥 𝑖𝑗   
2

=  
1

𝑣𝑖𝑗 2
𝑥 𝑖𝑗

2
                                                                      (42) 

Now we can make the continuum approximation to (42) to recover the metric if the spacetime 

continuum in general relativity. We assume that 𝑑𝑖 𝑥 𝑖𝑗   varies smoothly and slowly as a function 

of the vector 𝑥 𝑖𝑗  and that  𝑥 𝑖𝑗   is very small. This implies that the space we are dealing with is 

continuous and a Hausdorff space, and thus does not exhibit the phenomenon of quantum 

interference among different paths between the same places. Given this information, we can 

write (42) in terms of its power expansion with constant and linear terms equal to zero due to the 

translational invariance of space, and terminated after the quadratic terms. We obtain: 

 𝑑𝑖 𝑥 𝑖𝑗   
2

≈  𝑥 𝑖𝑗
𝑇
𝑮𝑖  𝑥 𝑖𝑗                                                                       (43) 

where 𝑮𝑖  is a 3×3 matrix of real numbers associated with the vertex i. 
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This suffices for a metric in a given particle's rest frame. If we use another frame of reference 

where the particle is not at relative rest, we can describe the particle's motion by the 4-vector 𝒙𝑖𝑗  

as we did in the previous section. Then we can write (43) as: 

 𝑑𝑖 𝒙𝑖𝑗   
2

≈  𝒙𝑖𝑗
𝑇𝑮′𝑖  𝒙𝑖𝑗                                                                       (44) 

where 𝑮′𝑖  is a 4×4 matrix. We recognize 𝑮′𝑖  is what is called the metric in general relativity, that 

is (44) corresponds to the equation for distance in general relativity: 

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥
𝜇𝑑𝑥𝜈                                                                     (45) 

Now we wish to show that the metric is related to the mass in the rest frame of a particle in the 

same way in our theory as in general relativity. Feynman discussed the meaning of general 

relativity in a lecture [8]: "Consider a small three-dimensional sphere, of a given surface area. Its 

actual radius exceeds the radius calculated by Euclidean geometry  [𝑟′ =] 𝑎𝑟𝑒𝑎/4𝜋  by an 

amount proportional to the amount of matter inside the sphere  𝑟 −  𝑎𝑟𝑒𝑎/4𝜋 = 𝐺/

3𝑐2𝑚𝑖𝑛𝑠𝑖𝑑𝑒  ." A similar interpretation is discussed in [9]. 

We can recover this same relation from the discrete non-Hausdorff model. Let us imagine a path 

segment 𝑃𝑎𝑏  from vertex a located in the embedding of a graph in the center of a small 3-sphere 

to a vertex b on the surface of it. 𝑃𝑎𝑏  has length 𝑥𝑎𝑏 , path velocity 𝑣𝑎𝑏  and duration 𝑡𝑎𝑏 . Let us 

imagine a copy of this situation, with a path segment 𝑃𝑐𝑑  from the center c of another 3-sphere to 

a vertex d on its surface. 𝑃𝑐𝑑  has the same length as 𝑃𝑎𝑏 , 𝑥𝑐𝑑 = 𝑥𝑎𝑏 , and thus the two spheres 

have the same surface areas in 3-space. 𝑃𝑐𝑑  has path velocity 𝑣𝑐𝑑  and duration 𝑡𝑐𝑑 . 

Recalling the discussion following (30), in special relativity the distance, and so the radius, in 

Minkowskian spacetime is given by the proper time. So the radius in the first case is given by 

𝑟′ = 𝑡𝑎𝑏  and in the second, 𝑟 = 𝑡𝑐𝑑 . We have: 

𝑟′ =  
1

𝑣𝑎𝑏
𝑥𝑎𝑏            𝑟 =  

1

𝑣𝑐𝑑
𝑥𝑐𝑑                                                            (46) 

So,  

𝑟

𝑟′
=  

𝑣𝑎𝑏
𝑣𝑐𝑑

                                                                             (47) 

or, 

𝑟 − 𝑟′ =   
𝑣𝑎𝑏
𝑣𝑐𝑑

− 1 𝑟′                                                                     (48) 

Now from (37) we know that the ratio of two path velocities is the rest mass 𝜇. If the path 

velocities are equal, this gives a mass of 1 and there is no shrinking or stretching of space. This is 

the case for what is called "empty space" in general relativity. The quantity 𝑣𝑎𝑏 𝑣𝑐𝑑 − 1 =  𝜇 −
1 is thus the extra mass in the second sphere of radius r, over and above that in the case where 

the space is empty. Actually, it is the extra mass linear density. It is multiplied in (48) by the 
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radius 𝑟′  of the first sphere, thus giving the total extra mass which needs to be added to the first 

sphere to yield the second sphere. It is what Feynman denoted 𝑚𝑖𝑛𝑠𝑖𝑑𝑒 . So we have: 

𝑟 − 𝑟′ =  𝑚𝑖𝑛𝑠𝑖𝑑𝑒                                                                      (49) 

which is equivalent to what is described in the Feynman quote above given an appropriate choice 

of units. 

 

9. Quantum Mechanics 

We now wish to show how we can recover non-relativistic quantum mechanics from our discrete 

non-Hausdorff approach to motion. We start by taking the classical limit 𝑣𝑅 ≪ 1 of the theory of 

relative motion discussed in section 7. 

Consider the situation of figure 14. In the limit 𝑣𝑅 ≪ 1, the points c and p are much closer 

together than either point is to point a. Now from (30) we know that the distance in special 

relativity is equal to the proper time. So in the classical approximation, 𝑡𝑎𝑝  corresponds to the 

classical distance B would travel were it at rest relative to A, and 𝑡𝑎𝑐  is the classical distance it 

actually travels. The ratio of 𝑡𝑎𝑐  to 𝑡𝑎𝑝  is given by (26), which can be written: 

𝑡𝑎𝑐
𝑡𝑎𝑝

 =   1 −  𝑣𝑅
2 −

1
2                                                                    (50) 

Since 𝑣𝑅 ≪ 1, we can use the binomial approximation  1 +  𝑥 𝑛 ≈ 1 + 𝑛𝑥 for 𝑥 ≪ 1 to yield: 

𝑡𝑎𝑐
𝑡𝑎𝑝

 ≈  1 +
1

2
𝑣𝑅

2                                                                       (51) 

or, 

𝑡𝑎𝑐 − 𝑡𝑎𝑝 =  
1

2
𝑣𝑅

2𝑡𝑎𝑝 =
1

2
𝑣𝑅

2
𝑡𝑎𝑝

𝑇𝑎𝑝
𝑇𝑎𝑝 =

1

2
𝑣𝑅

2
𝑣𝐴
𝑣𝐵

𝑇𝑎𝑝 =
1

2
𝑣𝑅

2𝑚𝑇𝑎𝑝                           (52) 

where we used (20), (33) and (37). We also used the classical symbol m for the rest mass. 

Now, as discussed above, the quantity 𝑡𝑎𝑐 − 𝑡𝑎𝑝  is the change in classical distance, or position, 

so we denote it by the symbol ∆𝑥. The time 𝑇𝑎𝑝  is the time measured by particle A, which plays 

the role of the "lab frame" and so corresponds to the classical global time t. Thus we can write 

(52) as: 

∆𝑥 =
1

2
𝑚𝑣𝑅

2𝑡                                                                        (53) 

We recognize that ∆𝑥 is just the expression for the classical kinetic energy multiplied by the 

classical time. But it can also be interpreted as motion along a path with path velocity equal to 

the classical kinetic energy. So, in the classical approximation, we can replace the theory of 

relative motion of section 7 by a motion along a discrete path with path velocity 1

2
𝑚𝑣𝑅

2. That is, 

if we insist on studying motion in classical space and time, we will find that motion is periodic, 

with a phase shift depending on the kinetic energy and duration of motion as per (53). 
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Thus far in this paper we have only dealt with path segments of integer length. When gluing the 

start and end portions of such segments, the difference in path lengths was always an integer, and 

the difference in durations an integer multiple of the period 𝜏. We now wish to generalize our 

model to cases where path length differences are not integers. We wish to do so while 

maintaining the essential idea of motion on a non-Hausdorff manifold. 

The velocity 𝑣 of any 1-dimensional motion can be expressed as a real number of spatial units 

covered in a unit of time. One of the key ideas of this paper, the discreteness of motion, is that 

these units can be very small, but not infinitesimally so. One spatial unit is covered in 𝜏 = 1 𝑣  

(see (3)) units of time, so it is an essential feature of motion along a path that it has a period 𝜏. In 

the case of integer position coordinates introduced in section 2, this period manifested as the 

duration of time the position stayed constant before it hopped to the next position along the path. 

But this was just a specific example of how a path can be periodic. In general, we can represent 

any path by a periodic function of time Ψ(𝑡) which we call the wavefunction. The wavefunction 

must obey the following for all values of t for it to be periodic: 

Ψ(𝑡) = Ψ(𝑡 + 𝜏)                                                                       (54) 

The position, which in general can be any real number 𝑥, at any given time 𝑡 is then: 

𝑥 = 𝑣𝑡 + 𝑥0 =
𝑡

𝜏
+ 𝑥0                     𝑥, 𝑥0 , 𝑣, 𝑡, 𝜏 ∈ ℝ                     (55) 

this being the number of spatial units covered in time 𝑡 plus the position 𝑥0 at time 0. 

If there are multiple paths between the same starting and ending positions, we proceed as in 

section 3 in gluing the starts and ends of the paths into a non-Hausdorff manifold. We do this by 

setting up a mapping of spatial units along different paths, as in section 3. In that section, where 

we used integer spatial coordinates, we always mapped one integer to one integer. For example, 

the position 𝑥𝐴 = 5 of one path would be be mapped to, or treated as equivalent to, the position 

𝑥𝐵 = 4 of another path. In the generalized case, the spatial coordinates can be real numbers. Yet, 

we must still glue one whole spatial unit to one whole spatial unit, which has a duration 𝜏 in time 

and spatial length of 1 unit. For example, we can glue the interval 𝑥𝐴 =  5 . .  6   of one path to the 

interval 𝑥𝐵 =  4.2 . .  5.2   of another. In this way we can deal with gluing paths together with 

non-integer differences in length. 

If we glue two identical paths together, the result is, by definition, a path of amplitude equal to 2. 

So the following must hold for any wavefunction: 

Ψ 𝑡 + Ψ 𝑡 = 2Ψ 𝑡                                                                     (56) 

In general, whenever we glue together two paths of amplitudes 𝐴 and 𝐵 both with the same 

period 𝜏, with the paths offset in time by ∆𝑡, the result must also be a path, with some amplitude 

C, time offset ∆𝑡′, and the same period 𝜏. Namely we must have: 

𝐴Ψ 𝑡 + 𝐵Ψ 𝑡 + ∆𝑡 = 𝐶Ψ 𝑡 + ∆𝑡′                                                       (57) 

We also require that: 
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Ψ 𝑡 + Ψ 𝑡 +
𝜏

2
 = 0                                                                    (58) 

that is,  

−Ψ 𝑡 = Ψ 𝑡 +
𝜏

2
                                                                     (59) 

To show (58) must hold, consider there exists some non-zero wavefunction Φ 𝑡 : 

Φ 𝑡 = Ψ 𝑡 + Ψ 𝑡 +
𝜏

2
                                                                (60) 

Then we would have: 

Φ 𝑡 +
𝜏

2
 = Ψ 𝑡 +

𝜏

2
 + Ψ 𝑡 + 𝜏 = Φ 𝑡                                          (61) 

as well as: 

Φ 𝑡 + 𝜏 = Ψ 𝑡 + 𝜏 + Ψ 𝑡 + 𝜏 +
𝜏

2
 = Φ 𝑡                                    (62) 

where we used (54). But (61) means Φ 𝑡  has a period of 𝜏 2 , contradicting the requirement that 

we always glue paths with period 𝜏 to obtain one path with the same period 𝜏. Therefore, (58) 

must hold. 

Now let us find the form of the function Ψ 𝑡 . We know (57) must hold for all possible choices 

of 𝐴, 𝐵 and ∆𝑡. So let us choose 𝐴 = −1 ℎ , 𝐵 = 1 ℎ  and ∆𝑡 = ℎ where ℎ is a small positive 

real number. We use equation (59) to obtain the negative amplitude 𝐴. We can then write (57) as: 

Ψ 𝑡 + ℎ − Ψ 𝑡 

ℎ
= 𝐶Ψ 𝑡 + ∆𝑡′                                                    (63) 

But we recognize the left hand side of (63), in the limit as ℎ goes to zero, to be the derivative of 

Ψ 𝑡  with respect to 𝑡, so we have: 

𝑑Ψ 𝑡 

𝑑𝑡
= 𝐶Ψ 𝑡 + ∆𝑡′                                                              (64) 

for some 𝐶 and ∆𝑡′. Solving (64) and using (54) and (57) gives: 

Ψ(𝑡) = 𝐴𝑒𝑖2𝜋𝑣𝑡                                                                       (65) 

because: 

𝑑Ψ 𝑡 

𝑑𝑡
=

𝑑𝐴𝑒𝑖2𝜋𝑣𝑡

𝑑𝑡
= 𝑖2𝜋𝑣𝐴𝑒𝑖2𝜋𝑣𝑡 = 2𝜋𝑣Ψ 𝑡 +

𝜏

4
                              (66) 

which matches (64). 

Motion still proceeds by discrete hops from one spatial unit of amplitude 𝐴 to the next one, also 

of amplitude 𝐴. It follows the number of distinct yet equivalent hops from one position to the 
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next is given by 𝐴2, just as in section 6. 𝐴2 is also given by the absolute square of the 

wavefunction (65): 

 Ψ(𝑡) 2 =  𝐴𝑒𝑖2𝜋𝑣𝑡  
2

= 𝐴2                                                                (67) 

As discussed in section 6, following an interaction a particle will choose locally (at the vertex) 

and randomly, with equal probability, one of the paths available to it, in proportion to the square 

of its amplitude, given by the absolute square of the wavefunction as in (67). The proportionality 

factor is fixed by the requirement that the probabilities of all the paths available to a particle sum 

to one, that is, the particle will always choose some path to travel on. Thus in (67) we have 

recovered the Born rule of quantum mechanics. 

Now we can combine the wavefunction (65) with the approximation (53). At non-relativistic 

speeds, motion relative to the lab frame with velocity 𝑣𝑅  is equivalent to motion along a path 

with path velocity 1

2
𝑚𝑣𝑅

2: 

Ψ(𝑡) = 𝑒𝑖2𝜋
1
2
𝑚𝑣𝑅

2𝑡                                                                          (68) 

The non-relativistic equation for constant velocity motion is: 

𝑥 = 𝑣𝑅𝑡 + 𝑥0                                                                                  (69) 

or: 

𝑣𝑅𝑡 = 𝑥 − 𝑣𝑅𝑡0                                                                              (70) 

where 𝑥0 = 𝑣𝑅𝑡0. 

Substituting into (68) gives: 

Ψ(𝑥, 𝑡0) = 𝑒𝑖2𝜋
1
2
𝑚𝑣𝑅 𝑥−𝑣𝑅 𝑡0                                                                (71) 

Now taking the partial derivative with respect to 𝑡0 and the partial second derivative with respect 

to 𝑥 gives: 

𝑖
𝜕Ψ

𝜕𝑡0
= −

1

𝜋𝑚

𝜕2Ψ

𝜕𝑥2
                                                                       (72) 

which is the Schrödinger equation at the time 𝑡0 and position 𝑥 with zero potential and in units 

chosen such that Planck's constant ℎ = 4. 

We have thus shown that the generalized non-Hausdorff model of motion underlies both the 

Born rule and the Schrödinger equation of quantum mechanics. 

A few words are appropriate here on the topic of the interpretation of the double-slit experiment 

[3] in quantum mechanics. In the standard Copenhagen interpretation, a particle travelling from a 

source to a detector, which travel is possible along two different paths, doesn't "have" a position 

until it is measured at the detector. We cannot talk of "where" the particle "really" is until it is 

detected. 
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The solution we propose in this work is that of considering space to be a non-Hausdorff 

manifold. As in section 3, we can glue the start and end portions of two paths together, but leave 

the middle portion unglued. That is, space "branches" into two paths. Normally, we view space 

to be a continuum and treat the barrier in the double-slit experiment as a region of space which 

cannot be occupied by a particle. In the non-Hausdorff approach, in contrast, there is no "space" 

where the barrier is as far as the particle is concerned. As the particle can never find itself inside 

the barrier, we feel it is wrong to nevertheless claim that there is space there, as space is nothing 

but a set of all points at which the particle may be present. 

While the particle is travelling along one of a set of branches of a non-Hausdorff manifold, we 

say it is in a "superposition" of states, like a particle travelling along "both" paths in the double-

slit experiment. The particle itself chose locally and randomly one of these branches after its last 

interaction. So it itself "knows" "where" (on which path) it is, but no other particle or system 

knows that. 

When the particle has another interaction at the detector, the superposition "collapses". Now, as 

discussed in section 4, we can embed the path segment travelled by the particle based on its 

distance travelled, and the other path segments connected to the interaction vertex, and so 

compute the position of the interaction vertex, and so compute the position of the interaction in a 

Euclidean space. Thus space―the locations of interactions―is built up as interactions occur 

between particles travelling along non-Hausdorff manifolds, and this allows a natural 

interpretation of what it means that a particle "has" no position until a measurement (interaction) 

makes an embedding of the interaction graph possible. 

 

10. Conclusion 

Our approach to motion presented in this paper rests on two key ideas. First, that motion is 

discrete and proceeds in small but finite hops. Second, that motion occurs on a non-Hausdorff 

manifold, one that can have "branches" on it. These two ideas taken together provide a natural 

interpretation for the necessity of keeping track of a separate phase for every possible path a 

particle can take in quantum mechanics. We have shown the phase is a function of the kinetic 

energy of a particle in the domain of non-relativistic quantum mechanics. Meanwhile, in the 

domain of the non-Hausdorff manifold being "smooth" and continuous, we have recovered the 

theory of general relativity, the "smoothness" and thus the Hausdorffness of space discarding any 

quantum phenomena such as path interference, which indeed are not a feature of general 

relativity. The underlying discrete non-Hausdorff model of motion thus is more general than, and 

lies at a deeper level than, both relativity and quantum mechanics. We hope it will be of use in 

calculating phenomena which involve both gravity and quantum mechanics, both for 

experimental verification and for the development of a unified theory of all motion. 
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