Quantum Physics

1906 Submissions

[87] viXra:1906.0577 [pdf] submitted on 2019-06-30 11:22:05

The Nonlinear Schroedinger Equation with Infinite Mass Wave

Authors: Miroslav Pardy
Comments: 10 Pages. The original ideas

The Schroedinger equation with the logarithmic nonlinear term is derived by the natural generalization of the hydrodynamical model of quantum mechanics. The nonlinear term appears to be logically necessary because it enables explanation of the infinite mass limit of the wave function. The article is the modified version of the articles by author (Pardy, 1993; 2001).
Category: Quantum Physics

[86] viXra:1906.0568 [pdf] submitted on 2019-06-29 06:07:17

Information Teleport in Diamond

Authors: George Rajna
Comments: 23 Pages.

Researchers from the Yokohama National University have teleported quantum information securely within the confines of a diamond. [17] The experiment has managed to prepare a remote quantum state; i.e., absolutely secure communication was established with another, physically separated quantum computer for the first time in the microwave regime. [16] Quantum physics has led to new types of sensors, secure data transmission methods and researchers are working toward computers. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[85] viXra:1906.0567 [pdf] submitted on 2019-06-29 06:26:27

Low-Power Lighting Technology

Authors: George Rajna
Comments: 51 Pages.

Researchers from the Moscow Institute of Physics and Technology and Lebedev Physical Institute of the Russian Academy of Sciences have designed and tested a prototype cathodoluminescent lamp for general lighting. [27] A team of researchers affiliated with several institutions in Spain and the U.S. has announced that they have discovered a new property of light-self-torque. [26] When studying biological cells using optical tweezers, one main issue is the damage caused to the cell by the tool. Giovanni Volpe, University of Gothenburg, has discovered a new type of force that will greatly reduce the amount of light used by optical tweezers-and improve the study of all kinds of cells and particles. [25] The device, which works in the mesoscopic mass range for the first time, might not only be used to help solve fundamental problems in quantum mechanics, it might also find use in precision metrology applications. [24] Although previous research shows that metal nanoparticles have properties useful for various biomedical applications, many mysteries remain regarding how these tiny materials form, including the processes that generate size variations. [23] With a novel electrochemical biosensing device that identifies the tiniest signals these biomarkers emit, a pair of NJIT inventors are hoping to bridge this gap. [22] The dark skin pigment melanin protects against the sun's damaging rays by absorbing light energy and converting it to heat. [21] Wang, Bren Professor of Medical Engineering and Electrical Engineering, is using PAM to improve on an existing technology for measuring the oxygen-consumption rate (OCR) in collaboration with Professor Jun Zou at Texas A&M University. [20] A remote command could one day send immune cells on a rampage against a malignant tumor. The ability to mobilize, from outside the body, targeted cancer immunotherapy inside the body has taken a step closer to becoming reality. [19] It's called gene editing, and University of Alberta researchers have just published a game-changing study that promises to bring the technology much closer to therapeutic reality. [18]
Category: Quantum Physics

[84] viXra:1906.0565 [pdf] submitted on 2019-06-29 09:51:27

.....dynamics of Time......

Authors: ....durgadas Datta....
Comments: 8 Pages. ...FOR FURTHER RESEARCH ...

...CONCEPT OF TIME IS A GREAT CONFUSION IN MODERN PHYSICS.
Category: Quantum Physics

[83] viXra:1906.0562 [pdf] submitted on 2019-06-29 16:50:40

How the wu Experiment Can Interpreted as a Pseudo Symmetry Violation.

Authors: Bryn.s.Cat
Comments: 3 Pages.

How the Wu experiment as a Pseudo Symmetry Violation.Thus restoring Symmetry(Noether's theorem,laws of conservation,etc).
Category: Quantum Physics

[82] viXra:1906.0553 [pdf] submitted on 2019-06-30 04:58:23

Atomic Motion Captured in 4-D

Authors: George Rajna
Comments: 46 Pages.

A UCLA-led team has gained a never-before-seen view of nucleation-capturing how the atomsrearrange at 4-D atomic resolution (that is, in three dimensions of space and across time). [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient.
Category: Quantum Physics

[81] viXra:1906.0550 [pdf] submitted on 2019-06-28 06:24:24

Quasi-2D Superconductor

Authors: George Rajna
Comments: 37 Pages.

Researchers at the Zavoisky Physical-Technical Institute and the Southern Scientific Center of RAS, in Russia, have recently fabricated quasi-2-D superconductors at the interface between a ferroelectric Ba0.8Sr0.2TiO3 film and an insulating parent compound of La2CuO4. [23] Scientists seeking to understand the mechanism underlying superconductivity in "stripe-ordered" cuprates-copper-oxide materials with alternating areas of electric charge and magnetism-discovered an unusual metallic state when attempting to turn superconductivity off. [22] This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research. [21] High-temperature (Tc) superconductivity typically develops from antiferromagnetic insulators, and superconductivity and ferromagnetism are always mutually exclusive. [20] Scientists at the U.S. Department of Energy's Ames Laboratory have developed a method to accurately measure the "exact edge" or onset at which a magnetic field enters a superconducting material. [19] TU Wien has now made a major advance towards achieving this goal and, at the same time, has furthered an understanding of why conventional materials only become superconducting at around-200°C [18] The emerging field of spintronics leverages electron spin and magnetization. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14]
Category: Quantum Physics

[80] viXra:1906.0548 [pdf] submitted on 2019-06-28 08:00:40

Ground-State for 2D Superconductors

Authors: George Rajna
Comments: 39 Pages.

Now, scientists at Tokyo Institute of Technology (Tokyo Tech), the University of Tokyo and Tohoku University report curious multi-state transitions of these superconductors in which they change from superconductor to special metal and then to insulator. [24] Researchers at the Zavoisky Physical-Technical Institute and the Southern Scientific Center of RAS, in Russia, have recently fabricated quasi-2-D superconductors at the interface between a ferroelectric Ba0.8Sr0.2TiO3 film and an insulating parent compound of La2CuO4. [23]
Category: Quantum Physics

[79] viXra:1906.0546 [pdf] submitted on 2019-06-28 09:48:23

Cuprate Superconductor Challenge

Authors: George Rajna
Comments: 40 Pages.

Cuprates hold the record high superconducting temperature at ambient pressure so far, but understanding their superconducting mechanism remains one of the great challenges of physical sciences listed as one of 125 quests announced by Science. [25] Now, scientists at Tokyo Institute of Technology (Tokyo Tech), the University of Tokyo and Tohoku University report curious multi-state transitions of these superconductors in which they change from superconductor to special metal and then to insulator. [24]
Category: Quantum Physics

[78] viXra:1906.0545 [pdf] submitted on 2019-06-28 10:22:33

Quantum Computation Linked to Gravity

Authors: George Rajna
Comments: 25 Pages.

Physicists Paweł Caputa at Kyoto University and Javier Magan at the Instituto Balseiro, Centro Atómico de Bariloche in Argentina have published their paper on the link between quantum computing and gravity in a recent issue of Physical Review Letters. [21] Physicists in California have loaded a bunch of ultracold caesium atoms into the back of a van and driven them up a hill to demonstrate how quantum interference can be used to measure gravity outside the laboratory. [20] The gravitational waves created by black holes or neutron stars in the depths of space have been found to reach Earth. [19] A group of scientists from the Niels Bohr Institute (NBI) at the University of Copenhagen will soon start developing a new line of technical equipment in order to dramatically improve gravitational wave detectors. [18] A global team of scientists, including two University of Mississippi physicists, has found that the same instruments used in the historic discovery of gravitational waves caused by colliding black holes could help unlock the secrets of dark matter, a mysterious and as-yet-unobserved component of the universe. [17] The lack of so-called "dark photons" in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon's magnetic moment. [16] By reproducing the complexity of the cosmos through unprecedented simulations, a new study highlights the importance of the possible behaviour of very high-energy photons. In their journey through intergalactic magnetic fields, such photons could be transformed into axions and thus avoid being absorbed. [15] Scientists have detected a mysterious X-ray signal that could be caused by dark matter streaming out of our Sun's core. Hidden photons are predicted in some extensions of the Standard Model of particle physics, and unlike WIMPs they would interact electromagnetically with normal matter. In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the leading hypothetical particle physics candidates for dark matter. The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron-proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[77] viXra:1906.0537 [pdf] submitted on 2019-06-29 04:15:44

New Property of Light

Authors: George Rajna
Comments: 46 Pages.

A team of researchers affiliated with several institutions in Spain and the U.S. has announced that they have discovered a new property of light-self-torque. [26] When studying biological cells using optical tweezers, one main issue is the damage caused to the cell by the tool. Giovanni Volpe, University of Gothenburg, has discovered a new type of force that will greatly reduce the amount of light used by optical tweezers-and improve the study of all kinds of cells and particles. [25] The device, which works in the mesoscopic mass range for the first time, might not only be used to help solve fundamental problems in quantum mechanics, it might also find use in precision metrology applications. [24] Although previous research shows that metal nanoparticles have properties useful for various biomedical applications, many mysteries remain regarding how these tiny materials form, including the processes that generate size variations. [23] With a novel electrochemical biosensing device that identifies the tiniest signals these biomarkers emit, a pair of NJIT inventors are hoping to bridge this gap. [22] The dark skin pigment melanin protects against the sun's damaging rays by absorbing light energy and converting it to heat. [21] Wang, Bren Professor of Medical Engineering and Electrical Engineering, is using PAM to improve on an existing technology for measuring the oxygen-consumption rate (OCR) in collaboration with Professor Jun Zou at Texas A&M University. [20] A remote command could one day send immune cells on a rampage against a malignant tumor. The ability to mobilize, from outside the body, targeted cancer immunotherapy inside the body has taken a step closer to becoming reality. [19] It's called gene editing, and University of Alberta researchers have just published a game-changing study that promises to bring the technology much closer to therapeutic reality. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17]
Category: Quantum Physics

[76] viXra:1906.0535 [pdf] submitted on 2019-06-27 15:25:48

Compton-Wavelength Minimum Position Uncertainty Due to Diversion of Momentum Uncertainty to Increased Particle Number

Authors: Steven Kenneth Kauffmann
Comments: 6 Pages.

In single-particle quantum mechanics there is no impediment to a particle's wave function having a significant amplitude for arbitrarily short wavelengths, i.e., for arbitrarily large momenta, so the iconic single-particle uncertainty relation permits a particle's position to be arbitrarily accurately ascertained. Once a single-particle theory is second quantized, however, the physics of imparting a particle's wave function with ever larger momenta eventually encounters stiff competition from the formation of multiparticle states wherein none of the individual particles is characterized by high momentum. In fact, the single-particle uncertainty principle itself is modified by the presence of the expectation value of the particle number operator on its right side. Since the threshold for the high-momentum-diverting formation of additional particles is set by the particle's rest mass, it stands to reason that particles have an irreducible position uncertainty of the order of their Compton wavelength, for which we develop a specific model.
Category: Quantum Physics

[75] viXra:1906.0526 [pdf] submitted on 2019-06-26 07:34:19

Exotic Graphene Quantum States

Authors: George Rajna
Comments: 64 Pages.

Researchers from Brown and Columbia Universities have demonstrated previously unknown states of matter that arise in double-layer stacks of graphene, a two-dimensional nanomaterial. [38] A quantum squeezing and amplification technique has been used to measure the position of a trapped ion to subatomic precision. [37] A new theoretical model involves squeezing light to just the right amount to accurately transmit information using subatomic particles. [36]
Category: Quantum Physics

[74] viXra:1906.0522 [pdf] submitted on 2019-06-26 09:00:43

Topological Magnetic Quasiparticles

Authors: George Rajna
Comments: 54 Pages.

A team of researchers from Tohoku University, J-PARC, and Tokyo Institute of Technology conducted an in-depth study of magnetic quasiparticles called "triplons." [34] For the first time, a group of researchers from Universidad Complutense de Madrid, IBM, ETH Zurich, MIT and Harvard University have observed topological phases of matter of quantum states under the action of temperature or certain types of experimental imperfections. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[73] viXra:1906.0521 [pdf] submitted on 2019-06-26 09:35:38

Quantum Ghost Imaging

Authors: George Rajna
Comments: 74 Pages.

The key to ghost imaging is to use two or more correlated beams of particles. [46] Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44]
Category: Quantum Physics

[72] viXra:1906.0507 [pdf] submitted on 2019-06-27 05:25:28

Bridge to Quantum World

Authors: George Rajna
Comments: 75 Pages.

Physicists from Professor Johannes Fink's research group at the Institute of Science and Technology Austria (IST Austria) have found a way to use a mechanical oscillator to produce entangled radiation. [47] The key to ghost imaging is to use two or more correlated beams of particles. [46] Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38]
Category: Quantum Physics

[71] viXra:1906.0504 [pdf] submitted on 2019-06-27 06:56:38

Ultrafast, Coherent Magnetism

Authors: George Rajna
Comments: 55 Pages.

"Regarding new perspectives, this could lead to similar fantastic developments as in the field of magnetism, such as electronic coherence in quantum computing," says Schultze hopefully, who now leads a working group focusing on attosecond physics at the Institute of Experimental Physics. [35] A team of researchers from Tohoku University, J-PARC, and Tokyo Institute of Technology conducted an in-depth study of magnetic quasiparticles called "triplons." [34] For the first time, a group of researchers from Universidad Complutense de Madrid, IBM, ETH Zurich, MIT and Harvard University have observed topological phases of matter of quantum states under the action of temperature or certain types of experimental imperfections. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32]
Category: Quantum Physics

[70] viXra:1906.0490 [pdf] submitted on 2019-06-25 08:22:25

Compton Particles and Quantum Forces

Authors: Martin Mayer
Comments: 50 Pages.

An alternative physical model for fundamental particles, fundamental forces & black holes is presented based on classical physics, an unconventional variant of quantum physics as well as holographic & fractal principles. The presented model is primarily based on work from Horst Thieme and Nassim Haramein. In this document their concepts are combined, refined and extended into a joint model that is wider in scope. Furthermore elements were taken from the work of Randell Mills and Erik Verlinde. The deduced equations produce a good number of interesting results and new understandings which might be perceived as controversial with regard to contemporary physics. The presented content covers a broad range of topics in physics to demonstrate the model’s wide applicability and to spark more future research. Most notably probabilistic quantum physics is not necessary for the presented model and its noteworthy results.
Category: Quantum Physics

[69] viXra:1906.0484 [pdf] submitted on 2019-06-25 13:01:43

Method Prove Quantum Entanglement

Authors: George Rajna
Comments: 63 Pages.

A team of physicists from the University of Vienna and the Austrian Academy of Sciences (ÖAW) introduces a novel technique to detect entanglement even in large-scale quantum systems with unprecedented efficiency. [39] Researchers at QuTech in Delft have succeeded in generating quantum entanglement between two quantum chips faster than the entanglement is lost. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29]
Category: Quantum Physics

[68] viXra:1906.0470 [pdf] submitted on 2019-06-24 08:58:00

How to Bend Waves

Authors: George Rajna
Comments: 63 Pages.

This kind of "branched flow" has first been observed in 2001. Scientists at TU Wien (Vienna) have now developed a method to exploit this effect. [38] A quantum squeezing and amplification technique has been used to measure the position of a trapped ion to subatomic precision. [37] A new theoretical model involves squeezing light to just the right amount to accurately transmit information using subatomic particles. [36] The standard approach to building a quantum computer with majoranas as building blocks is to convert them into qubits. However, a promising application of quantum computing-quantum chemistry-would require these qubits to be converted again into so-called fermions. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light.
Category: Quantum Physics

[67] viXra:1906.0469 [pdf] submitted on 2019-06-24 10:13:37

Individual Atoms Target

Authors: George Rajna
Comments: 64 Pages.

The technique is based on nuclear magnetic resonance, which takes advantage of the fact that certain atomic nuclei interact with a magnetic field. [39] This kind of "branched flow" has first been observed in 2001. Scientists at TU Wien (Vienna) have now developed a method to exploit this effect. [38] A quantum squeezing and amplification technique has been used to measure the position of a trapped ion to subatomic precision. [37] A new theoretical model involves squeezing light to just the right amount to accurately transmit information using subatomic particles. [36] The standard approach to building a quantum computer with majoranas as building blocks is to convert them into qubits. However, a promising application of quantum computing-quantum chemistry-would require these qubits to be converted again into so-called fermions. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30]
Category: Quantum Physics

[66] viXra:1906.0467 [pdf] submitted on 2019-06-24 11:45:36

Research with Smartphone Cameras

Authors: George Rajna
Comments: 61 Pages.

Although smartphones and other consumer cameras are increasingly used for scientific applications, it's difficult to compare and combine data from different devices. [40] Advanced nuclear magnetic resonance (NMR) techniques at the U.S. Department of Energy's Ames Laboratory have revealed surprising details about the structure of a key group of materials in nanotechology, mesoporous silica nanoparticles (MSNs), and the placement of their active chemical sites. [39] With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. [38] Physicists at the Kastler Brossel Laboratory in Paris have reached a milestone in the combination of cold atoms and nanophotonics. [37]
Category: Quantum Physics

[65] viXra:1906.0460 [pdf] submitted on 2019-06-25 01:07:26

Trapping Light for Quantum Computers

Authors: George Rajna
Comments: 62 Pages.

Quantum computers, which use light particles (photons) instead of electrons to transmit and process data, hold the promise of a new era of research in which the time needed to realize lifesaving drugs and new technologies will be significantly shortened. [38] In the paper titled "Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs," Huang and Margaret Martonosi, a professor of Computer Science at Princeton, identify three key difficulties in debugging quantum programs, and evaluate their solutions in addressing those difficulties. [37] Researchers at the University of Chicago published a novel technique for improving the reliability of quantum computers by accessing higher energy levels than traditionally considered. [36] An international team of researchers has taken an important step towards solving a difficult variation of this problem, using a statistical approach developed at the University of Freiburg. [35] Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds. [34] Electronics could work faster if they could read and write data at terahertz frequency, rather than at a few gigahertz. [33] A team of researchers led by the Department of Energy's Oak Ridge National Laboratory has demonstrated a new method for splitting light beams into their frequency modes. [32] Quantum communication, which ensures absolute data security, is one of the most advanced branches of the "second quantum revolution". [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[64] viXra:1906.0453 [pdf] submitted on 2019-06-23 11:24:44

Surface Tension/ Viscosity = Wave Speed

Authors: David E. Fuller, Dahl Winters, Ruud Loeffen, Warren Giordano
Comments: 5 Pages.

Planck Units can be directly converted into Friedmann Units by way of Lorentz
Category: Quantum Physics

[63] viXra:1906.0434 [pdf] submitted on 2019-06-24 04:49:03

Quantum Detection Diseases

Authors: George Rajna
Comments: 65 Pages.

But one lesser-known field is also starting to reap the benefits of the quantum realm-medicine. [38] A quantum squeezing and amplification technique has been used to measure the position of a trapped ion to subatomic precision. [37] A new theoretical model involves squeezing light to just the right amount to accurately transmit information using subatomic particles. [36] The standard approach to building a quantum computer with majoranas as building blocks is to convert them into qubits. However, a promising application of quantum computing-quantum chemistry-would require these qubits to be converted again into so-called fermions. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light.
Category: Quantum Physics

[62] viXra:1906.0428 [pdf] submitted on 2019-06-22 10:14:31

Quantum Squeezing and Amplification

Authors: George Rajna
Comments: 62 Pages.

A quantum squeezing and amplification technique has been used to measure the position of a trapped ion to subatomic precision. [37] A new theoretical model involves squeezing light to just the right amount to accurately transmit information using subatomic particles. [36] The standard approach to building a quantum computer with majoranas as building blocks is to convert them into qubits. However, a promising application of quantum computing-quantum chemistry-would require these qubits to be converted again into so-called fermions. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29]
Category: Quantum Physics

[61] viXra:1906.0427 [pdf] submitted on 2019-06-22 12:22:25

Higher-Dimensional Relativity and the Wavefunction

Authors: Philip J. Carter
Comments: 18 Pages.

We approach the Nature and Ontology of Spacetime by considering the properties of the wavefunction. On the basis of observed retrocausal effects and consequent time-symmetric approaches to QM we conclude that the wavefunction is extended in time as well as in space, and hence is minimally a 4-dimensional entity occupying a 4-space resembling the Block Universe. On this basis we erect a higher-dimensional spacetime framework accounting for nonlocality and retrocausality while providing insight into the origins of time, space, mass and inertia. We elucidate relativistic mass and derive the mass transformation equation according to Special Relativity from quantum mechanical and relativistic principles. The framework is shown to provide a spatial context for Kaluza’s 5D Einstein-Maxwell theory and the internal symmetries of the Standard Model.
Category: Quantum Physics

[60] viXra:1906.0413 [pdf] submitted on 2019-06-20 07:35:00

Absolutely Secure Quantum Communications

Authors: George Rajna
Comments: 21 Pages.

The experiment has managed to prepare a remote quantum state; i.e., absolutely secure communication was established with another, physically separated quantum computer for the first time in the microwave regime. [16] Quantum physics has led to new types of sensors, secure data transmission methods and researchers are working toward computers. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12]
Category: Quantum Physics

[59] viXra:1906.0412 [pdf] submitted on 2019-06-20 08:05:11

Semiconductor Laser on Silicon

Authors: George Rajna
Comments: 37 Pages.

Electrical engineering researchers have boosted the operating temperature of a promising new semiconductor laser on silicon substrate, moving it one step closer to possible commercial application. [23] The high resolution and wealth of data provided by an experiment at Diamond can lead to unexpected discoveries. [22] Researchers at The Ohio State University have discovered how to control heat with a magnetic field. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon-the hypothetical agent that extracts work from a system by decreasing the system's entropy-in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13]
Category: Quantum Physics

[58] viXra:1906.0401 [pdf] submitted on 2019-06-21 01:34:13

Quantum Squeezing

Authors: George Rajna
Comments: 50 Pages.

Physicists at the National Institute of Standards and Technology (NIST) have harnessed the phenomenon of "quantum squeezing" to amplify and measure trillionths-of-a-meter motions of a lone trapped magnesium ion (electrically charged atom). [36] Sebastian Krinner is the first winner of the Lopez-Loreta Prize at ETH Zurich. The physicist has a clear goal: he wants to build a quantum computer that is not only powerful, but also works without errors. [35] Encrypted quantum keys have been sent across a record-breaking 421 km of optical fibre at the fastest data rate ever achieved for long-distance transmission. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25]
Category: Quantum Physics

[57] viXra:1906.0395 [pdf] replaced on 2019-09-16 06:43:23

Steps to the Hilbert Book Model

Authors: J.A.J. van Leunen
Comments: 4 Pages. This is part of the Hilbert Book Model Project

The Hilbert Book Model is a purely mathematical model of physical reality that starts with a solid foundation
Category: Quantum Physics

[56] viXra:1906.0394 [pdf] submitted on 2019-06-21 07:00:35

Path to Reliable Quantum Computation

Authors: George Rajna
Comments: 58 Pages.

Researchers at the University of Chicago published a novel technique for improving the reliability of quantum computers by accessing higher energy levels than traditionally considered. [36] An international team of researchers has taken an important step towards solving a difficult variation of this problem, using a statistical approach developed at the University of Freiburg. [35] Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds. [34] Electronics could work faster if they could read and write data at terahertz frequency, rather than at a few gigahertz. [33] A team of researchers led by the Department of Energy's Oak Ridge National Laboratory has demonstrated a new method for splitting light beams into their frequency modes. [32] Quantum communication, which ensures absolute data security, is one of the most advanced branches of the "second quantum revolution". [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[55] viXra:1906.0384 [pdf] replaced on 2019-06-24 04:16:08

Who Needs Yukawa’s Wave Equation?

Authors: Jean Louis Van Belle
Comments: 20 Pages.

One can think of a wave equation for the nucleus based on the Yukawa potential. This paper is a didactic exploration of the rationale for such wave equation. We relate it to earlier discussions on an oscillator model for the nucleus.
Category: Quantum Physics

[54] viXra:1906.0358 [pdf] submitted on 2019-06-19 13:13:14

Step Toward Quantum Computing

Authors: George Rajna
Comments: 22 Pages.

A team at the University of Tsukuba studied a novel process for creating coherent lattice waves inside silicon crystals using ultrashort laser pulses. [17] The experiment has managed to prepare a remote quantum state; i.e., absolutely secure communication was established with another, physically separated quantum computer for the first time in the microwave regime. [16] Quantum physics has led to new types of sensors, secure data transmission methods and researchers are working toward computers. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[53] viXra:1906.0348 [pdf] submitted on 2019-06-20 05:09:07

Perfect Quantum Portal

Authors: George Rajna
Comments: 45 Pages.

Researchers at the University of Maryland have captured the most direct evidence to date of a quantum quirk that allows particles to tunnel through a barrier like it's not even there. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist-a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal-a form of matter that "ticks" when exposed to an electromagnetic pulse-in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient.
Category: Quantum Physics

[52] viXra:1906.0345 [pdf] submitted on 2019-06-18 08:06:34

Ring Resonators

Authors: George Rajna
Comments: 74 Pages.

Researchers at the Joint Quantum Institute (JQI) have created the first silicon chip that can reliably constrain light to its four corners. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41]
Category: Quantum Physics

[51] viXra:1906.0340 [pdf] submitted on 2019-06-18 12:58:27

Cavity Quantum Electrodynamics

Authors: George Rajna
Comments: 55 Pages.

A team of researchers at RIKEN (Japan), Università di Messina (Italy) and the University of Michigan (U.S.) have recently carried out a study investigating this topic further. [29] Physicists envision that the future of quantum computation networks will contain scalable, monolithic circuits, which include advanced functionalities on a single physical substrate. [28] Engineering researchers have demonstrated proof-of-principle for a device that could serve as the backbone of a future quantum Internet. [27]
Category: Quantum Physics

[50] viXra:1906.0333 [pdf] submitted on 2019-06-19 01:25:19

Quantum Music

Authors: George Rajna
Comments: 44 Pages.

The group at the National Institute for Standards and Technology, Boulder, Colorado, spent a long six years finding a way to directly measure electric fields using atoms, so who can blame them for then having a little fun with their new technology? [28] Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator. [26]
Category: Quantum Physics

[49] viXra:1906.0326 [pdf] submitted on 2019-06-17 07:12:50

Quantum Simulation Help Flights

Authors: George Rajna
Comments: 27 Pages.

A powerful new form of computing could help scientists design new types of materials for nanoelectronics, allow airlines to solve complex logistical problems to ensure flights run on time, and tackle traffic jams to keep cars flowing more freely on busy roads. [19] "Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function," Heyl says. [18] A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. [17] Ph. D candidate Shuntaro Okada and information scientist Masayuki Ohzeki of Japan's Tohoku University collaborated with global automotive components manufacturer Denso Corporation and other colleagues to develop an algorithm that improves the D-Wave quantum annealer's ability to solve combinatorial optimization problems. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[48] viXra:1906.0324 [pdf] submitted on 2019-06-17 08:24:53

Heisenberg Quantum Uncertainty

Authors: George Rajna
Comments: 97 Pages.

We don't have to get into what they claimed was the mechanism for destroying interference, because our experiment has shown there is an effect on the velocity of the particle, of just the size Heisenberg predicted. [55] Physicists have proposed an entirely new way to test the quantum superposition principle-the idea that a quantum object can exist in multiple states at the same time. [54] Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity. [53] Researchers have discovered a 'blind spot' in atomic force microscopy-a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits-utilising the spin-orbit coupling of atom qubits-adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47]
Category: Quantum Physics

[47] viXra:1906.0313 [pdf] submitted on 2019-06-18 03:46:49

Silicon Photonics

Authors: George Rajna
Comments: 81 Pages.

Photonics-based computing uses less energy and can transmit data faster than conventional approaches, but the costs of manufacturing silicon integrated circuits with embedded photonic elements have held back progress. [47] Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' HYPERLINK "https://phys.org/tags/light/" light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38]
Category: Quantum Physics

[46] viXra:1906.0311 [pdf] replaced on 2019-06-19 03:12:12

The Nature of Yukawa's Nuclear Force and Charge

Authors: Jean Louis Van Belle
Comments: 10 Pages.

This paper builds on our previous paper and further explores the math and the physics of Yukawa’s potential function for the nucleus. It calculates forces and provides a formula for the nucleon charge (Yukawa's nucleon charge is the equivalent of the electron charge for the nuclear force). We find its numerical value is equal to (the square root of) the product of Euler’s number, the fine-structure constant, Planck’s constant and the speed of light. To make sense of this result, we need to accept the notion of a nuclear charge, which is nothing but the concept of the strong charge that goes with the strong force. The model is, of course, purely theoretical: the objective is to only to explore theoretical concepts using numerical data for protons and neutrons. Our next paper will try to see whether or not these explorations make sense when analyzed in the context of quark theory.
Category: Quantum Physics

[45] viXra:1906.0275 [pdf] replaced on 2019-07-27 04:23:26

Perfect Contrast Cannot be Obtained in the Electron Double-Slit Experiment

Authors: Satoshi Hanamura
Comments: 9 Pages.

Conventionally, the wave of particles which through the double-slit is assumed plane waves. In this research, we considered that the interference fringes built up through the double-slit have a difference amplitudes between the case of electrons and the case of photons. The difference between the two fringes is in the troughs of the waves. In this research, it is hypothesized that the amplitudes of waves passing through the left and right slits are not even in the double-slit experiment of electrons. Computer simulations performed to obtain the results supporting this hypothesis. The concept that waves of different amplitudes pass through a double-slit is reasonably to have the notion that two spinor particles pass through each slit.
Category: Quantum Physics

[44] viXra:1906.0271 [pdf] submitted on 2019-06-14 06:24:38

Quantum Dot Microscope

Authors: George Rajna
Comments: 42 Pages.

A team of researchers from Jülich in cooperation with the University of Magdeburg has developed a new method to measure the electric potentials of a sample at atomic accuracy. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins-just a hair above absolute zero-and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been "squeezed" to a record low. [18]
Category: Quantum Physics

[43] viXra:1906.0265 [pdf] submitted on 2019-06-14 09:33:41

What Happens when Two Atoms Meet

Authors: George Rajna
Comments: 52 Pages.

An international team of researchers has demonstrated a new way to gain a detailed understanding of what happens when two atoms meet. [33] New research, led by the University of St Andrews and the College of Optical Sciences, University of Arizona, has led to the ability to trap two minuscule spinning particles, which offers fascinating insights into the world around us and could help create future precise sensors for measurement. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality-a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27] A new experiment that tests the limit of how large an object can be before it ceases to behave quantum mechanically has been proposed by physicists in the UK and India. [26] Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. [25] This achievement is considered as an important landmark for the realization of practical application of photon upconversion technology. [24]
Category: Quantum Physics

[42] viXra:1906.0263 [pdf] submitted on 2019-06-14 12:58:51

Oscillating Quasiparticles Computing

Authors: George Rajna
Comments: 61 Pages.

Theoretical physicists at the Technical University of Munich (TUM) and the Max Planck Institute for the Physics of Complex Systems have discovered that things which seem inconceivable in the everyday world are possible on a microscopic level. [36] These exotic particles can, for example, emerge as quasi-particles in topological superconductors and represent ideal building blocks for topological quantum computers. [35] This event is considered as a striking proof of the existence of Majorana particles, and it represents a crucial step towards their use as building blocks for the development of quantum computers. [34] In the latest experiment of its kind, researchers have captured the most compelling evidence to date that unusual particles lurk inside a special kind of superconductor. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[41] viXra:1906.0262 [pdf] submitted on 2019-06-14 13:32:10

Electron Pairs Superconductivity

Authors: George Rajna
Comments: 35 Pages.

Scientists seeking to understand the mechanism underlying superconductivity in "stripe-ordered" cuprates-copper-oxide materials with alternating areas of electric charge and magnetism-discovered an unusual metallic state when attempting to turn superconductivity off. [22] This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research. [21] High-temperature (Tc) superconductivity typically develops from antiferromagnetic insulators, and superconductivity and ferromagnetism are always mutually exclusive. [20] Scientists at the U.S. Department of Energy's Ames Laboratory have developed a method to accurately measure the "exact edge" or onset at which a magnetic field enters a superconducting material. [19] TU Wien has now made a major advance towards achieving this goal and, at the same time, has furthered an understanding of why conventional materials only become superconducting at around-200°C [18] The emerging field of spintronics leverages electron spin and magnetization. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13]
Category: Quantum Physics

[40] viXra:1906.0250 [pdf] submitted on 2019-06-15 05:46:12

An Oscillator Model for Nuclear Mass

Authors: Jean Louis Van Belle
Comments: 15 Pages.

In this paper we use the oscillator or Zitterbewegung model of an electron to offer an equally elegant explanation of the mass of nucleons (equally elegant as the explanation we offered for the electron mass, that is). It is based on the same ideas: a nucleon charge with zero rest mass in orbital motion. The difference is the charge. The nucleon charge is a different charge (different from the electric charge, that is). A different charge implies a different force. A different force implies a different amplitude of the oscillation – and we, therefore, find a different Compton radius for the nucleon. Our interpretation of Wheeler’s idea of mass without mass – based on equating the E = m·a2·ω2 = m·c2 using the tangential velocity formula c = a·ω – remains valid. As an added bonus, we get an equally simple and elegant formula for the coupling constant for the strong force.
Category: Quantum Physics

[39] viXra:1906.0246 [pdf] submitted on 2019-06-13 08:28:10

Small Currents in Spintronics

Authors: George Rajna
Comments: 43 Pages.

University of Tokyo researchers have created an electronic component that demonstrates functions and abilities important to future generations of computational logic and memory devices. [30] Rice University researchers have simplified the synthesis of a unique, nearly two-dimensional form of iron oxide with strong magnetic properties that is easy to stack atop other 2-D materials. [29] Researchers at Delft University of Technology have recently carried out a study investigating spin-orbit interaction in Majorana nanowires. [28] Scientists from Tomsk Polytechnic University together with colleagues proposed using special diffraction gratings with gold plates instead of microlenses used in the classic configuration to obtain images in nanoscopes. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20]
Category: Quantum Physics

[38] viXra:1906.0240 [pdf] submitted on 2019-06-13 13:15:24

Quantum Wigner Crystal

Authors: George Rajna
Comments: 49 Pages.

When electrons that repel each other are confined to a small space, they can form an ordered crystalline state known as a Wigner crystal. [27] A new experiment that tests the limit of how large an object can be before it ceases to behave quantum mechanically has been proposed by physicists in the UK and India. [26] Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. [25] This achievement is considered as an important landmark for the realization of practical application of photon upconversion technology. [24] Considerable interest in new single-photon detector technologies has been scaling in this past decade. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20]
Category: Quantum Physics

[37] viXra:1906.0225 [pdf] submitted on 2019-06-14 01:22:32

Majorana Quasiparticle for Quantum Computing

Authors: George Rajna
Comments: 54 Pages.

As mysterious as the Italian scientist for which it is named, the Majorana particle is one of the most compelling quests in physics. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[36] viXra:1906.0223 [pdf] submitted on 2019-06-14 02:44:16

Magnetic Field Compact Coil

Authors: George Rajna
Comments: 35 Pages.

A novel magnet half the size of a cardboard toilet tissue roll usurped the title of "world's strongest magnetic field" from the metal titan that had held it for two decades at the Florida State University-headquartered National High Magnetic Field Laboratory. [22] This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research. [21] High-temperature (Tc) superconductivity typically develops from antiferromagnetic insulators, and superconductivity and ferromagnetism are always mutually exclusive. [20] Scientists at the U.S. Department of Energy's Ames Laboratory have developed a method to accurately measure the "exact edge" or onset at which a magnetic field enters a superconducting material. [19] TU Wien has now made a major advance towards achieving this goal and, at the same time, has furthered an understanding of why conventional materials only become superconducting at around-200°C [18] The emerging field of spintronics leverages electron spin and magnetization. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12]
Category: Quantum Physics

[35] viXra:1906.0222 [pdf] replaced on 2019-09-27 05:56:54

Relative Phase and Time States

Authors: Masataka Ohta
Comments: 6 Pages.

It is pointed out that, while Suskind and Glogower claim “The phase operator for an oscillator is shown not to exist.”, they actually showed absolute phase operator, which is physically meaningless, does not exist. It is also pointed out that, they showed countably infinitely many trigonometric relative (relative between two oscillators) phase states, which form complete basis and are, in a sense, best possible quantum “phase states”, exist. In addition, continuously infinitely many phase states are constructed at classical, that is, infinitely many quanta, limit. Similarly, relative time states and operator are constructed with two oscillators with different angular velocities.
Category: Quantum Physics

[34] viXra:1906.0221 [pdf] submitted on 2019-06-12 06:47:57

Diamond Quantum Technologies

Authors: George Rajna
Comments: 52 Pages.

Qubits from diamonds are of particular interest to quantum scientists because their quantum-mechanical properties, including superposition, exist at room temperature, unlike many other potential quantum resources. [31] For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. [30] Diamonds are prized for their purity, but their flaws might hold the key to a new type of highly secure communications. [29] Researchers from Chalmers University of Technology, Sweden, and Tallinn University of Technology, Estonia, have demonstrated a 4000 kilometre fibre-optical transmission link using ultra low-noise, phase-sensitive optical amplifiers. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist-a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal-a form of matter that "ticks" when exposed to an electromagnetic pulse-in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23]
Category: Quantum Physics

[33] viXra:1906.0215 [pdf] submitted on 2019-06-12 12:28:53

Field-Induced Superconductors

Authors: George Rajna
Comments: 32 Pages.

This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research. [21] High-temperature (Tc) superconductivity typically develops from antiferromagnetic insulators, and superconductivity and ferromagnetism are always mutually exclusive. [20] Scientists at the U.S. Department of Energy's Ames Laboratory have developed a method to accurately measure the "exact edge" or onset at which a magnetic field enters a superconducting material. [19] TU Wien has now made a major advance towards achieving this goal and, at the same time, has furthered an understanding of why conventional materials only become superconducting at around-200°C [18] The emerging field of spintronics leverages electron spin and magnetization. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11]
Category: Quantum Physics

[32] viXra:1906.0209 [pdf] replaced on 2019-06-14 21:14:57

On the Einstein–Podolsky–Rosen Paradox and the Bell’s Theorem

Authors: Victor Paromov
Comments: 5 pages, 2 figures

This letter attempts to show that the non-classical 5D spacetime geometry-based theory of electromagnetism (http://vixra.org/pdf/1811.0315v2.pdf) is able to preserve both realism and locality for the Bell test thus supporting Einstein’s argument in general. In addition, the theory is able to match the quantum-mechanical (QM) predictions for the correlation. With the above-mentioned theory, the Einstein–Podolsky–Rosen (EPR) paradox may be explained with the assumption that real values do exist, however, are inaccessible in principle due to the compactness of the extra spatial dimension.
Category: Quantum Physics

[31] viXra:1906.0201 [pdf] submitted on 2019-06-13 03:38:57

Expand Microlens Applications

Authors: George Rajna
Comments: 68 Pages.

Microlenses improve the performance of cameras and solar cells by concentrating light into the most sensitive areas of the devices. [44] Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nano level. [43] As if they were bubbles expanding in a just-opened bottle of champagne, tiny circular regions of magnetism can be rapidly enlarged to provide a precise method of measuring the magnetic properties of nanoparticles. [42]
Category: Quantum Physics

[30] viXra:1906.0200 [pdf] submitted on 2019-06-13 03:52:16

A Classical Quantum Theory of Light

Authors: Jean Louis Van Belle
Comments: 20 Pages.

The Zitterbewegung model of an electron offers a classical interpretation for interference and diffraction of electrons. The idea is very intuitive because it incorporates John Wheeler’s idea of mass without mass: we have an indivisible naked charge that has no properties but its charge and its size (the classical electron radius) and it is easy to understand that the electromagnetic oscillation that keeps this tiny circular current going – like a perpetual current ring in some superconducting material – cannot be separated from it. In contrast, we keep wondering: what keeps a photon together? Hence, the real challenge for any realist interpretation of quantum mechanics is to explain the quantization of light: what are these photons? In this paper, we offer a classical quantum theory for light. The intuition behind the model is the same as the one we developed for an electron: we think of the photon as a harmonic electromagnetic oscillator, and its elementary cycle determines its properties, including spin and its size (the effective area of interference).
Category: Quantum Physics

[29] viXra:1906.0197 [pdf] submitted on 2019-06-11 06:59:26

Quantum Cryptography Double-Edged

Authors: George Rajna
Comments: 48 Pages.

Quantum computers pose a big threat to the security of modern communications, deciphering cryptographic codes that would take regular computers forever to crack. [34] The companies constructed an application for data transmission via optical fiber lines, which when combined with high-speed quantum cryptography communications technologies demonstrated practical key distribution speeds even in a real-world environment. [33] Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22]
Category: Quantum Physics

[28] viXra:1906.0192 [pdf] submitted on 2019-06-11 08:29:51

Hypersonic Matterwaves Atomtronics

Authors: George Rajna
Comments: 66 Pages.

Atomtronics manipulates atoms much in the way that electronics manipulates electrons. It carries the promise of highly compact quantum devices which can measure incredibly small forces or tiny rotations. [43] Now, researchers fabricated an electron's spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. [42] Electrospinning, a nanofiber fabrication method, can produce nanometer- to micrometer-diameter ceramic, polymer, and metallic fibers of various compositions for a wide spectrum of applications: tissue engineering, filtration, fuel cells and lithium batteries. [41]
Category: Quantum Physics

[27] viXra:1906.0191 [pdf] submitted on 2019-06-11 09:10:08

Quantum Particle Physics and the Skirting of Unresolved Conundrums

Authors: Bruce A. Lutgen
Comments: 1 Page.

The study of quantum particle physics has been going on for a relatively long time. The chase was and is on to reduce the innate particles, which make up all things considered matter, to their most fundamental forms. The question is have we gotten ahead of ourselves?
Category: Quantum Physics

[26] viXra:1906.0178 [pdf] submitted on 2019-06-10 09:04:39

D-Wave Quantum Machine Connectivity

Authors: George Rajna
Comments: 21 Pages.

A team of researchers with members affiliated with several institutions in the U.S. and Japan reports that connectivity is more important than thought when building specialized optimizing machines. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[25] viXra:1906.0175 [pdf] submitted on 2019-06-10 10:54:43

Fiber-Optic see Molecular Bonds

Authors: George Rajna
Comments: 61 Pages.

The device is a high-efficiency round-trip light tunnel that squeezes visible light to the very tip of the condenser to interact with molecules locally and send back information that can decipher and visualize the elusive nanoworld. [40] "Smart glass," an energy-efficiency product found in newer windows of cars, buildings and airplanes, slowly changes between transparent and tinted at the flip of a switch. [39] With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. [38]
Category: Quantum Physics

[24] viXra:1906.0172 [pdf] submitted on 2019-06-10 11:37:40

Flexible Nanotube Electronics

Authors: George Rajna
Comments: 63 Pages.

Antennas made of carbon nanotube films are just as efficient as copper for wireless applications, according to researchers at Rice University's Brown School of Engineering. [41] The device is a high-efficiency round-trip light tunnel that squeezes visible light to the very tip of the condenser to interact with molecules locally and send back information that can decipher and visualize the elusive nanoworld. [40] "Smart glass," an energy-efficiency product found in newer windows of cars, buildings and airplanes, slowly changes between transparent and tinted at the flip of a switch. [39] With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. [38] Physicists at the Kastler Brossel Laboratory in Paris have reached a milestone in the combination of cold atoms and nanophotonics. [37]
Category: Quantum Physics

[23] viXra:1906.0160 [pdf] submitted on 2019-06-11 05:44:11

Dirac's Philosophical Principles

Authors: Jean Louis Van Belle
Comments: 18 Pages.

This paper examines Paul Dirac’s assumptions and principles in the introduction to his Principles of Quantum Mechanics as part of a larger logical, philosophical and epistemological reflection on why a realist interpretation of quantum mechanics would or would not be possible.
Category: Quantum Physics

[22] viXra:1906.0155 [pdf] submitted on 2019-06-09 11:36:26

Manipulating Electron Spin

Authors: George Rajna
Comments: 64 Pages.

Now, researchers fabricated an electron's spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. [42] Electrospinning, a nanofiber fabrication method, can produce nanometer- to micrometer-diameter ceramic, polymer, and metallic fibers of various compositions for a wide spectrum of applications: tissue engineering, filtration, fuel cells and lithium batteries. [41] Researchers of the Nanoscience Center (NSC) at the University of Jyväskylä, Finland, and Xiamen University, China, have discovered how copper particles at the nanometer scale operate in modifying a carbon-oxygen bond when ketone molecules turn into alcohol molecules. [40]
Category: Quantum Physics

[21] viXra:1906.0117 [pdf] replaced on 2019-10-14 13:38:00

The Copenhagen Trip

Authors: Jeremy Fiennes
Comments: 100 Pages.

Quantum physics works exceptionally well in practice. It has justifiably been called "the most successful scientific theory ever". Its problems are interpretational: how to make sense of its various rational contradictions. The question having occupied some of humanity's best brains for nearly a century, with spectacular lack of success, one is led to suspect its fundamental assumptions. Two such are that a) the quantum/photon is the minimum existing energy/matter packet; b) subatomic reality is inherently indeterminate. Neither is justified. The quantum could be our minimum observable energy/matter packet. Physical reality could be essentially determinate. But due to quantum measurement uncertainty, in the subatomic domain it appears to be indeterminate. In each case there are two hypotheses, neither of which can be proved nor refuted, meaning that both must be considered. Mainstream QM fails to do this. The present article adopts a realist approach. Physical reality is conceived as essentially classical and determinate. But due to the limitations of our neurone-based perceptual mechanism, we experience it in terms of three 'perceptual categories': 1) 'classical', where observations don't affect the observed, and our knowledge is certain to within experimental error; 2) 'quantum' where they do, and our knowledge is uncertain; 3) a hypothetical undetectable 'subliminal substrate'. Our overall universe view is then inherently incomplete, and apparent quantum indeterminacy is due to this. Imagine trying to model the behaviour of icebergs based only on what we see above the sea surface. We would be postulating 'dark iceberg matter'. Being based on the differing ways in which we obtain knowledge, we call it the Epistemological Interpretation of quantum physics. It is conceptual and 98% non-mathematical.
Category: Quantum Physics

[20] viXra:1906.0116 [pdf] submitted on 2019-06-07 09:02:08

Quantum Trap of Casimir Effect

Authors: George Rajna
Comments: 23 Pages.

Physicists in the US have worked out a way of making the Casimir force repulsive and attractive at different locations in a gap between two surfaces. [35] Researchers from the University of Maryland have for the first time measured an effect that was predicted more than 40 years ago, called the Casimir torque. [34] The properties of matter are typically the result of complex interactions between electrons. [33] Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. [32] Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[19] viXra:1906.0100 [pdf] submitted on 2019-06-08 01:35:05

Modern Physics on Cosmic Dance of Absolute Time.

Authors: Durgadas Datta.
Comments: 8 Pages. For further research.

The pilot waves and the dynamism of gravitoethertons.
Category: Quantum Physics

[18] viXra:1906.0099 [pdf] submitted on 2019-06-08 01:33:28

Quantum Simulation of Unruh Radiation

Authors: George Rajna
Comments: 22 Pages.

Researchers at the University of Chicago (UChicago) have recently reported an experimental observation of a matter field with thermal fluctuations that is in accordance with Unruh's radiation predictions. [16] Now scientists at the University of Illinois at Urbana-Champaign using an innovative quantum simulation technique have made one of the first observations of a mobility edge in a low-dimensional system. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[17] viXra:1906.0088 [pdf] submitted on 2019-06-06 08:59:00

Single-Spin Breaks Quantum Symmetry

Authors: George Rajna
Comments: 75 Pages.

Researchers say they have observed parity-time symmetry breaking for the first time in an experiment. [44] Quantum symmetry breaking has been demonstrated in the lab for the first time-with startling implications for the ability to better control quantum systems. [43] Neill is lead author of the group's new paper, "A blueprint for demonstrating quantum supremacy with superconducting qubits," now published in the journal Science. [42] Physicists at ETH Zurich have now demonstrated an elegant way to relax this intrinsic incompatibility using a mechanical oscillator formed by a single trapped ion, opening up a route for fundamental studies and practical uses alike. [41] Physical experiments were performed by Schiffer's team at the University of Illinois at Urbana-Champaign and were funded by the U.S. Department of Energy's Office of Science. [40] Novel insight comes now from experiments and simulations performed by a team led by ETH physicists who have studied electronic transport properties in a one-dimensional quantum wire containing a mesoscopic lattice. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34]
Category: Quantum Physics

[16] viXra:1906.0085 [pdf] submitted on 2019-06-06 10:25:34

Giant Molecules Observation

Authors: George Rajna
Comments: 69 Pages.

Physicists at the Max Planck Institute for Quantum Optics (MPQ) achieved to form giant diatomic molecules and optically detect them afterwards by using a high-resolution objective. [41] Specifically, the authors model the impact of an incoming photon on electrons and nuclei as the electrons approach an excited state. [40] A team of physicists from the University of Nebraska-Lincoln, Stanford University and Europe has captured the clearest glimpse yet of a photochemical reaction-the type of light-fueled molecular transformations responsible for photosynthesis, vision and the ozone layer. [39] Researchers at the Department of Energy's SLAC National Accelerator Laboratory have recorded the most detailed atomic movie of gold melting after being blasted by laser light. [38] A team at TU Wien now has the proof behind the speculations that water molecules can form complex bridge-like structures when they accumulate on mineral surfaces. [37] Liquid water sustains life on earth, but its physical properties remain mysterious among scientific researchers. [36] Researchers from the University of Houston and the California Institute of Technology have reported an inexpensive hybrid catalyst capable of splitting water to produce hydrogen, suitable for large-scale commercialization. [35]
Category: Quantum Physics

[15] viXra:1906.0084 [pdf] submitted on 2019-06-06 10:48:57

Quantum Information Storage and Computing

Authors: George Rajna
Comments: 49 Pages.

Researchers at Rensselaer Polytechnic Institute have come up with a way to manipulate tungsten diselenide (WSe2)-a promising two-dimensional material-to further unlock its potential to enable faster, more efficient computing, and even quantum information processing and storage. [35] The human brain has amazing capabilities making it in many ways more powerful than the world's most advanced computers. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24]
Category: Quantum Physics

[14] viXra:1906.0082 [pdf] submitted on 2019-06-07 00:09:17

Philosophy and Physics

Authors: Jean Louis Van Belle
Comments: 20 Pages.

This paper offers a philosophical-epistemological basis for the realist interpretation of quantum mechanics on the basis of the Zitterbewegung model of an electron. It does so by a detailed analysis of the logic and assumptions underpinning the mainstream (Copenhagen) interpretation of quantum mechanics. For ease of reference, we use the logic and analytical pieces which Richard Feynman developed for his Lectures on quantum mechanics for sophomore students.
Category: Quantum Physics

[13] viXra:1906.0080 [pdf] submitted on 2019-06-07 05:07:02

Catch Quantum Jump

Authors: George Rajna
Comments: 27 Pages.

Is it possible to know if a quantum jump is about to occur? Researchers have been asking themselves this question for a long time, and the answer is a resounding “yes”, according to a new study by a team at Yale University in the US. [17] The groundbreaking result sheds light on an elusive phenomenon whose existence, a natural outcome of the hundred-year-old theory of superconductivity, has long been speculated, but never actually observed. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[12] viXra:1906.0079 [pdf] submitted on 2019-06-05 07:19:20

Quantum Optics Computational Complexity

Authors: George Rajna
Comments: 65 Pages.

In recent years, the unique properties of linear optical systems have also inspired the development of computational complexity theory. [41] Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32]
Category: Quantum Physics

[11] viXra:1906.0070 [pdf] submitted on 2019-06-05 23:46:47

Cross-Double-Slit Experiment and Delayed-Choice-Cross-Double-Slit Experiment

Authors: Hui Peng
Comments: 8 Pages.

We have performed cross-double-slit experiment and delayed-choice-cross-double-slit experiment, denoted as extended double-slit experiments. The cross-double-slit experiments show that the cross-double-slit apparatus creates not only two interference patterns, but also four cross-interference-patterns, which are created by two double-slit. The delayed-choice-cross-double-slit experiments disclose new phenomena: (1) photons behave as both wave and particle in the same experiment simultaneously, which violate Bohr’s complementarity; (2) the cross-interference-pattern is created by one double-slit and one single-slit; (3) photons passing through the same slit behave as both wave and particle, referred it as the Wave-Particle-Paradox, which demands extensive study. We suggest to re-study wave-particle duality.
Category: Quantum Physics

[10] viXra:1906.0068 [pdf] submitted on 2019-06-06 00:50:43

Quantum Supremacy Certification

Authors: George Rajna
Comments: 73 Pages.

In quantum computing, the issue of certification is crucial for formally verifying the superior computing power of quantum devices. [43] Neill is lead author of the group's new paper, "A blueprint for demonstrating quantum supremacy with superconducting qubits," now published in the journal Science. [42] Physicists at ETH Zurich have now demonstrated an elegant way to relax this intrinsic incompatibility using a mechanical oscillator formed by a single trapped ion, opening up a route for fundamental studies and practical uses alike. [41] Physical experiments were performed by Schiffer's team at the University of Illinois at Urbana-Champaign and were funded by the U.S. Department of Energy's Office of Science. [40] Novel insight comes now from experiments and simulations performed by a team led by ETH physicists who have studied electronic transport properties in a one-dimensional quantum wire containing a mesoscopic lattice. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33]
Category: Quantum Physics

[9] viXra:1906.0059 [pdf] submitted on 2019-06-04 06:43:17

Organic Quantum Cascade Lasers

Authors: George Rajna
Comments: 67 Pages.

Researchers have developed a new way of operating miniature quantum cascade lasers (QCLs) to rapidly measure the absorption spectra of different organic molecules in the air simultaneously. [42] Yale researchers have figured out how to catch and save Schrödinger's famous cat, the symbol of quantum superposition and unpredictability, by anticipating its jumps and acting in real time to save it from proverbial doom. [41] Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39]
Category: Quantum Physics

[8] viXra:1906.0050 [pdf] submitted on 2019-06-04 12:53:37

Superconducting Quantum Refrigerator

Authors: George Rajna
Comments: 15 Pages.

Imagine a refrigerator so cold it could turn atoms into their quantum states, giving them unique properties that defy the rules of classical physics. [28] Physicists have shown that superconducting circuits-circuits that have zero electrical resistance-can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[7] viXra:1906.0049 [pdf] submitted on 2019-06-04 13:18:56

Quantum Error-Correcting Codes

Authors: George Rajna
Comments: 65 Pages.

Two researchers at Université de Sherbrooke, in Canada, have recently developed and trained neural belief-propagation (BP) decoders for quantum low-density parity-check (LDPC) codes. [41] Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32]
Category: Quantum Physics

[6] viXra:1906.0034 [pdf] submitted on 2019-06-03 09:42:28

Limits of Quantum Communication

Authors: George Rajna
Comments: 63 Pages.

Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31]
Category: Quantum Physics

[5] viXra:1906.0033 [pdf] submitted on 2019-06-03 10:57:30

Predict the Jumps of Schrodinger Cat

Authors: George Rajna
Comments: 65 Pages.

Yale researchers have figured out how to catch and save Schrödinger's famous cat, the symbol of quantum superposition and unpredictability, by anticipating its jumps and acting in real time to save it from proverbial doom. [41] Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32]
Category: Quantum Physics

[4] viXra:1906.0030 [pdf] submitted on 2019-06-03 13:00:17

3-D Bose-Einstein Condensates Laser Cooling

Authors: George Rajna
Comments: 69 Pages.

Researchers at the MIT-Harvard Center for ultracold atoms and research laboratory of electronics have proposed a new method for producing 3-D Bose-Einstein condensates using laser cooling only. [43] Researchers have developed a new way of operating miniature quantum cascade lasers (QCLs) to rapidly measure the absorption spectra of different organic molecules in the air simultaneously. [42] Yale researchers have figured out how to catch and save Schrödinger's famous cat, the symbol of quantum superposition and unpredictability, by anticipating its jumps and acting in real time to save it from proverbial doom. [41] Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35]
Category: Quantum Physics

[3] viXra:1906.0023 [pdf] submitted on 2019-06-02 08:29:21

Quantum Symmetry Breaking

Authors: George Rajna
Comments: 74 Pages.

Quantum symmetry breaking has been demonstrated in the lab for the first time-with startling implications for the ability to better control quantum systems. [43] Neill is lead author of the group's new paper, "A blueprint for demonstrating quantum supremacy with superconducting qubits," now published in the journal Science. [42] Physicists at ETH Zurich have now demonstrated an elegant way to relax this intrinsic incompatibility using a mechanical oscillator formed by a single trapped ion, opening up a route for fundamental studies and practical uses alike. [41] Physical experiments were performed by Schiffer's team at the University of Illinois at Urbana-Champaign and were funded by the U.S. Department of Energy's Office of Science. [40] Novel insight comes now from experiments and simulations performed by a team led by ETH physicists who have studied electronic transport properties in a one-dimensional quantum wire containing a mesoscopic lattice. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33]
Category: Quantum Physics

[2] viXra:1906.0013 [pdf] submitted on 2019-06-01 05:49:07

Laser Generation Electronics

Authors: George Rajna
Comments: 75 Pages.

In 2004, researchers discovered a super thin material that is at least a 100 times stronger than steel and the best known conductor of heat and electricity. [45] Researchers from Japan have demonstrated that a long-elusive kind of laser diode based on organic semiconductors is indeed possible, paving the way for the further expansion of lasers in applications such as biosensing, displays, healthcare and optical communications. [44]
Category: Quantum Physics

[1] viXra:1906.0007 [pdf] replaced on 2019-06-11 03:33:03

The Anomalous Magnetic Moment: Classical Calculations

Authors: Jean Louis Van Belle
Comments: 15 Pages.

Critics of the Zitterbewegung model often ask what predictions come out of the model. The answer to this question is quite simple: in order to gain credibility, the model would need to explain the anomalous magnetic moment as measured in experiments. If it can do this, then it should probably be recognized as a valid and alternative interpretation of quantum mechanics. This paper explores the geometry of the model in very much depth and, as such, lays the foundations for such explanation.
Category: Quantum Physics