Quantum Physics

1904 Submissions

[82] viXra:1904.0595 [pdf] submitted on 2019-04-30 07:57:42

Atom Extracts Photons from Laser Light

Authors: George Rajna
Comments: 45 Pages.

A similar method developed by a team from the Max Planck Institute of Quantum Optics in Garching works on light quanta – photons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30]
Category: Quantum Physics

[81] viXra:1904.0582 [pdf] submitted on 2019-04-30 21:46:24

“Spooky” Interaction and Non-Classical Interference Interpreted by a Product of Classical Electric Filed

Authors: Kazufumi Sakai
Comments: 8 Pages. Journal for Foundations and Applications of Physics, vol. 6, No. 2 (2019)

Many experiments to verify nonlocal interaction and non-classical phenomena using entangled lights were conducted in the 1980s, and many physicists were interested in their unrecognizable correlation. These quantum mechanical effects were used in Aspect's experiments and Bell tests and had a great influence on the interpretation of quantum mechanics. However, their essence, including their “spooky” interaction, is unknown. In this study, we show that entangled light can be expressed by the product of electric fields and that the same result as quantum mechanics can be obtained using the product form.
Category: Quantum Physics

[80] viXra:1904.0580 [pdf] submitted on 2019-04-29 07:34:22

Quantum Memory Efficiency Record

Authors: George Rajna
Comments: 44 Pages.

The team created such a quantum memory by trapping billions of rubidium atoms into a tiny, hair-like space-those atoms are cooled down to nearly absolute zero (about 0.00001 K) using lasers and a magnetic field. [28] Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator. [26] Achieving strong light-matter interaction at the quantum level has always been a central task in quantum physics since the emergence of quantum information and quantum control. [25] Operation at the single-photon level raises the possibility of developing entirely new communication and computing devices, ranging from hardware random number generators to quantum computers. [24] Considerable interest in new single-photon detector technologies has been scaling in this past decade. [23] Engineers develop key mathematical formula for driving quantum experiments. [22] Physicists are developing quantum simulators, to help solve problems that are beyond the reach of conventional computers. [21] Engineers at Australia's University of New South Wales have invented a radical new architecture for quantum computing, based on novel 'flip-flop qubits', that promises to make the large-scale manufacture of quantum chips dramatically cheaper-and easier-than thought possible. [20] A team of researchers from the U.S. and Italy has built a quantum memory device that is approximately 1000 times smaller than similar devices-small enough to install on a chip. [19] The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17]
Category: Quantum Physics

[79] viXra:1904.0574 [pdf] submitted on 2019-04-29 12:56:20

The Electron is a Photon Around Dark Matter

Authors: Adrian Ferent
Comments: 357 Pages. © 2014 Adrian Ferent

The electron is a photon around Dark Matter “The electron is a photon around Dark Matter” Adrian Ferent “The photon wavelength is 2πr, r the electron radius” Adrian Ferent “The high energy Gravitons emitted by Dark Matter keep the photon inside the electron” Adrian Ferent “In Ferent Quantum Gravity is important the energies of the Gravitons emitted by Dark Matter, not the Dark Matter mass” Adrian Ferent “Inside the electron, Dark Matter mass is much smaller than electron mass, but has much bigger energy” Adrian Ferent “Ferent electron and positron collision:” Adrian Ferent “Photon momentum after n interactions:“ Adrian Ferent “The way how the photon ‘oscillates’ inside the electron will give the electron spin” Adrian Ferent “The way how the photon ‘oscillates’ inside the electron will give the electron charge, negative charge – electron, positive charge – positron”” Adrian Ferent “Because electron–positron pair is produced by a photon – photon interaction and two gamma rays of 0.5 MeV each will be created in electron and positron collision, I considered only one photon inside the electron” Adrian Ferent “Gamma ray is inside the electron because of electron’s electromagnetic properties and electrons interactions with photons” Adrian Ferent Einstein said; “You know, it would be sufficient to understand the electron” which is still true today. “Conclusion: No Conclusion. So, what is an electron? An electron is a particle, and a wave; it is ideally simple, and unimaginably complex; it is precisely understood, and utterly mysterious; it is rigid, and subject to creative disassembly. No single answer does justice to reality. ” – Frank Wilczek Our civilization is based on electrons, without knowing what electron is. Electrons cannot be described as solid particles. An electron is a quantum object. Because of Heisenberg uncertainty principle, particles cannot be restricted to a geometric point in space because this would require an infinite particle momentum. Atomic orbital is a function that describes the wave-like electron inside the atom and this function is used to calculate the probability of finding the electron around the nucleus. Electron and positron collision: at low energies the result of the collision is the annihilation of the electron and the positron and gamma ray are created. If the annihilating electron and positron are at rest, each of the resulting gamma rays has energy of 0.5 MeV and frequency of 123 EHz. “Ferent electron and positron collision:” Adrian Ferent Where: DMe is the Dark Matter inside the electron DMp is the Dark Matter inside the positron “Dark Matter interacts only gravitationally with matter” Adrian Ferent “The elementary particles are created around Dark Matter” Adrian Ferent That is why at CERN they do not know what they collide, that is why they do not detect Dark Matter. “Because the elementary particles contain Dark Matter with the mass much smaller than particles mass, Dark Matter is not detected at CERN” Adrian Ferent Photon – photon interaction: both photons are gammas rays with just enough energy to produce an electron–positron pair. “Ferent equation for the energy of a photon E = h × f + a × f ” Adrian Ferent One possible explanation for the electron: “Because the photon has Dark Matter, the interaction Dark Matter photon with Dark Matter electron, keep the photon inside the electron” Adrian Ferent “Ferent equation for photon – graviton interaction: E = h × f + a × f - a × ν “ Adrian Ferent Another possible explanation for the electron: If I take in consideration the gravitons pe emitted by the photon, the equation will be: “Photon momentum after n interactions:“ Adrian Ferent The momentum of gravitons pe emitted by the photon, it is smaller than the momentum pk of the gravitons received by photon from a galaxy. That is why the photon will move towards the galaxy and this is Gravitational lensing. In the same way, was created the electron: “The high energy Gravitons emitted by Dark Matter keep the photon inside the electron” Adrian Ferent A single-photon pulse is a pure quantum state. “The electron is a photon around Dark Matter” Adrian Ferent Because the photon must be very close to Dark Matter, in classical view: “The photon wavelength is 2πr, r the electron radius” Adrian Ferent Scientists will say for that radius is required a huge mass for Dark Matter, this means the electron will have a huge mass. The Schwarzschild radius, the radius of the event horizon: In Ferent Quantum Gravity this is not relevant, because Einstein Gravitation theory is wrong. “In Ferent Quantum Gravity is important the energies of the Gravitons emitted by Dark Matter, not the Dark Matter mass” Adrian Ferent “Mass–energy equivalence for Dark Matter: E = md × vp^2” Adrian Ferent That is why: “Inside the electron, Dark Matter mass is much smaller than electron mass, but has much bigger energy” Adrian Ferent That is why particles like axions, neutrino, neutralinos…are not Dark Matter particles. “What you learned from your professors, from peer-reviewed journals, from your books, from the greatest scientists about Gravitation, Black Holes, Dark Matter… is wrong” Adrian Ferent “The elementary particles contain Dark Matter” Adrian Ferent “Unification between Matter and Dark Matter:” Adrian Ferent “Ferent equation for elementary particles:” Adrian Ferent “Ferent equation for N elementary particles:” Adrian Ferent “Ferent equation for elementary particle, made of 2 particles, a Matter particle and a Dark Matter particle, is the Unification between Matter and Dark Matter!” Adrian Ferent “The way how the photon ‘oscillates’ inside the electron will give the electron spin” Adrian Ferent “The way how the photon ‘oscillates’ inside the electron will give the electron charge, negative charge – electron, positive charge – positron”” Adrian Ferent “Because electron–positron pair is produced by a photon – photon interaction and two gamma rays of 0.5 MeV each will be created in electron and positron collision, I considered only one photon inside the electron” Adrian Ferent “Gamma ray is inside the electron because of electron’s electromagnetic properties and electrons interactions with photons” Adrian Ferent 201. I am the first who discovered that in Ferent Quantum Gravity the electron is a photon around Dark Matter 202. I am the first who discovered that inside the electron the photon wavelength is 2πr, r the electron radius 203. I am the first who discovered that the high energy Gravitons emitted by Dark Matter keep the photon inside the electron 204. I am the first who discovered that in Ferent Quantum Gravity is important the energies of the Gravitons emitted by Dark Matter, not the Dark Matter mass 205. I am the first who discovered that inside the electron, Dark Matter mass is much smaller than electron mass, but has much bigger energy 206. I am the first who discovered Dark Matter in electron and positron collision: 207. I am the first who discovered photon momentum after n interactions with gravitons: 208. I am the first who discovered that the way how the photon ‘oscillates’ inside the electron will give the electron spin 209. I am the first who discovered that the way how the photon ‘oscillates’ inside the electron will give the electron charge, negative charge – electron, positive charge – positron 210. I am the first who discovered because electron–positron pair is produced by a photon – photon interaction and two gamma rays of 0.5 MeV each will be created in electron and positron collision, I considered only one photon inside the electron 211. I am the first who discovered that gamma ray is inside the electron because of electron’s electromagnetic properties and electrons interactions with photons
Category: Quantum Physics

[78] viXra:1904.0562 [pdf] submitted on 2019-04-30 04:49:44

Color Tuning of LED Bulbs

Authors: George Rajna
Comments: 46 Pages.

Volkmar Dierolf and an international team demonstrate the possibility of tuning the color of a GaN LED by changing the time sequence at which the operation current is provided to the device. [29] Advancing a research technique such as ultra-fast electron diffraction will help future generations of materials scientists to investigate materials and chemical reactions with new precision. [28] But an international group led by Prof. Beena Kalisky and Prof. Aviad Frydman, from the Department of Physics and the Institute for Nanotechnology at Bar-Ilan University in Israel, has succeeded in imaging quantum fluctuations for the first time. [27] To tame chaos in powerful semiconductor lasers, which causes instabilities, scientists have introduced another kind of chaos. [26] An international team of scientists developed the world's first anti-laser for a nonlinear Bose-Einstein condensate of ultracold atoms. [25] A kiwi physicist has discovered the energy difference between two quantum states in the helium atom with unprecedented accuracy, a groundbreaking discovery that contributes to our understanding of the universe and space-time and rivals the work of the world's most expensive physics project, the Large Hadron Collider. [24] Physicists and material scientists have succeeded in constructing a motor and an energy storage device from one single component. [23] Heat pipes are devices to keep critical equipment from overheating. They transfer heat from one point to another through an evaporation-condensation process and are used in everything from cell phones and laptops to air conditioners and spacecraft. [22] Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed an algorithm that can discover and optimize these materials in a matter of months, relying on solving quantum mechanical equations, without any experimental input. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20]
Category: Quantum Physics

[77] viXra:1904.0551 [pdf] submitted on 2019-04-28 12:53:54

Modified General Relativity and the Klein-Gordon Equation in Curved Spacetime

Authors: Gary Nash
Comments: 10 Pages.

From the existence of a line element field $(A^{\beta},-A^{\beta}) $ on a four-dimensional time oriented Lorentzian manifold with metric, the Klein-Gordon equation in curved spacetime, $ \nabla_{\mu}\nabla^{\mu}\Psi=k^{2}\Psi $, can be constructed from one of the pair of regular vectors in the line element field, its covariant derivative and associated spinor-tensor; and scalar product for spins 1,1/2 and 0, respectively. The left side of the asymmetric wave equation can then be symmetrized. The symmetric part, $ \tilde{\varPsi}_{\alpha\beta}$, is the Lie derivative of the metric, which links the Klein-Gordon equation to modified general relativity for spins 1,1/2 and 0. Modified general relativity is intrinsically hidden in the Klein-Gordon equation for spins 2 and 3/2. Massless gravitons do not exist as force mediators of gravity in a four-dimensional time oriented Lorentzian spacetime. The diffeomorphism group Diff(M) is not restricted to the Lorentz group. $ \tilde{\varPsi}_{\alpha\beta}$ can instantaneously transmit information to, and quantum properties from, its antisymmetric partner $ K_{\alpha\beta} $ along $ A^{\beta} $. This establishes the concept of entanglement.
Category: Quantum Physics

[76] viXra:1904.0546 [pdf] submitted on 2019-04-29 04:35:19

Must a Quantum Mechanical Particle Sometimes be in Two Places at Once?

Authors: John Hemp
Comments: 8 Pages.

In this short paper, we point out that the interference of probabilities in the double slit experiment, or in a particle interferometer, should not necessarily lead us to think that a quantum mechanical particle’s position is a meaningless concept or that continuous motion of a quantum mechanical particle is an impossibility. We do not need to conclude that a particle must sometimes be in two places at once, or that nature herself does not know exactly where a particle is etc. We show that the argument leading to that kind of conclusion, based on the interference of probabilities, is illogical when probability is viewed in a rational Bayesian fashion i.e. as accounting for rational degree of belief in an occurrence rather than the relative frequency of that occurrence in many trials. We lend support to the view that much progress may be made in the interpretation of the quantum formalism and in the formation of physical pictures of processes in quantum mechanics by viewing probability in a rational Bayesian manner. Keywords Quantum Mechanics, uncertainty principle, Bayesian probability, Realism, QBism.
Category: Quantum Physics

[75] viXra:1904.0538 [pdf] submitted on 2019-04-27 09:45:19

Bright Glow from Empty Space

Authors: George Rajna
Comments: 46 Pages.

Particles travelling through empty space can emit bright flashes of gamma rays by interacting with the quantum vacuum, according to a new study by researchers at the University of Strathclyde. [27] Researchers from the University of Bristol have shed new light on the process of quantum measurement, one of the defining, and most quantum features of quantum mechanics. [26] Researchers at the University of Florence and Istituto dei Sistemi Complessi, in Italy, have recently proved that the invasiveness of quantum measurements might not always be detrimental. [25] Now, researchers in the UK and Israel have created miniscule engines within a block of synthetic diamond, and have shown that electronic superposition can boost their power beyond that of classical devices. [24] In the latest wrinkle to be discovered in cubic boron arsenide, the unusual material contradicts the traditional rules that govern heat conduction, according to a new report by Boston College researchers in today's edition of the journal Nature Communications. [23] Beyond the beauty of this phenomenon, which connects heating processes to topology through an elegant quantization law, the results reported in this work designate heating measurements as a powerful and universal probe for exotic states of matter. [22]
Category: Quantum Physics

[74] viXra:1904.0535 [pdf] submitted on 2019-04-27 10:47:18

Supersolid Quantum Gas

Authors: George Rajna
Comments: 47 Pages.

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. [28] Particles travelling through empty space can emit bright flashes of gamma rays by interacting with the quantum vacuum, according to a new study by researchers at the University of Strathclyde. [27]
Category: Quantum Physics

[73] viXra:1904.0524 [pdf] submitted on 2019-04-26 07:17:07

Spin Doctors Quantum Effect

Authors: George Rajna
Comments: 43 Pages.

Scientists find surprising way to affect information storage properties in metal alloy. [30] A new method allows the quantum state of atomic "qubits"-the basic unit of information in quantum computers-to be measured with twenty times less error than was previously possible, without losing any atoms. [29] Nanoparticles derived from tea leaves inhibit the growth of lung cancer cells, destroying up to 80% of them, new research by a joint Swansea University and Indian team has shown. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins-just a hair above absolute zero-and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19]
Category: Quantum Physics

[72] viXra:1904.0522 [pdf] submitted on 2019-04-26 07:43:30

Insight into Quantum Measurement

Authors: George Rajna
Comments: 44 Pages.

Researchers from the University of Bristol have shed new light on the process of quantum measurement, one of the defining, and most quantum features of quantum mechanics. [26] Researchers at the University of Florence and Istituto dei Sistemi Complessi, in Italy, have recently proved that the invasiveness of quantum measurements might not always be detrimental. [25] Now, researchers in the UK and Israel have created miniscule engines within a block of synthetic diamond, and have shown that electronic superposition can boost their power beyond that of classical devices. [24] In the latest wrinkle to be discovered in cubic boron arsenide, the unusual material contradicts the traditional rules that govern heat conduction, according to a new report by Boston College researchers in today's edition of the journal Nature Communications. [23] Beyond the beauty of this phenomenon, which connects heating processes to topology through an elegant quantization law, the results reported in this work designate heating measurements as a powerful and universal probe for exotic states of matter. [22] "We studied two systems: a Bose-Einstein condensate with 100,000 atoms confined in a cavity and an optomechanical cavity that confines light between two mirrors," Gabriel Teixeira Landi, a professor at the University of São Paulo's Physics Institute (IF-USP), told. [21] Search engine entropy is thus important not only for the efficiency of search engines and those using them to find relevant information as well as to the success of the companies and other bodies running such systems, but also to those who run websites hoping to be found and visited following a search. [20] "We've experimentally confirmed the connection between information in the classical case and the quantum case," Murch said, "and we're seeing this new effect of information loss." [19]
Category: Quantum Physics

[71] viXra:1904.0521 [pdf] submitted on 2019-04-26 08:31:13

Diamond Quantum Sensors

Authors: George Rajna
Comments: 48 Pages.

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. [30] Diamonds are prized for their purity, but their flaws might hold the key to a new type of highly secure communications. [29] Researchers from Chalmers University of Technology, Sweden, and Tallinn University of Technology, Estonia, have demonstrated a 4000 kilometre fibre-optical transmission link using ultra low-noise, phase-sensitive optical amplifiers. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist-a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal-a form of matter that "ticks" when exposed to an electromagnetic pulse-in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23]
Category: Quantum Physics

[70] viXra:1904.0520 [pdf] submitted on 2019-04-26 08:53:08

Coffee Machine Ion Traps

Authors: George Rajna
Comments: 51 Pages.

Scientists from ITMO University have developed and applied a new method for analyzing the electromagnetic field inside ion traps. [31] For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. [30] Diamonds are prized for their purity, but their flaws might hold the key to a new type of highly secure communications. [29] Researchers from Chalmers University of Technology, Sweden, and Tallinn University of Technology, Estonia, have demonstrated a 4000 kilometre fibre-optical transmission link using ultra low-noise, phase-sensitive optical amplifiers. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist-a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal-a form of matter that "ticks" when exposed to an electromagnetic pulse-in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23]
Category: Quantum Physics

[69] viXra:1904.0509 [pdf] submitted on 2019-04-27 02:19:52

Detangling Quantum Entanglement

Authors: George Rajna
Comments: 64 Pages.

Einstein called entanglement "spooky action at a distance," a name that has stuck and become increasingly popular. Beyond just building better quantum computers, understanding and harnessing entanglement is also useful in other ways. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[68] viXra:1904.0506 [pdf] submitted on 2019-04-27 04:38:10

Quantum States of Gold Nanoclusters

Authors: George Rajna
Comments: 64 Pages.

Researchers from Carnegie Mellon University's Department of Chemistry have found a way to control the lifetime of the quantum states of gold nanoclusters by three orders of magnitude, which could lead to improvements in solar cell and photocatalysis technologies. [39] Einstein called entanglement "spooky action at a distance," a name that has stuck and become increasingly popular. Beyond just building better quantum computers, understanding and harnessing entanglement is also useful in other ways. [38]
Category: Quantum Physics

[67] viXra:1904.0499 [pdf] submitted on 2019-04-25 09:10:25

Laser Beam Shaping Enhanced

Authors: George Rajna
Comments: 24 Pages.

Researchers from Osaka University have developed a technique for improving accuracy of laser beam shaping and wavefront obtained by conventional methods with no additional cost by optimizing virtual phase grating. [13] Conventional electron accelerators have become an indispensable tool in modern research. [12] An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde. [11]
Category: Quantum Physics

[66] viXra:1904.0498 [pdf] submitted on 2019-04-25 09:30:11

Laser-Plasma Interaction Breakthrough

Authors: George Rajna
Comments: 27 Pages.

A new 3-D particle-in-cell (PIC) simulation tool developed by researchers from Lawrence Berkeley National Laboratory and CEA Saclay is enabling cutting-edge simulations of laser/plasma coupling mechanisms that were previously out of reach of standard PIC codes used in plasma research. [14] Researchers from Osaka University have developed a technique for improving accuracy of laser beam shaping and wavefront obtained by conventional methods with no additional cost by optimizing virtual phase grating. [13]
Category: Quantum Physics

[65] viXra:1904.0497 [pdf] submitted on 2019-04-25 10:39:43

Sharper Diffraction Images

Authors: George Rajna
Comments: 44 Pages.

Sharper Diffraction Images Advancing a research technique such as ultra-fast electron diffraction will help future generations of materials scientists to investigate materials and chemical reactions with new precision. [28] But an international group led by Prof. Beena Kalisky and Prof. Aviad Frydman, from the Department of Physics and the Institute for Nanotechnology at Bar-Ilan University in Israel, has succeeded in imaging quantum fluctuations for the first time. [27] To tame chaos in powerful semiconductor lasers, which causes instabilities, scientists have introduced another kind of chaos. [26] An international team of scientists developed the world's first anti-laser for a nonlinear Bose-Einstein condensate of ultracold atoms. [25] A kiwi physicist has discovered the energy difference between two quantum states in the helium atom with unprecedented accuracy, a groundbreaking discovery that contributes to our understanding of the universe and space-time and rivals the work of the world's most expensive physics project, the Large Hadron Collider. [24] Physicists and material scientists have succeeded in constructing a motor and an energy storage device from one single component. [23] Heat pipes are devices to keep critical equipment from overheating. They transfer heat from one point to another through an evaporation-condensation process and are used in everything from cell phones and laptops to air conditioners and spacecraft. [22] Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed an algorithm that can discover and optimize these materials in a matter of months, relying on solving quantum mechanical equations, without any experimental input. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18]
Category: Quantum Physics

[64] viXra:1904.0468 [pdf] submitted on 2019-04-24 12:05:50

Atom Quantum Interaction Discovery

Authors: George Rajna
Comments: 52 Pages.

By breaking with conventionality, University of Otago physicists have opened up new research and technology opportunities involving the basic building block of the world—atoms. [35] A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman's vision of building tiny machines from the atom up. [34] One of the most enduring "Holy Grail" experiments in science has been attempts to directly observe atomic motions during structural changes. [33]
Category: Quantum Physics

[63] viXra:1904.0460 [pdf] submitted on 2019-04-25 03:10:40

Nanocomponent is a Quantum Leap

Authors: George Rajna
Comments: 60 Pages.

The research is carried out in the Quantum Photonics Group at the Niels Bohr Institute, which is a part of the newly established Center for Hybrid Quantum Networks (Hy-Q) [39] With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. [38] Physicists at the Kastler Brossel Laboratory in Paris have reached a milestone in the combination of cold atoms and nanophotonics. [37]
Category: Quantum Physics

[62] viXra:1904.0459 [pdf] submitted on 2019-04-25 03:38:49

Device Scale Up Quantum Tech

Authors: George Rajna
Comments: 62 Pages.

The device is potentially scalable because of its flat "planar" surface – a platform that industry already uses in the form of silicon wafers for building classical microprocessors. [40] The research is carried out in the Quantum Photonics Group at the Niels Bohr Institute, which is a part of the newly established Center for Hybrid Quantum Networks (Hy-Q) [39] With international collaboration, researchers at Aalto University have now developed a nanosized amplifier to help light signals propagate through microchips. [38]
Category: Quantum Physics

[61] viXra:1904.0438 [pdf] submitted on 2019-04-22 09:14:41

Printing Press for Quantum Materials

Authors: George Rajna
Comments: 55 Pages.

Called the Quantum Material Press, or QPress, this system will accelerate the discovery of next-generation materials for the emerging field of quantum information science (QIS). [35] A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman's vision of building tiny machines from the atom up. [34]
Category: Quantum Physics

[60] viXra:1904.0436 [pdf] submitted on 2019-04-22 10:00:17

Timely Information

Authors: David Colasante
Comments: 6 Pages.

Physics isn’t physics, unless it’s about the physical. Thus, Wheeler’s ‘It from Bit’ suggests the observed universe arises from a physically-real first principle. Interval-time coordinates reveal a fundamental bit, leading to the more recent ‘It from Qubit’ by way of the implied ‘Qubit from Bit’.
Category: Quantum Physics

[59] viXra:1904.0406 [pdf] replaced on 2019-04-21 00:12:26

Why Copenhagen Interpretation is Wrong.

Authors: Durgadas Datta.
Comments: 16 Pages. GOD DOES NOT PLAY DICE.

PILOT WAVES FROM THE SPACE ITSELF.
Category: Quantum Physics

[58] viXra:1904.0390 [pdf] replaced on 2019-04-25 19:43:04

The Free Photon Wave Function's Gauge-Invariant, Lorentz-Covariant Antisymmetric-Tensor Form

Authors: Steven Kenneth Kauffmann
Comments: 3 Pages.

If a free photon's wave function is taken to be a four-vector function of its space-time coordinates that has vanishing four-divergence (the Lorentz condition), it isn't uniquely determined by the free-photon Schroedinger equation. This gauge indeterminacy can be eliminated by taking that wave function to be a three-vector function of its space-time coordinates -- at the expense of its Lorentz-covariant form. These conflicts are resolved by taking a free photon's wave function to be an antisymmetric-tensor function of its space-time coordinates which has vanishing four-divergence and also satisfies the Lorentz-covariant cyclic Gauss-Faraday equation that is satisfied by all antisymmetric-tensor real-valued electromagnetic fields. It is shown that for every source-free antisymmetric-tensor real-valued electromagnetic field, there exists a corresponding free-photon antisymmetric-tensor complex-valued wave function.
Category: Quantum Physics

[57] viXra:1904.0373 [pdf] submitted on 2019-04-20 04:11:50

Dipolar Quantum Gases

Authors: George Rajna
Comments: 48 Pages.

Atomic systems that behave very much like supersolids have been created independently by teams of physicists in Italy, Germany have Austria. [30] Ant-Man knows the quantum realm holds shocking revelations and irrational solutions. [29] A new uncertainty relation, linking the precision with which temperature can be measured and quantum mechanics, has been discovered at the University of Exeter. [28] Physicists have demonstrated that energy quantization can improve the efficiency of a single-atom heat engine to exceed the performance of its classical counterpart. [27] A solid can serve as a medium for heat and sound wave interactions just like a fluid does for thermoacoustic engines and refrigerators-resulting in leak-free machines that can stay operating longer. [26] Like watchmakers choosing superior materials to build a fine timepiece, physicists at the Centre for Quantum Technologies (CQT) at the National University of Singapore have singled out an atom that could allow them to build better atomic clocks. [25] Yale physicists have uncovered hints of a time crystal-a form of matter that "ticks" when exposed to an electromagnetic pulse-in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23]
Category: Quantum Physics

[56] viXra:1904.0366 [pdf] submitted on 2019-04-18 08:12:55

Maxwell's Demon at Nanoscale

Authors: George Rajna
Comments: 41 Pages.

Now, researchers at the University of Barcelona have presented the first theoretical and experimental solution of a continuous version of Maxwell's demon in a single molecule system. [27] Lensless microscopy with X-rays, or coherent diffractive imaging, is a promising approach. It allows researchers to analyse complex three-dimensional structures, which frequently exist in nature, from a dynamic perspective. [26]
Category: Quantum Physics

[55] viXra:1904.0362 [pdf] submitted on 2019-04-18 09:13:14

Room-Temperature Polar Skyrmions

Authors: George Rajna
Comments: 52 Pages.

An international team of researchers has discovered a way to create and observe room-temperature polar skyrmions. [32] Unique physical properties of these "magic knots" might help to satisfy demand for IT power and storage using a fraction of the energy. [31] A skyrmion is the magnetic version of a tornado which is obtained by replacing the air parcels that make up the tornado by magnetic spins, and by scaling the system down to the nanometre scale. [30]
Category: Quantum Physics

[54] viXra:1904.0354 [pdf] submitted on 2019-04-19 02:17:23

Triplet Superconductivity Demonstrated

Authors: George Rajna
Comments: 20 Pages.

Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters. [32] Researchers from Tokyo Metropolitan University have found that crystals of a recently discovered superconducting material, a layered bismuth chalcogenide with a four-fold symmetric structure, shows only two-fold symmetry in its superconductivity. [31]
Category: Quantum Physics

[53] viXra:1904.0353 [pdf] submitted on 2019-04-19 02:39:22

Quantum Simulations on Larger Systems

Authors: George Rajna
Comments: 62 Pages.

Through randomly selected measurements, Austrian physicists can now determine the quantum entanglement of many-particle systems. [36] In a recent study published in Nature Physics, a team of researchers at Max Planck Institute Dresden, Heidelberg University, University of Cologne, and DESY-Hamburg attempted to image a material's active orbitals directly in real space, without any modeling. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures-coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule-occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28]
Category: Quantum Physics

[52] viXra:1904.0345 [pdf] submitted on 2019-04-17 11:48:26

Imaging Orbitals in Quantum Materials

Authors: George Rajna
Comments: 60 Pages.

In a recent study published in Nature Physics, a team of researchers at Max Planck Institute Dresden, Heidelberg University, University of Cologne, and DESY-Hamburg attempted to image a material's active orbitals directly in real space, without any modeling. [35] Scientists have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level, which could lead to better ways of creating chemicals for use as pharmaceuticals. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures-coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule-occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors-sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Quantum Physics

[51] viXra:1904.0343 [pdf] submitted on 2019-04-17 13:05:50

World-Record Quantum Computing

Authors: George Rajna
Comments: 54 Pages.

A world-record result in reducing errors in semiconductor 'spin qubits', a type of building block for quantum computers, has been achieved using the theoretical work of quantum physicists at the University of Sydney Nano Institute and School of Physics. [32] Quantum communication, which ensures absolute data security, is one of the most advanced branches of the "second quantum revolution". [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[50] viXra:1904.0342 [pdf] submitted on 2019-04-17 13:30:58

H. e. Kondakci, A.f. Abouraddy. Optical Space-Time Wave Packets Having Arbitrary Group Velocities in Free Space (In Russian)

Authors: V.A.Kasimov
Comments: 13 Pages. in Russian

Controlling the group velocity of an optical pulse typically requires traversing a material or structure whose dispersion is judiciously crafted. Alternatively, the group velocity can be modified in free space by spatially structuring the beam profile, but the realizable deviation from the speed of light in vacuum is small. Here we demonstrate precise and versatile control over the group velocity of a propagation-invariant optical wave packet in free space through sculpting its spatio-temporal spectrum. By jointly modulating the spatial and temporal degrees of freedom, arbitrary group velocities are unambiguously observed in free space above or below the speed of light in vacuum, whether in the forward direction propagating away from the source or even traveling backwards towards it.
Category: Quantum Physics

[49] viXra:1904.0341 [pdf] submitted on 2019-04-17 13:30:11

Increase Reliability of Quantum Computers

Authors: George Rajna
Comments: 56 Pages.

A new technique by researchers at Princeton University, University of Chicago and IBM significantly improves the reliability of quantum computers by harnessing data about the noisiness of operations on real hardware. [33] A world-record result in reducing errors in semiconductor 'spin qubits', a type of building block for quantum computers, has been achieved using the theoretical work of quantum physicists at the University of Sydney Nano Institute and School of Physics. [32] Quantum communication, which ensures absolute data security, is one of the most advanced branches of the "second quantum revolution". [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[48] viXra:1904.0329 [pdf] submitted on 2019-04-16 10:25:21

Neutrino Mass, Electroweak Coupling Constant and Weak Mixing Angle

Authors: Jacob Biemond
Comments: 5 Pages, including 1 table

A formula for the magnetic moment of a massive Dirac neutrino was deduced in the context of electroweak interactions at the one-loop level in 1977. A linear dependence on the neutrino mass was found. Alternatively, a magnetic moment for a massive neutrino arising from gravitational origin is predicted by the so-called Wilson-Blackett law. Both formulas for the magnetic moment can be combined, yielding a value of 1.530 meV for the lightest neutrino mass m1.

The remaining neutrino masses can then be calculated from recent neutrino oscillation experiments. The results are remarkable. First, the so-called geometric mean mass relation between the three neutrino masses m1, m2 and m3 is in good agreement with our results. Moreover, the empirical ratio of m3 to m1 is close to 33. This result suggests a value of 32 for the reciprocal value of the electroweak coupling constant αW at low energy. The latter value for αW implies an electroweak mixing angle, in reasonable agreement with the value calculated from atomic parity violation experiments on cesium. The obtained result deviates, however, from the weak mixing angle deduced from the standard model.


Category: Quantum Physics

[47] viXra:1904.0320 [pdf] submitted on 2019-04-16 13:09:17

Electricity from Snowfall

Authors: George Rajna
Comments: 28 Pages.

UCLA researchers and colleagues have designed a new device that creates electricity from falling snow. [21] Two-dimensional (2-D) semiconductors are promising for quantum computing and future electronics. Now, researchers can convert metallic gold into semiconductor and customize the material atom-by-atom on boron nitride nanotubes. [20] U.S. Naval Research Laboratory scientists have developed and patented the fabrication of transparent, luminescent material they say could give smartphone and television screens flexible, stretchable, and shatterproof properties. [19] "Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function," Heyl says. [18] A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. [17] Ph. D candidate Shuntaro Okada and information scientist Masayuki Ohzeki of Japan's Tohoku University collaborated with global automotive components manufacturer Denso Corporation and other colleagues to develop an algorithm that improves the D-Wave quantum annealer's ability to solve combinatorial optimization problems. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[46] viXra:1904.0319 [pdf] submitted on 2019-04-16 13:18:02

The Possibility of Physical Waves as the Basis of Wave Mechanics

Authors: David M. Gilliam
Comments: 12 Pages.

A new possibility is presented for the development of an alternative picture of wave mechanics, based on physical waves. In this approach, it is postulated that particles emit physical waves that play a role in the mediation of interactions with other particles. Doppler-shifted echoes of these postulated waves are shown to give a new explanation for Bragg scattering with the apparent wavelength h/p, the de Broglie wavelength. The issue of conservation of mass-energy is discussed. Experimental tests of this hypothesis are proposed.
Category: Quantum Physics

[45] viXra:1904.0310 [pdf] submitted on 2019-04-16 23:34:39

The CMB Energy Equivalence Principle : A Correlation to Planck and Cosmic Horizon Energy

Authors: Ankur S. Bhatt, F.M. Becker
Comments: 6 Pages.

According to the Cosmic Microwave Background (CMB) temperature and Wien's displacement law, the CMB's energy value is equivalent to that of the measured and determined neutrino energy. The resulting CMB/neutrino mass is used to determine a ratio by correlating the accelerative work of two forces which corresponds to the cosmic particle horizon and Planck length. Planck's constant is shown to be proportional to the cosmic particle horizon and the CMB mass/energy and the speed of light in vacuum. Planck's constant, the cosmic horizon, the CMB energy and speed of light all appear to be interconnected and their correlations provide an amending perspective on the concepts of the fundamental laws and theories of the cosmos. Specifically, the squared energy of a CMB/neutrino is equal to the product of the energy of the maximum cosmic Rindler horizon, cosmic diameter, and the Schwarzschild radius for a Planck mass.
Category: Quantum Physics

[44] viXra:1904.0303 [pdf] submitted on 2019-04-17 04:19:21

Phonon Laser Information Processing

Authors: George Rajna
Comments: 74 Pages.

Now a Rochester Institute of Technology researcher has teamed up with experts at the University of Rochester to create a different kind of laser-a laser for sound, using the optical tweezer technique invented by Ashkin. [45]
Category: Quantum Physics

[43] viXra:1904.0286 [pdf] submitted on 2019-04-15 20:14:48

Fine Structure of Energy Level of Hydrogen Atom

Authors: Daehyeon KANG
Comments: 7 Pages.

It is believed that the study by the perturbation term is meaningful if the energy level of the hydrogen atom is correctly obtained by special theory of relativity and quantum theory. In this paper, we have investigated the energy levels of hydrogen atoms, including electron and atomic nucleus movements.
Category: Quantum Physics

[42] viXra:1904.0282 [pdf] submitted on 2019-04-16 02:55:05

7 Myths about Quantum Physics

Authors: George Rajna
Comments: 30 Pages.

One of the leading lights in the field, Richard Feynman himself said: "I think I can safely say that nobody understands quantum mechanics." [14] What if the brain could detect its own disease? Researchers have been trying to create a material that "thinks" like the brain does, which would be more sensitive to early signs of neurological diseases such as Parkinson's. [13] University Professor of Applied Physics Stephen Arnold and his team at the New York University Tandon School of Engineering have made a discovery that could lead to Star Trek-like biosensor devices capable of flagging the barest presence in blood of a specific virus or antibody, or protein marker for a specific cancer; or sniffing out airborne chemical warfare agents while they are still far below toxic levels. [12] Lead researcher Dr Jonathan Breeze, from Imperial's Department of Materials, said: "This breakthrough paves the way for the widespread adoption of masers and opens the door for a wide array of applications that we are keen to explore. We hope the maser will now enjoy as much success as the laser." [11] Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Quantum Physics

[41] viXra:1904.0281 [pdf] submitted on 2019-04-16 03:15:05

Superconductor Unexpected Properties

Authors: George Rajna
Comments: 19 Pages.

Researchers from Tokyo Metropolitan University have found that crystals of a recently discovered superconducting material, a layered bismuth chalcogenide with a four-fold symmetric structure, shows only two-fold symmetry in its superconductivity. [31] Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity. [30] Stanford University have shown that copper-based superconductors, or cuprates-the first class of materials found to carry electricity with no loss at relatively high temperatures-contain fluctuating stripes of electron charge and spin that meander like rivulets over rough ground. [29] Researchers from Google and the University of California Santa Barbara have taken an important step towards the goal of building a large-scale quantum computer. [28] Physicists have shown that superconducting circuits-circuits that have zero electrical resistance-can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[40] viXra:1904.0278 [pdf] submitted on 2019-04-16 04:07:09

Laser Optoelectronic Devices

Authors: George Rajna
Comments: 73 Pages.

Scientists at the U.S. Naval Research Laboratory (NRL) discovered a new method to passivate defects in next generation optical materials to improve optical quality and enable the miniaturization of light emitting diodes and other optical elements. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42]
Category: Quantum Physics

[39] viXra:1904.0275 [pdf] submitted on 2019-04-14 07:14:05

Quantum Dot Polymer Screens

Authors: George Rajna
Comments: 25 Pages.

U.S. Naval Research Laboratory scientists have developed and patented the fabrication of transparent, luminescent material they say could give smartphone and television screens flexible, stretchable, and shatterproof properties. [19] "Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function," Heyl says. [18] A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. [17] Ph. D candidate Shuntaro Okada and information scientist Masayuki Ohzeki of Japan's Tohoku University collaborated with global automotive components manufacturer Denso Corporation and other colleagues to develop an algorithm that improves the D-Wave quantum annealer's ability to solve combinatorial optimization problems. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[38] viXra:1904.0273 [pdf] submitted on 2019-04-14 07:33:35

Two-Dimensional Semiconductors

Authors: George Rajna
Comments: 27 Pages.

Two-dimensional (2-D) semiconductors are promising for quantum computing and future electronics. Now, researchers can convert metallic gold into semiconductor and customize the material atom-by-atom on boron nitride nanotubes. [20] U.S. Naval Research Laboratory scientists have developed and patented the fabrication of transparent, luminescent material they say could give smartphone and television screens flexible, stretchable, and shatterproof properties. [19] "Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function," Heyl says. [18] A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. [17] Ph. D candidate Shuntaro Okada and information scientist Masayuki Ohzeki of Japan's Tohoku University collaborated with global automotive components manufacturer Denso Corporation and other colleagues to develop an algorithm that improves the D-Wave quantum annealer's ability to solve combinatorial optimization problems. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[37] viXra:1904.0266 [pdf] submitted on 2019-04-14 10:33:14

Locking Together, or Not, the Fractional Charge Quarks that Make up a Proton

Authors: Bruce A. Lutgen
Comments: 1 Page.

Fractional-charge up and down quarks make up an atom’s protons. The existence of such quarks is well accepted. Despite enormous amounts of energy being expended in the effort, recalling from necessarily limited written resources, a proton has never been successfully broken apart into identifiable constituent quarks. How then is this inability to successfully break protons into observable individual quarks explained?
Category: Quantum Physics

[36] viXra:1904.0250 [pdf] submitted on 2019-04-13 13:50:44

Diffusion Gravity: Dynamics and Scalability

Authors: DH Fulton
Comments: 13 Pages.

A previous paper introduced the heuristic model of Diffusion Gravity (DG) based on the principle of mass diffusion [1]. That work provided an initial development of an explanation of inertia, acceleration, and gravity from the interaction of mass objects with the active quantum vacuum environment via virtual particle mechanisms. This follow-on article extends the model to incorporate the related dynamics of the virtual particle outflows from mass objects and presents model specifics for inertia, kinetic energy, and orbital motion. Mass Diffusion is the primary active force that drives interactions of the virtual particle agents of the quantum vacuum to produce linear and orbital motion; the active quantum vacuum may be more accurately described as a an agent in gravitation; these aspects of diffusion gravity and other mass-energy considerations are described and discussed in this paper, including derivation and consistency with mass-energy E 0 =mc 2 . Motion models and their descriptions, which comprise Diffusion Gravity Dynamics (DGD), are added to the Diffusion Gravity theory. The Diffusion Gravity model and theory implies application to other physical phenomena such as relativity, light refraction and the role of virtual particles therein, and the model’s scalability to astrophysical phenomena such as flattening of the galactic rotation curves.
Category: Quantum Physics

[35] viXra:1904.0238 [pdf] submitted on 2019-04-12 13:26:39

Quantum Simulation More Stable

Authors: George Rajna
Comments: 24 Pages.

"Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function," Heyl says. [18] A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. [17] Ph. D candidate Shuntaro Okada and information scientist Masayuki Ohzeki of Japan's Tohoku University collaborated with global automotive components manufacturer Denso Corporation and other colleagues to develop an algorithm that improves the D-Wave quantum annealer's ability to solve combinatorial optimization problems. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[34] viXra:1904.0231 [pdf] submitted on 2019-04-13 04:32:09

Traffic Cops for Optical Communication

Authors: George Rajna
Comments: 72 Pages.

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers faster and more efficiently than ever. [42] Researchers at Missouri S&T have found an unprecedented, economical method for creating high-performance inorganic thin films, or "epitaxial" films, used in the manufacture of semiconductors for flexible electronics, LEDs and solar cells. [41] Femtosecond X-ray experiments in combination with a new theoretical approach establish a direct connection between electric properties in the macroscopic world and electron motions on the time and length scale of atoms. [40]
Category: Quantum Physics

[33] viXra:1904.0228 [pdf] submitted on 2019-04-11 07:38:10

Quantum Fluctuation in the Void

Authors: George Rajna
Comments: 98 Pages.

Researchers at ETH Zurich have developed a method that allows them to characterize the fluctuations in detail. [56] A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition. [55] Physicists have proposed an entirely new way to test the quantum superposition principle-the idea that a quantum object can exist in multiple states at the same time. [54] Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity. [53] Researchers have discovered a 'blind spot' in atomic force microscopy-a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits-utilising the spin-orbit coupling of atom qubits-adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47]
Category: Quantum Physics

[32] viXra:1904.0224 [pdf] submitted on 2019-04-11 10:30:21

Optical Atomic Clocks

Authors: George Rajna
Comments: 51 Pages.

Researchers have measured an optical clock's ticking with record-breaking accuracy while also showing the clock can be operated with unprecedented consistency. [31] The optical tweezer is revealing new capabilities while helping scientists understand quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23]
Category: Quantum Physics

[31] viXra:1904.0223 [pdf] submitted on 2019-04-11 11:01:33

Artificial Atoms at Room Temperature

Authors: George Rajna
Comments: 52 Pages.

Ultra-secure online communications, completely indecipherable if intercepted, is one step closer with the help of a recently published discovery by University of Oregon physicist Ben Alemán. [32] Researchers have measured an optical clock's ticking with record-breaking accuracy while also showing the clock can be operated with unprecedented consistency. [31] The optical tweezer is revealing new capabilities while helping scientists understand quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22]
Category: Quantum Physics

[30] viXra:1904.0215 [pdf] submitted on 2019-04-12 03:09:37

Quantum Particles at Large Scale

Authors: George Rajna
Comments: 40 Pages.

In a new study published in EPJ ST, Dr. J.S. Ben-Benjamin and colleagues from Texas A&M University, USA, reverse this approach; starting with quantum mechanical rules, they explore how to derive an infinite number of quasi-distributions, to emulate the classical mechanics approach. [25] A new Tel Aviv University study explores the generation and propagation of excitons in 2D materials within an unprecedented small time frame and at an extraordinarily high spatial resolution. [24] An international team of researchers led out of Macquarie University has demonstrated a new approach for converting ordinary laser light into genuine quantum light. [23] Beyond the beauty of this phenomenon, which connects heating processes to topology through an elegant quantization law, the results reported in this work designate heating measurements as a powerful and universal probe for exotic states of matter. [22] "We studied two systems: a Bose-Einstein condensate with 100,000 atoms confined in a cavity and an optomechanical cavity that confines light between two mirrors," Gabriel Teixeira Landi, a professor at the University of São Paulo's Physics Institute (IF-USP), told. [21] Search engine entropy is thus important not only for the efficiency of search engines and those using them to find relevant information as well as to the success of the companies and other bodies running such systems, but also to those who run websites hoping to be found and visited following a search. [20] "We've experimentally confirmed the connection between information in the classical case and the quantum case," Murch said, "and we're seeing this new effect of information loss." [19] It's well-known that when a quantum system is continuously measured, it freezes, i.e., it stops changing, which is due to a phenomenon called the quantum Zeno effect. [18] Physicists have extended one of the most prominent fluctuation theorems of classical stochastic thermodynamics, the Jarzynski equality, to quantum field theory. [17]
Category: Quantum Physics

[29] viXra:1904.0213 [pdf] submitted on 2019-04-12 03:36:35

Speed Boost to Quantum Computers

Authors: George Rajna
Comments: 23 Pages.

A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. [17] Ph. D candidate Shuntaro Okada and information scientist Masayuki Ohzeki of Japan's Tohoku University collaborated with global automotive components manufacturer Denso Corporation and other colleagues to develop an algorithm that improves the D-Wave quantum annealer's ability to solve combinatorial optimization problems. [16] D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. [15] New quantum theory research, led by academics at the University of St Andrews' School of Physics, could transform the way scientists predict how quantum particles behave. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. [13] To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[28] viXra:1904.0188 [pdf] submitted on 2019-04-09 09:50:04

Pair-Density Wave in Spin-Valley

Authors: George Rajna
Comments: 21 Pages.

Recent discoveries in high Tc superconductorshave resulted in an intense interest in a "pair-density wave" (PDW) formed in Cooper pairs (an electron pair bound together at low temperatures), although there is little theoretical understanding on the driving mechanisms of this exotic state. [30] Researchers at Northeast Normal University, in China, and University of the Basque Country, in Spain, have recently carried out a study investigating the superconducting transition of electrides. [29] Superconducting quantum microwave circuits can function as qubits, the building blocks of a future quantum computer. [28] Physicists have shown that superconducting circuits-circuits that have zero electrical resistance-can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[27] viXra:1904.0187 [pdf] submitted on 2019-04-09 10:08:38

Mechanism of High-Temperature Superconductivity

Authors: George Rajna
Comments: 17 Pages.

Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity. [30] Stanford University have shown that copper-based superconductors, or cuprates-the first class of materials found to carry electricity with no loss at relatively high temperatures-contain fluctuating stripes of electron charge and spin that meander like rivulets over rough ground. [29] Researchers from Google and the University of California Santa Barbara have taken an important step towards the goal of building a large-scale quantum computer. [28] Physicists have shown that superconducting circuits-circuits that have zero electrical resistance-can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[26] viXra:1904.0177 [pdf] submitted on 2019-04-08 06:26:15

Optical Tweezer Make Phonon Laser

Authors: George Rajna
Comments: 44 Pages.

The device, which works in the mesoscopic mass range for the first time, might not only be used to help solve fundamental problems in quantum mechanics, it might also find use in precision metrology applications. [24] Although previous research shows that metal nanoparticles have properties useful for various biomedical applications, many mysteries remain regarding how these tiny materials form, including the processes that generate size variations. [23]
Category: Quantum Physics

[25] viXra:1904.0174 [pdf] submitted on 2019-04-08 08:28:57

Dipolar Quantum Supersolid Gasses

Authors: George Rajna
Comments: 72 Pages.

Three teams of researchers working independently of one another have shown that certain dipolar quantum gases are able to support a state of supersolid properties. [43] Neill is lead author of the group's new paper, "A blueprint for demonstrating quantum supremacy with superconducting qubits," now published in the journal Science. [42] Physicists at ETH Zurich have now demonstrated an elegant way to relax this intrinsic incompatibility using a mechanical oscillator formed by a single trapped ion, opening up a route for fundamental studies and practical uses alike. [41]
Category: Quantum Physics

[24] viXra:1904.0157 [pdf] submitted on 2019-04-09 06:06:28

Quantum Superposition Futures

Authors: George Rajna
Comments: 97 Pages.

A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition. [55] Physicists have proposed an entirely new way to test the quantum superposition principle-the idea that a quantum object can exist in multiple states at the same time. [54] Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity. [53] Researchers have discovered a 'blind spot' in atomic force microscopy-a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits-utilising the spin-orbit coupling of atom qubits-adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50]
Category: Quantum Physics

[23] viXra:1904.0137 [pdf] submitted on 2019-04-06 08:37:46

Unified Field Theory

Authors: Adham Ahmed Mohamed Ahmed
Comments: 1 Page. ty

1.electromagnetic waves are taking the whole of the universe and space is in equilibrium with electromagnetic waves 2.electromagnetic waves are increased more than the equilubrium status of electromagnetic waves and electromagnetic waves are not in equilibrium with space and they start needing more space and time starts to act up by making the electromagnetic waves collapse on themselves into masses and the masses are expanding in space at the same time 3.masses reach a very large space and so they explode and form electromagnetic waves and they be at their best equilibrium /on 2 when the electromagnetic waves become collapsed on themselves they are doing gravitation and when they are expanding they are doing anti gravitation /we want to understand electrostatics /just like gravitation and antigravitation when we look at masses being compressed by gravitation and expanded by having more space we end up having electrostatic charges that keep atomic particles attracted so to sum it up there are four forces here 1.the force of expansion or repulsion(antigravitation) 2.the force of compression or attraction(gravitation) 3.the force of repulsion between charges(due to the masses as expanding in space would find more space and thus want to expand away from each other(but that doesnt happen more due to the force no. 2 the force of compression)) 4.the force of attraction between charges(due to the masses being compressed towards each other by time(something that is more than the force no.1 the force of expansion))
Category: Quantum Physics

[22] viXra:1904.0133 [pdf] submitted on 2019-04-06 09:38:37

Laser Sheds Light on Nanoparticle

Authors: George Rajna
Comments: 41 Pages.

Although previous research shows that metal nanoparticles have properties useful for various biomedical applications, many mysteries remain regarding how these tiny materials form, including the processes that generate size variations. [23] With a novel electrochemical biosensing device that identifies the tiniest signals these biomarkers emit, a pair of NJIT inventors are hoping to bridge this gap. [22] The dark skin pigment melanin protects against the sun's damaging rays by absorbing light energy and converting it to heat. [21] Wang, Bren Professor of Medical Engineering and Electrical Engineering, is using PAM to improve on an existing technology for measuring the oxygen-consumption rate (OCR) in collaboration with Professor Jun Zou at Texas A&M University. [20]
Category: Quantum Physics

[21] viXra:1904.0132 [pdf] submitted on 2019-04-06 10:56:43

Can We Have an Observer-Independent Description of Physical Reality?

Authors: Sunil Thakur
Comments: 22 Pages.

Classical physics assumes that the things exist independently of an act of observation; however, quantum theory suggests that the apparent form of quantum system emerges as a consequence of an act of observation. However, quantum theory is silent on the state of the systems prior to the act of observation. It assumes that the wavefunction collapses as a consequence of an act of observation but does not explain the mechanism of the collapse of wavefunction. Therefore, it is at least incomplete, if not incorrect. In this paper, we have shown that our understanding of the nature of physical reality is based on the false premise that we observe the physical entities, but the mechanism of perception is such that we can only perceive the information generated by the physical entities, not the physical entities. As per the current understanding of the process of perception, the brain projects the information it receives from the sense organs in the physical forms. Therefore, the entity that generates the information must preexist before it can be projected in the physical form. We do not perceive the actual Moon. The apparent form of the Moon is only a projection created by our brain. The apparent form is only a manifestation of something that generates information, but that cannot be observed directly. In the light of this observation, it becomes necessary to examine if we can establish causal relationships between events assuming that the place and time and events are observer independent. Apart from using the criterion prescribed by the EPR paper, we have also used these two methods to determine if we can have an observer independent description of reality. We have shown that an entity must have observer independent values of the physical quantities, but the act of measurement only reveals the observer dependent values of the physical quantities even in the macro world. We have confirmed our observations experimentally as well as through the observation of the natural phenomena.
Category: Quantum Physics

[20] viXra:1904.0117 [pdf] submitted on 2019-04-05 09:07:38

Pin-Sized Sensor Bring Chemical ID

Authors: George Rajna
Comments: 52 Pages.

Imagine pointing your smartphone at a salty snack you found at the back of your pantry and immediately knowing if its ingredients had turned rancid. [37] Researchers from the National University of Singapore (NUS) and Singtel, Asia's leading communications technology group, have demonstrated a technique that will help pairs of light particles smoothly navigate these networks, a breakthrough that will enable stronger cyber security. [36] Researchers of the Institute of Photonic Integration of the Eindhoven University of Technology (TU/e) have developed a 'hybrid technology' which shows the advantages of both light and magnetic hard drives. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27]
Category: Quantum Physics

[19] viXra:1904.0115 [pdf] submitted on 2019-04-05 09:41:40

Laser Detecting Pollution

Authors: George Rajna
Comments: 53 Pages.

Researchers at EPFL have come up with a new middle infrared light source that can detect greenhouse and other gases, as well as molecules in a person's breath. [38] Imagine pointing your smartphone at a salty snack you found at the back of your pantry and immediately knowing if its ingredients had turned rancid. [37] Researchers from the National University of Singapore (NUS) and Singtel, Asia's leading communications technology group, have demonstrated a technique that will help pairs of light particles smoothly navigate these networks, a breakthrough that will enable stronger cyber security. [36] Researchers of the Institute of Photonic Integration of the Eindhoven University of Technology (TU/e) have developed a 'hybrid technology' which shows the advantages of both light and magnetic hard drives. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27]
Category: Quantum Physics

[18] viXra:1904.0097 [pdf] submitted on 2019-04-04 07:35:30

Spin Laser Data Transfer

Authors: George Rajna
Comments: 31 Pages.

Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors-materials that carry electrical current with zero resistance at very low temperatures-can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[17] viXra:1904.0096 [pdf] submitted on 2019-04-04 08:01:45

Better Laser-Material Interaction

Authors: George Rajna
Comments: 34 Pages.

Using ultrashort laser pulses lasting a few picoseconds (trillionths of a second), Lawrence Livermore National Laboratory (LLNL) researchers have discovered an efficient mechanism for laser ablation (material removal) that could help pave the way to the use of lower-energy, less costly lasers in many industrial laser processing applications. [20] Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors-materials that carry electrical current with zero resistance at very low temperatures-can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[16] viXra:1904.0094 [pdf] submitted on 2019-04-04 08:40:16

Analyzing X-Ray Laser Experiments

Authors: George Rajna
Comments: 37 Pages.

X-ray free-electron lasers (XFELs) produce incredibly powerful beams of light that enable unprecedented studies of the ultrafast motions of atoms in matter. [21] Using ultrashort laser pulses lasting a few picoseconds (trillionths of a second), Lawrence Livermore National Laboratory (LLNL) researchers have discovered an efficient mechanism for laser ablation (material removal) that could help pave the way to the use of lower-energy, less costly lasers in many industrial laser processing applications. [20] Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors-materials that carry electrical current with zero resistance at very low temperatures-can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[15] viXra:1904.0093 [pdf] submitted on 2019-04-04 08:56:01

Way to Control Speed of Light

Authors: George Rajna
Comments: 38 Pages.

University of Central Florida researchers have developed a way to control the speed of light. Not only can they speed up a pulse of light and slow it down, they can also make it travel backward. [22] X-ray free-electron lasers (XFELs) produce incredibly powerful beams of light that enable unprecedented studies of the ultrafast motions of atoms in matter. [21] Using ultrashort laser pulses lasting a few picoseconds (trillionths of a second), Lawrence Livermore National Laboratory (LLNL) researchers have discovered an efficient mechanism for laser ablation (material removal) that could help pave the way to the use of lower-energy, less costly lasers in many industrial laser processing applications. [20] Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors-materials that carry electrical current with zero resistance at very low temperatures-can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12]
Category: Quantum Physics

[14] viXra:1904.0092 [pdf] submitted on 2019-04-04 09:13:28

Lattice Vibrations in Semiconductor

Authors: George Rajna
Comments: 39 Pages.

In analogy to the amplification of light in a laser, vibrations of a semiconductor crystal, so-called phonons, were enhanced by interaction with an electron current. [23] University of Central Florida researchers have developed a way to control the speed of light. Not only can they speed up a pulse of light and slow it down, they can also make it travel backward. [22] X-ray free-electron lasers (XFELs) produce incredibly powerful beams of light that enable unprecedented studies of the ultrafast motions of atoms in matter. [21] Using ultrashort laser pulses lasting a few picoseconds (trillionths of a second), Lawrence Livermore National Laboratory (LLNL) researchers have discovered an efficient mechanism for laser ablation (material removal) that could help pave the way to the use of lower-energy, less costly lasers in many industrial laser processing applications. [20] Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors-materials that carry electrical current with zero resistance at very low temperatures-can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13]
Category: Quantum Physics

[13] viXra:1904.0091 [pdf] replaced on 2019-04-05 06:56:03

Faux Proton Charge Smearing in Dirac Hydrogen by "Electron Zitterbewegung"

Authors: Steven Kenneth Kauffmann
Comments: 5 Pages.

The commutator of the Dirac free-particle's velocity operator with its Hamiltonian operator is nonzero and independent of Planck's constant, which violates the quantum correspondence-principle requirement that commutators of observables must vanish when Planck's constant vanishes, as well as violating the absence of spontaneous acceleration of relativistic free particles. The consequent physically pathological "zitterbewegung" is of course completely absent when the natural relativistic square-root free-particle Hamiltonian operator is used; nevertheless the energy spectrum of that pathology-free natural relativistic square-root free-particle Hamiltonian is exactly matched by the positive-energy sector of the Dirac free-particle Hamiltonian's energy spectrum. Contrariwise, however, Foldy-Wouthuysen unitary transformation of the positive-energy sector of any hydrogen-type Dirac 4 x 4 Hamiltonian to 2 x 2 form reveals a "zitterbewegung"-induced "Darwin-term" smearing of the proton charge density which is completely absent in the straightforward relativistic extension of the corresponding hydrogen-type nonrelativistic Pauli 2 x 2 Hamiltonian. Compensating for an atomic proton's physically absent "electron zitterbewegung"-induced charge smearing would result in a misleadingly contracted impression of its charge radius.
Category: Quantum Physics

[12] viXra:1904.0078 [pdf] submitted on 2019-04-05 01:32:06

Once Again About the "Arrow of Time" (In Russian)

Authors: V.A. Kasimov
Comments: 6 Pages. in Russian

The concept of the "arrow of time" arose and was established in classical (macro -) physics in Newton's age under the domination of the concept of absolute space and time (3-space and 1-time) as the receptacles of space-time events. However, to talk about the "arrow of time", we must first define the concept of "time".
Category: Quantum Physics

[11] viXra:1904.0060 [pdf] submitted on 2019-04-03 11:24:22

Optical Tweezers Capturing Atoms

Authors: George Rajna
Comments: 54 Pages.

Trapping single atoms is a bit like herding cats, which makes researchers at the University of Colorado Boulder expert feline wranglers. [32] "With optical tweezers, you can capture a single particle in its native state in solution and watch its structural evolution," said Linda Young, Argonne distinguished fellow. [31] The optical tweezer is revealing new capabilities while helping scientists understand quantum mechanics, the theory that explains nature in terms of subatomic particles. [30]
Category: Quantum Physics

[10] viXra:1904.0045 [pdf] submitted on 2019-04-02 09:39:46

Trapped Electrons

Authors: George Rajna
Comments: 44 Pages.

A team of physicists at the University of Cologne has, for the first time, seen a particularly exotic behaviour of electrons on an atomic scale. [25] University of Adelaide researchers have delved into the realm of Star Wars and created a powerful tractor beam-or light-driven energy trap-for atoms. [24] The Purcell effect also has another advantage: It shortens the time it takes the rubidium atom to store and release the quantum information. [23] Monika Aidelsburger uses a special type of optical lattice to simulate quantum many-body phenomena that are otherwise inaccessible to experimental exploration. [22] University of Illinois Professor Harry Hilton brought together several mathematical and physical theories to help look at problems in more unified ways and solve physical engineering problems. [21] A team of physicists from RUDN, JINR (Dubna), and the University of Hamburg (Germany) developed a mathematical model for describing physical processes in hybrid systems that consists of atoms and ions cooled down to temperatures close to absolute zero. [20] Recently, extensive study shows that the parity-time symmetry breaking in open systems leads to exceptional points, promising for novel applications leasers and sensing. [19] A recent discovery by William & Mary and University of Michigan researchers transforms our understanding of one of the most important laws of modern physics. [18] Now, a team of physicists from The University of Queensland and the NÉEL Institute has shown that, as far as quantum physics is concerned, the chicken and the egg can both come first. [17]
Category: Quantum Physics

[9] viXra:1904.0044 [pdf] submitted on 2019-04-02 10:14:21

Light-Matter Interaction Record

Authors: George Rajna
Comments: 49 Pages.

An international team of physicists from the Mandelstam Institute for Theoretical Physics at Wits University and the Institut Néel in Grenoble, France, has created a tiny superconducting circuit that mimics the quantum mechanical process in which an atom absorbs or emits light. [34] A tightly focused, circularly polarized spatially phase-modulated beam of light formed an optical ring trap. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing,
Category: Quantum Physics

[8] viXra:1904.0037 [pdf] submitted on 2019-04-02 13:07:26

The Meaning of Death (No Entity Has Pre-Existing Values in the Physical World)

Authors: Sunil Thakur
Comments: 15 Pages.

Classical physics assumes that the things exist independently of an act of observation; however, quantum theory suggests that the apparent form of quantum system emerges as a consequence of an act of observation. However, quantum theory is silent on the state of the systems prior to the act of observation. It assumes that the wavefunction collapses as a consequence of an act of observation but does not explain the mechanism of the collapse of wavefunction. Therefore, it is at least incomplete, if not incorrect. In this paper, we have shown that the apparent form of entities emerges as a consequence of an act of observation even in the macro world. We have shown that all the entities exist in non-physical form. The wavefunction of an entity is the sum of all the properties the entity may manifest in the physical world. The wavefunction remains unaffected by an act of observation. The apparent form of the observed entity depends as much on the observer as it does on the entity being observed. We have also explained the scientific meaning and significance of death.
Category: Quantum Physics

[7] viXra:1904.0020 [pdf] submitted on 2019-04-01 08:29:19

New Spin on Majorana Fermions

Authors: George Rajna
Comments: 54 Pages.

Majorana fermions are particle-like excitations called quasiparticles that emerge as a result of the fractionalization (splitting) of individual electrons into two halves. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[6] viXra:1904.0018 [pdf] submitted on 2019-04-01 09:21:11

Quantum Magnetometers

Authors: George Rajna
Comments: 57 Pages.

On April 1 2019, the Fraunhofer-Gesellschaft launches the lighthouse project "Quantum Magnetometry" (QMag): Freiburg's Fraunhofer institutes IAF, IPM and IWM want to transfer quantum magentometry from the field of university research to industrial applications. [34] Majorana fermions are particle-like excitations called quasiparticles that emerge as a result of the fractionalization (splitting) of individual electrons into two halves. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[5] viXra:1904.0017 [pdf] submitted on 2019-04-01 09:43:32

QMC Simulations Spin Structure

Authors: George Rajna
Comments: 58 Pages.

Recent polarized inelastric neutron scattering experiments have identified the amplitude (i.e. Higgs) mode in C9H18N2CuBr4, a 2-D, near-quantum-critical spin ladder compound that exhibits a weak easy-axis exchange anisotropy. [35] On April 1 2019, the Fraunhofer-Gesellschaft launches the lighthouse project "Quantum Magnetometry" (QMag): Freiburg's Fraunhofer institutes IAF, IPM and IWM want to transfer quantum magentometry from the field of university research to industrial applications. [34] Majorana fermions are particle-like excitations called quasiparticles that emerge as a result of the fractionalization (splitting) of individual electrons into two halves. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26]
Category: Quantum Physics

[4] viXra:1904.0016 [pdf] submitted on 2019-04-01 10:00:06

Coupling Between Distant Atoms

Authors: George Rajna
Comments: 59 Pages.

A team of scientists from Waseda University, the Japan Science and Technology Agency, and the University of Auckland have developed an integrated, all-fiber coupled-cavities quantum electrodynamics (QED) system in which a meter-long portion of conventional optical fiber seamlessly and coherently connects two nanofiber cavity-QED systems. [36] Recent polarized inelastric neutron scattering experiments have identified the amplitude (i.e. Higgs) mode in C9H18N2CuBr4, a 2-D, near-quantum-critical spin ladder compound that exhibits a weak easy-axis exchange anisotropy. [35] On April 1 2019, the Fraunhofer-Gesellschaft launches the lighthouse project "Quantum Magnetometry" (QMag): Freiburg's Fraunhofer institutes IAF, IPM and IWM want to transfer quantum magentometry from the field of university research to industrial applications. [34] Majorana fermions are particle-like excitations called quasiparticles that emerge as a result of the fractionalization (splitting) of individual electrons into two halves. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[3] viXra:1904.0015 [pdf] submitted on 2019-04-01 10:17:56

Molecular-Scale Rubik's Cube

Authors: George Rajna
Comments: 60 Pages.

Ever since Ernő Rubik invented the Rubik's Cube in 1974, the mathematical puzzle has tested the brains and patience of people of all ages. [37] A team of scientists from Waseda University, the Japan Science and Technology Agency, and the University of Auckland have developed an integrated, all-fiber coupled-cavities quantum electrodynamics (QED) system in which a meter-long portion of conventional optical fiber seamlessly and coherently connects two nanofiber cavity-QED systems. [36] Recent polarized inelastric neutron scattering experiments have identified the amplitude (i.e. Higgs) mode in C9H18N2CuBr4, a 2-D, near-quantum-critical spin ladder compound that exhibits a weak easy-axis exchange anisotropy. [35] On April 1 2019, the Fraunhofer-Gesellschaft launches the lighthouse project "Quantum Magnetometry" (QMag): Freiburg's Fraunhofer institutes IAF, IPM and IWM want to transfer quantum magentometry from the field of university research to industrial applications. [34] Majorana fermions are particle-like excitations called quasiparticles that emerge as a result of the fractionalization (splitting) of individual electrons into two halves. [33] With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. [32] A team of researchers at the University of Maryland has found a new way to route photons at the micrometer scale without scattering by building a topological quantum optics interface. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[2] viXra:1904.0008 [pdf] submitted on 2019-04-01 22:07:57

The Dirac Equation and the Mass of the Fermions

Authors: Anamitra Palit
Comments: 3 Pages.

It is a fact from the standard Model that fermions should be massless. The article brings out this fact in a mathematical manner along with the uncanny attributes like the left handed Dirac spinor moving along the z direction should be independent of the z coordinate.
Category: Quantum Physics

[1] viXra:1904.0001 [pdf] replaced on 2019-04-10 10:49:20

The Hilbert Book Model Project Survey book

Authors: J.A.J. van Leunen
Comments: 84 Pages. You can bring this file to a local print shop, so that they can turn it in an US Letter-sized book

This survey treats the Hilbert Book Model Project. The project concerns a well-founded, purely mathematical model of physical reality. The project relies on the conviction that physical reality owns its own kind of mathematics and that this mathematics guides and restricts the extension of the foundation to more complicated levels of the structure and the behavior of physical reality. This results in a model that more and more resembles the physical reality that humans can observe.
Category: Quantum Physics