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Abstract

On an absolute frame of reference, a Galois connection to a d-brane
may be prescribed such that the data of the frame becomes locally presentable.
We describe these connections briefly.

1 Introduction

In Einstein’s theory of relativity, all physical objects are assumed to be bounded
by a local frame of reference, which is relative to all other open neighborhoods of
spacetime. To many minds, this discredits the possibility of an absolute frame
of reference. However, in the discrete aether action theory of Agnew [1], we can
fix a closed pre-topological category A , which serves as the aether or absolute
frame of reference. In such a theory, real spacetime emerges as a restriction
A |K −→ Rn,m, with n time dimensions and m spacial dimensions.

This bears a remarkable resemblence to the theory of Galois connections.

Fix a category C , with a projection C
pr−→ CSet ≃ X → M ∈ Man, where X is

a topological stack. Now, fix a stratification of M into discrete units, obtaining
the manifold StratδM . Suppose that δ is contractible to a point. Then, there is
a map

StratδM −→ Strat
{∗}
M

which is faithful.
For each open neighborhood {U(x)}x∈M , there is a diffeomorphism class

Diffx on which the holonomy groupoidHolGx acts, where G denotes the isotropy
group of x. Essentially, for every self-map in the class xx, there is an inclusion
A(x) ∈ xx ↪→ x−x(Gx) such that A(x) ◦ (A(x))−1 = Idx̃, where x̃ is an element
of X.

Thus, there is an exact sequence:

{U(x)}x∈M
∼−→ x̃ ↠ x ↠ {∗}

which converges to a single point. This is, essentially, a restriction from a
field of truth values to a single stabilizer, such that x = stab(d(x, ∂M)), where
∂M = 0×(τ(x)), with τ being a truth value. This means that for a measurement
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in a local co-ordinate patch corresponding to the expected location of x, the
value of the measurement will be zero.

For Q̂ a collection of quasi-quanta, the contraction of an open neighborhood
about Q̂ roughly corresponds to a shrinking homotopy path space. This means
that the map

{U(Q̂)}Q̂∈Confn(M) −→ ... −→ {∗}

equates to the realization of a quantum q at a time t = k, where k is the solution
to a harmonic function dependent upon one or more “flow” variables.

In [2], we discussed the relationship between this contraction and the set-
theoretic notion of “forcing.” We shall succinctly restate our results here. Let S
be a set with a maximal element s. Then, construct an injective map s+k −→ S
with k ∈ N. We then obtain an extended set, S+, and a so-called “forcing
notion,” k ⊩ S+. As a concrete example, consider the set of super-real numbers,
as constructed by Woodin [3].

Example 1. Let R denote the field of real numbers. Denote by R̄ a subset of
R whose maximal element is contained in R. Let sup(R̄) be a supercompact
cardinal. Define the forcing notion

ℵωω

⊩ R̄ ∪H = S

so that adjoining R̄ with the ultra-powerset of a cardinal ℵ yields a new field,
the “super-real” numbers.

Of interest to us, is that we can actually define the realization of a quantum
q as a forcing notion

{∗}τ=1 ⊩ q ∈ R1,3

Here, we will be substituting the Minkowski manifold R1,3 with a generic
d-brane Bd. The realization of q then becomes a Galois connection

Gal{∗} : A −→ q ∈ Bd
Set

This gives our forcing notion a bit more concreteness. Firstly, we can construct
a d-brane to either be an open or closed cover of a particle’s isotropy groupoid,
which is the mathematical analogue to its location. This allows us to model
either open or closed dynamical systems, with differing boundary conditions.
In the case where ∂Bd

Set has a truth value ε > 0, we obtain a locally isolated

dynamical system P̂. As we have discussed in [4], such a closed system naturally
has the property that its quantum mixed states are mutually cobordant with
one another. Further, if q is an element of Bd

Set ∼ P̂, then q also admits an
embedding into a Lagrangian submanifold of the category of necessary moments,
□.
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Another advantage of using presentable branes1 is that we can more easily
perform computations involving differential k-forms. Notice, the object Bd

Set

may be extended to an arbitrary orbifold by the formula

OrbB = (Bd
Set ⊗ T e) ∪ Sing(K)

where Sing(K) is an arbitrary singularity, and T e is an e-dimensional topological
object. In the case where T e = R1,3 is the Minkowski space, we obtain a perfect
copy of the Minkowski lightcone, so that OrbB = L4; and, whence T e = Sn,m,
one obtains a chiral superfield L♯OrbB, the free loop superspace of the orbifold.2

2 Main Discussion

Let CausΓ be a partially-ordered causal set, and Γ a graph. Our main objective
is to define a Galois connection

(A , CausΓ) −→ lim
t→0

t(A(x))

where A(x) is an isotropic action on some object x. Throughout, we will let
x ∈ Bd

Set, and we will denote Bd
Set simply by Bd.

2.1 Ricci iteration

Let CurvdB denote the mean curvature of a d-brane Bd. Let t ∈ N for all values
of t. Then, one defines the Ricci iteration of the brane as a map Ricgi+1 : t →
t + 1 ⇒ CurvdB −→ CurvdB. Assuming that Bd is a Cd-space, we obtain a
differential k-form ωRic, with k ≤ d.

For every open cover of a particle on our brane, we can take the mean
curvature of said neighborhood and compare it with a triangle on a flat (Cat(0))
Riemannian manifold. This gives us a relative curvature for an arbitrarily chosen
connection on the brane. The Ricci iteration, in effect, measures the difference
between potentials over time with respect to a quantum field F .

Here, potential is taken to be the solution for the equation∫ n

i=0

dωRic

d(Ricg)
= p̂

The set of all potentials for a particle q gives us the holonomy vector for that
particle. Recall that a holonomy groupoid consists of an isotropy groupoid G
and an object x which is acted upon by the groupoid. The holonomy vector,
then, is the Ricci iteration

Ricgi+1
HolGgi

1Recall that a category C is called presentable if it admits a proper morphism C −→ CSet
2See [4] fore more details about this construction.
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2.2 Curvature and causality

Fix a Galois connection T −→ CurvdB, where T = (A , CausΓ). The moment
map of this connection is given by the map L4 −→ Ricgi+1

F, where F is a frame
field. For our purposes, a frame field is simply a collection of covers of a τ = 1
particle along with a pre-defined notion of holonomy.

Let F<1> denote the path groupoid over a frame field, and let f ∈ F be
an arbitrary frame. The path groupoid is then the groupoid consisting of all
invertible actions f → f ′ between frames in F. In the case where such actions
are diffeomorphisms, we obtain the identity F<1> = Difff .

Definition 1. A causal path, p : f −→ Ricgi+1(f), is a conic section of F
which is identical to an atlas consisting of charts containing both light-like and
space-like distinct points.

Not all of the diffeomorphisms of f are causal. For instance, a diffeomorphism
φ : f −→ f ′ which does not include any timewise distinct points, is degenerate,
and therefore acausal. For a particle q, write Tq(Bd) for the tangent bundle of
q on a brane. We will impose the following axiom:

Axiom 1 (Connectedness). If q is a particle with truth value 1, then the map
Ricgi+1

: q −→ q′ is contained with in Tq(Bd), and further, this space is simply
connected, assuming q is not bordant with q′.

Notice the requirement that q and q′ not be bordant. This is because of
the anomalous case of teleportation of quantum states, in which the collars of a
bordism need not necessarily be simply connected with respect to the throat of
a holographic wormhole. Under our definition, teleportation is then an acausal
event.

2.2.1 Spin Manifolds

Let SpB be a spin manifold. Then, the connection T −→ SpB arises in the
following fashion.

Let X ∈ T be a topological stack, and let pr : X −→ Bd be a totally lossless
projection. Denote the Dehn twist of X by DehnX = X×X×X X −→ Man. Let
DehnT = SpB. Then, for a principle bundle E over T, we have im(E) ∼ F for
some bundle F over SpB .

Let F be an orbifold. Then, there is a homeomorphism SpB ∼= L4. For a
boson, this is all we need. In the fermionic case, however, an additional subtlety
arises. We must decompose our manifold into two manifolds:

SpB = Sp−B ⊕ Sp+B

such that, for every a ∈ Sp−B and for every b ∈ Sp+B , the map a −→ b is the
annihilation map. Further, the gauge field of (a, b) is given by a wrapped Fukaya category,
FukWr, which is an anti-chiral modification of the B-field. The realization
of a free fermion vibrating on a string is then given by the splitting of the
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epimorphism Ricgi+1 = q ∈ Sp±B
+

⇒
−

(q, ∅), assuming the vacuum expectation

value of q is cancellable. We have

q ↠ ∅ ≃ exp(q) → 0 ≃ E(q) → E(U(q))

where E(q) is the energy of q. The right-hand-side of the above equation
describes the dissipation of a quantum of energy into the ambient space in
which the quantum is annihilated. That is to say, the charts containing q are
compactified into a non-degenerate atlas lying in T.
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