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Abstract 

 

In the newly designed {N,n} QM field theory, the four fundamental forces were re-classified to be three pair of 

forces: E/RFe-force, G/RFg-force, S/RFs-force, and each pair of this force was hypothesized that can be represented by the 

Schrodinger equation/solution. In the current paper, I worked out that not only a point charge’s static electric field electric 

field strength E ∝ 1/r^2, but also its potential field U ∝ 1/r, can be reconstituted by using the H-atom’s Schrodinger 

equation/solution (in form of the radial Born probability density functions). A global fitting method was developed for this 

kind of curve fitting. In the reconstitution, the (normalized) radial Born probability density functions can be treated as the 

“unit vector base functions” of a high-dimensional Hilbert space (that covers from r → 0 to r = ∞). This result confirmed that, 

not only the point-centered mass (density) field (see SunQM-3 series), but also the point-centered force field (or potential 

field), can be directly described by Schrodinger equation/solution. The physical meaning of this result can be viewed in either 

the wave mechanics, or in the particle mechanics. This work also showed that all point-centered fields (including both the 

mass field and the force field) can be represented in the form of 3D spherical wave packet. Therefore, these two methods are 

equivalent. These results, plus the three pairs of force (E/RFe-force, G/RFg-force, S/RFs-force) description (see SunQM-6), 

the non-Born probability description (see SunQM-4 series) that equals to the re-explanation of the Born probability density as 

the collection of all elliptical orbital tracks (see SunQM-6s2), the 3D wave packet description and the dis-entanglement of the 

outmost shell (or the “general decaying” process, see SunQM-6s1, -6s2, -6s3, etc.), the “|nL0> elliptical/parabolic/hyperbolic 

orbital transition model” (see SunQM-6s2, -6s3), and the trick that using the high-frequency n’ to pin-point any small region 

in the {N,n} QM field (see SunQM-3s11, -6s1, etc.), all together they formed the foundation of the newly designed {N,n} 

QM field theory.  
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Introduction 

 

The {N,n} QM studies have revealed that not only the formation of Solar system [1] ~ [16], but also the formation of 

the whole universe [17] ~ [25], can be explained by the {N,n} QM. The success of the {N,n} QM study made me to believe that 

“all mass entities (from the whole universe to a single quark) can be described by Schrodinger equation and solution” (see 

paper SunQM-3s11 section IX). Then I extend this idea to the force field, re-classified the four fundamental forces into three 

pairs: G/RFg-force, E/RFe-force and S/RFs-force, and proposed a new {N,n} QM field theory (i.e., all force fields can also 

be described by Schrodinger equation and solution [23]). In paper SunQM-6s2 [26], I tried to use the newly designed “|nL0> 
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elliptical orbital transition model” to describe a photon’s emission and propagation process. In paper SunQM-6s3 [27], I 

extended that model to be the “|nL0> elliptical/parabolic/hyperbolic orbital transition model”, and used it to describe many 

general “decay” processes in the macro-world as well as in the micro-world. In the current paper, I successfully reconstituted 

a single point charge’s static electric field |�⃗� | ∝ 1/r2 and the potential field U ∝ 1/r by using Schrodinger equation/solution 

(in form of Born probability). Thus, it fully set down the foundation of the {N,n} QM field theory.  

Note: QM means Quantum Mechanics. For {N,n} QM nomenclature as well as the general notes, please see 

SunQM-1 sections VII & VIII. Note: Microsoft Excel’s number format is often used in this paper, for example: x^2 = x2, 

3.4E+12 = 3.4*1012 = 3.4×1012, 5.6E-9 = 5.6*10-9. Note: The reading sequence for the (28 posted) SunQM series papers is: 

SunQM-1, 1s1, 1s2, 1s3, 2, 3, 3s1, 3s2, 3s6, 3s7, 3s8, 3s3, 3s9, 3s4, 3s10, 3s11, 4, 4s1, 4s2, 5, 5s1, 5s2, 7, 6, 6s1, 6s2, 6s3, 

and 6s4. Note: for all SunQM series papers, reader should check “SunQM-9s1: Updates and Q/A for SunQM series papers” 

for the most recent updates and corrections. Note: |nlm> means |n,l,m> QM state, “nLL” or |nLL> means |n,l,m> QM state 

with l = n-1 = L, and m = n-1 = L. “nL0” or |nL0> means |n,l,m> QM state with l = n-1 = L, and m = 0. Note: RF means 

“RotaFusion”, or “rotation diffusion”. Note: NBP means non-Born probability. Note: Unless specified, the Schrodinger 

equation/solution (or the Born probability density radial function) mentioned in this paper (and in almost all of SunQM series 

papers) comes from the H-atom’s electric potential, or at least using the potential function of U ∝ 1/r in the Schrodinger 

equation. 

 

 

 

I.   Using H-atom’s radial Born probability with several super shells of {N,n=1..5//6}o QM structure to reconstitute a 

point charge’s static electric field by fitting to E ∝ 1/r^2 curve 

 

In the paper SunQM-6, I re-classified the four fundamental forces (Gravity, Electromagnetic, Strong, Weak, 

abbreviated as G-, E/M-, S-, W-force) to be three pair of forces: E/RFe-force, G/RFg-force, S/RFs-force. Then I hypothesized 

that each of these E/RFe-force, G/RFg-force, and S/RFs-force pairs should can be described by the Schrodinger 

equation/solution, i.e., the |n,l,m> QM state, in the form of either the Born probability 3D density, or the non-Born 

probability (NBP) 3D density. This forms the foundation of the newly designed {N,n} QM field theory. 

In SunQM-6’s Table-2 and eq-1, I had (conceptually) used the combination of multiple n(s) of |n,l,m> QM states to 

describe the QM mode of the E-force (i.e., the electric field �⃗�  vector) and the RFe-force (i.e., the magnetic field �⃗⃗�  vector). In 

SunQM-6’s Fig-9a, I used SunQM-6’s eq-1 with anlm ≡ 1, (i.e., Σ[r2 |R(n,l)|2] ), to reconstitute (or to fit) a single point 

charge’s either |�⃗� | ∝ 1/r2 or U ∝ 1/r curve, and it was failed (due to the anlm ≡ 1. Note: it equivalents to bnlm = bn ≡ 1 in eq-1). 

In the current paper, I improved fitting by allowing bnlm = bn to be free (or, by manually adjusting the possible values during 

fitting, see the column 23 and row 2 ~ 6 in Table 1), and also adapted the {N,n=1..5//6}o QM structure so that each N super 

shell contains only five n shells (n =1, 2, 3, 4, 5), and thus built the eq-1: 

 

∑ 𝑎𝑁
𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=5
𝑛=1 |𝑛, 𝑙, 𝑚⟩]          eq-1 

 

or, quantitatively (using the Born probability radial function), as shown in eq-2 

 

∑ 𝑎𝑁
𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=5
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2]          eq-2 

 

where the bn is the coefficient for each n state’s 𝑟𝑁
2|𝑅(𝑛, 𝑙)|2; aN is the coefficient for each N super shell’s 

∑ 𝑏𝑛
𝑛=5
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2 ; and the definition of rN is: while calculating the 𝑟2|𝑅(𝑛, 𝑙)|2, rN = r; while plotting the eq-2 against 

the whole r range (0 < r < ∞), for each N super shell, rN = r * 36N (see eq-4 and Table 2 for example). Figure 1a showed the 

radial Born probability function curves of 𝑟2|𝑅(𝑛, 𝑙)|2 from n = 1 to 5. (Note: 𝑟2|𝑅(𝑛, 𝑙)|2 has a physical unit of (1/r). After 

integration over dr, it has a zero physical unit). (Note: For the source of radial wave functions 𝑅(𝑛, 𝑙) from n = 1 to 5, see 

SunQM-3’s section I-e). 
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I-a.   Manually fit eq-2 to |�⃗� | ∝ 1/r2  

 

In Table 1 (columns 1~ 24), I first used only one super shell of {N,n=1..5//6}o QM structure (supposing N=0 and r1 

= 1, so it is {0,n=1..5//6}o super shell) to fit to (or, to reconstitute) the electric field strength |�⃗� | ∝ 1/r2 curve. After manually 

adjusted to b1= 95, b2 = 7, b3= 1.3, b4= 0.5, b5= 0.2, and divided whole curve by 95 (or aN=0 = 1/95), (see the column 23 and 

row 2 ~ 7 in Table 1), the whole Born probability radial function becomes eq-3 

 

∑ 𝑏𝑛
𝑛=5
𝑛=1 𝑟2|𝑅(𝑛, 𝑙)|2 =

1

95
[95𝑟2|𝑅(1,0)|2 + 7𝑟2|𝑅(2, 𝑙)|2 + 1.3𝑟2|𝑅(3, 𝑙)|2 + 0.5𝑟2|𝑅(4, 𝑙)|2 + 0.2𝑟2|𝑅(5, 𝑙)|2]   

 

            eq-3 

 

(where l = 0..n-1. For example, 9𝑟2|𝑅(2, 𝑙)|2 =  9𝑟2|𝑅(2,0)|2 + 9𝑟2|𝑅(2,1)|2). The obtained curve (see the red solid-line 

curve in Figure 1b, data from the column 23 in Table 1) fits to the |�⃗� | ∝ 1/r2 curve (see the black dotted-line curve in Figure 

1b, data from the column 22 in Table 1) quite well in the range of 3 ≤ r  ≤ 50. (Note: Due to the amplitude of eq-3 is in an 

arbitrary scale, a single point charge’s static |�⃗� | =
1

4πε0

Q

r2
 can be simplified to be a 

1

r2
 curve during the fitting). (Note: In 

{N,n} QM, “all mass between rn and rn+1 belongs to orbit n” (see SunQM-3s2), so at r1 = 1, a {0,n=1..5//6}o QM structure 

may can be said that it effectively starts from r =  r1  = 1 and ends at r = r1n2 = r162 = 36r1= 36. Therefore, the above “good 

fitting in range of 3 ≤ r  ≤ 50” by using a single {N,n//6} super shell (with r1 = 1) will be more formalized if it is said as a 

“good fitting in range of 1 ≤ r  ≤ 36”).  

When re-plotting Figure 1b with the log(r), (see the red dashed line curve vs. black dotted line curve in Figure 1c), it 

clearly showed that under r < 1, the fitting was completely off. To compensate for that, we added a second super shell of {-

1,n=1..5//6}o QM structure into eq-3 (on top of the first super shell of {0,n=1..5//6}o QM structure) for the fitting (see Table 

2). Because N = 0 super shell covered the fitting range of 1 ≤ r ≤ 36, the new N= -1 super shell should be able to cover the 

fitting range of 
1

36
 ≤ r ≤ 1. In Table 2, after manually adjusted to b1= 110, b2 = 12, b3= 2, b4= 0.7, b5= 0.1, and divided whole 

curve by 0.1 (or aN=-1 = 1/0.1, see the column 24 and row 2 ~ 7 in Table 2), the whole Born probability radial function 

becomes  

 

∑ 𝑎𝑁

𝑁=0

𝑁=−1

[∑ 𝑏𝑛

𝑛=5

𝑛=1

𝑟𝑁
2|𝑅(𝑛, 𝑙)|2] = 

1

0.1
[101𝑟𝑁=−1

2|𝑅(1,0)|2 + 12𝑟𝑁=−1
2|𝑅(2, 𝑙)|2 + 2𝑟𝑁=−1

2|𝑅(3, 𝑙)|2 + 0.7𝑟𝑁=−1
2|𝑅(4, 𝑙)|2 + 0.1𝑟𝑁=−1

2|𝑅(5, 𝑙)|2] +  

1

95
[95𝑟2|𝑅(1,0)|2 + 7𝑟2|𝑅(2, 𝑙)|2 + 1.3𝑟2|𝑅(3, 𝑙)|2 + 0.5𝑟2|𝑅(4, 𝑙)|2 + 0.2𝑟2|𝑅(5, 𝑙)|2]  

            eq-4 

 

Notice that the meaning of rN=-1 in eq-4 is: when doing the 𝑟𝑁=−1
2|𝑅(𝑛, 𝑙)|2 calculation, rN=-1 = r (see column 2 in Table 2); 

when plotting the curve of eq-4, rN=-1 = r * 36N = 
𝑟

36
 for the N = -1 super shell (see column 1 in Table 2). Figure 1c (the red 

solid line curve) showed that eq-4 fitted to the |�⃗� | ∝ 1/r2 curve quite well in the range of 
1

36
 ≤ r ≤ 36. However, when 

extended r down to 
1

362 , the fitting curve was completely off again from the 1/r2 curve (see the red solid line curve in Figure 

1d). Then, I added the 3rd N super shell {-2,n//6} to cover the r range of 
1

362 ≤ r ≤ 
1

36
 . After manually adjusted to b1= 200, b2 = 

12, b3= 2, b4= 0.7, b5= 0.1, and aN=-2 = 1/0.000085 (the data table was not shown here), it fitted the |�⃗� | ∝ 1/r2 curve quite well 

within the range of 
1

362 ≤ r ≤ 36 (see the green solid line curve in Figure 1d). So now, we can understand that, by adding more 

and more N super shells with N = -3, -4, …, down to -∞,  we can push the good fitting range down to r → 0. Similarly, by 
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adding more and more N super shells with N = +1, +2, …, up to +∞,  we can push the good fitting range up to r → ∞. This is 

exactly the eq-2 expressed. Thus, we have (roughly) proved that with the eq-2, we are able to use the Schrodinger 

equation/solution’s redial wave function, (i.e., the Born probability’s r-1D density function) to reconstitute (or to fit, or to 

represent) |�⃗� | ∝ 1/r2 for the range of 0 < r < +∞. 

 

 

Table 1. Use eq-2 with a single N super shell {0,n=1..5//6}o QM to fit to |�⃗� | ∝ 1/r2 curve. 

 
 

 

 

     
 

      
 

rn fit to 1/r^2

1 b1 = 95

4 b2 = 7

9 b3 = 1.3

16 b4 = 0.5

For the 1st super shell, N = 0 25 b5 = 0.2

devided 95

r1= 1.000 1 1

r =

r^2*|R(1,

0)|^2

r^2*|R(2,

0)|^2

r^2*|R(2,

1)|^2

r^2*|R(3,

0)|^2

r^2*|R(3,

1)|^2

r^2*|R(3,

2)|^2

r^2*|R(4,

0)|^2

r^2*|R(4,

1)|^2

r^2*|R(4,

2)|^2

r^2*|R(4,

3)|^2

r^2*|R(5,

0)|^2

r^2*|R(5,

1)|^2

r^2*|R(5,

2)|^2

r^2*|R(5,

3)|^2

r^2*|R(5,

4)|^2 Σ(n=1..2) Σ(n=1..3) Σ(n=1..4) Σ(n=1..5) U ∝ 1/r E ∝ 1/r^2

{N=0,n//6}, 

fit E

ΔΣ, {0,n//6}, 

fit E

0.01 3.92E-04 4.90E-05 4.13E-10 1.45E-05 1.45E-10 8.07E-17 6.13E-06 6.45E-11 4.85E-17 4.82E-24 3.14E-06 3.38E-11 2.85E-17 4.14E-24 1.15E-31 4.41E-04 4.56E-04 4.62E-04 4.65E-04 1.00E+02 1.00E+04 3.96E-04 1.00E+04

0.02 1.54E-03 1.92E-04 6.53E-09 5.69E-05 2.29E-09 5.13E-15 2.40E-05 1.02E-09 3.08E-15 1.23E-21 1.23E-05 5.35E-10 1.81E-15 1.05E-21 1.17E-28 1.73E-03 1.79E-03 1.81E-03 1.82E-03 5.00E+01 2.50E+03 1.55E-03 2.50E+03

0.03 3.39E-03 4.24E-04 3.28E-08 1.26E-04 1.15E-08 5.81E-14 5.30E-05 5.12E-09 3.49E-14 3.13E-20 2.71E-05 2.68E-09 2.05E-14 2.69E-20 6.74E-27 3.81E-03 3.94E-03 3.99E-03 4.02E-03 3.33E+01 1.11E+03 3.42E-03 1.11E+03

0.04 5.91E-03 7.38E-04 1.02E-07 2.19E-04 3.60E-08 3.24E-13 9.23E-05 1.60E-08 1.95E-13 3.11E-19 4.72E-05 8.39E-09 1.14E-13 2.67E-19 1.19E-25 6.65E-03 6.86E-03 6.96E-03 7.00E-03 2.50E+01 6.25E+02 5.97E-03 6.25E+02

0.06 1.28E-02 1.59E-03 5.09E-07 4.73E-04 1.79E-07 3.64E-12 1.99E-04 7.95E-08 2.19E-12 7.90E-18 1.02E-04 4.17E-08 1.29E-12 6.78E-18 6.82E-24 1.44E-02 1.48E-02 1.50E-02 1.51E-02 1.67E+01 2.78E+02 1.29E-02 2.78E+02

0.08 2.18E-02 2.72E-03 1.58E-06 8.06E-04 5.53E-07 2.02E-11 3.40E-04 2.46E-07 1.21E-11 7.81E-17 1.74E-04 1.29E-07 7.13E-12 6.71E-17 1.20E-22 2.45E-02 2.53E-02 2.57E-02 2.59E-02 1.25E+01 1.56E+02 2.20E-02 1.56E+02

0.1 3.27E-02 4.08E-03 3.77E-06 1.21E-03 1.32E-06 7.60E-11 5.10E-04 5.89E-07 4.57E-11 4.61E-16 2.61E-04 3.09E-07 2.68E-11 3.96E-16 1.11E-21 3.68E-02 3.80E-02 3.86E-02 3.88E-02 1.00E+01 1.00E+02 3.31E-02 1.00E+02

0.2 1.07E-01 1.33E-02 5.46E-05 3.92E-03 1.91E-05 4.55E-09 1.65E-03 8.52E-06 2.73E-09 1.12E-13 8.46E-04 4.46E-06 1.61E-09 9.64E-14 1.09E-18 1.21E-01 1.25E-01 1.26E-01 1.27E-01 5.00E+00 2.50E+01 1.08E-01 2.49E+01

0.3 1.98E-01 2.41E-02 2.50E-04 7.10E-03 8.76E-05 4.85E-08 2.99E-03 3.89E-05 2.91E-08 2.74E-12 1.53E-03 2.04E-05 1.71E-08 2.35E-12 6.05E-17 2.22E-01 2.29E-01 2.32E-01 2.34E-01 3.33E+00 1.11E+01 1.99E-01 1.09E+01

0.4 2.88E-01 3.43E-02 7.15E-04 1.01E-02 2.50E-04 2.55E-07 4.24E-03 1.11E-04 1.53E-07 2.60E-11 2.17E-03 5.82E-05 8.98E-08 2.23E-11 1.03E-15 3.23E-01 3.33E-01 3.37E-01 3.40E-01 2.50E+00 6.25E+00 2.90E-01 5.96E+00

0.5 3.68E-01 4.26E-02 1.58E-03 1.25E-02 5.51E-04 9.10E-07 5.23E-03 2.44E-04 5.46E-07 1.47E-10 2.67E-03 1.28E-04 3.20E-07 1.27E-10 9.24E-15 4.12E-01 4.25E-01 4.31E-01 4.33E-01 2.00E+00 4.00E+00 3.71E-01 3.63E+00

0.7 4.83E-01 5.14E-02 4.97E-03 1.48E-02 1.72E-03 6.00E-06 6.16E-03 7.61E-04 3.59E-06 1.97E-09 3.14E-03 3.98E-04 2.10E-06 1.69E-09 2.47E-13 5.40E-01 5.56E-01 5.63E-01 5.67E-01 1.43E+00 2.04E+00 4.88E-01 1.55E+00

1 5.41E-01 4.60E-02 1.53E-02 1.26E-02 5.22E-03 4.17E-05 5.18E-03 2.30E-03 2.49E-05 2.94E-08 2.62E-03 1.20E-03 1.46E-05 2.52E-08 7.75E-12 6.03E-01 6.21E-01 6.28E-01 6.32E-01 1.00E+00 1.00E+00 5.46E-01 4.54E-01

1.4 4.77E-01 2.17E-02 3.95E-02 5.12E-03 1.30E-02 2.41E-04 1.99E-03 5.65E-03 1.42E-04 3.55E-07 9.77E-04 2.93E-03 8.31E-05 3.03E-07 1.91E-10 5.38E-01 5.56E-01 5.64E-01 5.68E-01 7.14E-01 5.10E-01 4.82E-01 2.86E-02

1.8 3.54E-01 2.68E-03 7.23E-02 2.31E-04 2.27E-02 8.33E-04 4.99E-05 9.69E-03 4.88E-04 2.17E-06 1.71E-05 4.99E-03 2.83E-04 1.85E-06 2.01E-09 4.29E-01 4.53E-01 4.63E-01 4.68E-01 5.56E-01 3.09E-01 3.60E-01 -5.14E-02

2.2 2.38E-01 2.68E-03 1.08E-01 1.93E-03 3.17E-02 2.13E-03 1.02E-03 1.32E-02 1.23E-03 8.85E-06 5.70E-04 6.73E-03 7.09E-04 7.50E-06 1.27E-08 3.49E-01 3.84E-01 4.00E-01 4.08E-01 4.55E-01 2.07E-01 2.46E-01 -3.98E-02

2.6 1.49E-01 2.26E-02 1.41E-01 9.57E-03 3.79E-02 4.44E-03 4.45E-03 1.53E-02 2.52E-03 2.76E-05 2.37E-03 7.66E-03 1.44E-03 2.32E-05 5.77E-08 3.13E-01 3.65E-01 3.87E-01 3.99E-01 3.85E-01 1.48E-01 1.62E-01 -1.42E-02

3 8.92E-02 5.60E-02 1.68E-01 2.00E-02 4.01E-02 8.02E-03 8.86E-03 1.55E-02 4.47E-03 7.09E-05 4.62E-03 7.57E-03 2.53E-03 5.94E-05 2.06E-07 3.13E-01 3.81E-01 4.10E-01 4.25E-01 3.33E-01 1.11E-01 1.07E-01 4.25E-03

3.6 3.87E-02 1.13E-01 1.91E-01 3.37E-02 3.57E-02 1.61E-02 1.40E-02 1.24E-02 8.61E-03 2.26E-04 7.07E-03 5.77E-03 4.79E-03 1.87E-04 1.00E-06 3.43E-01 4.29E-01 4.64E-01 4.82E-01 2.78E-01 7.72E-02 6.25E-02 1.46E-02

4 2.15E-02 1.47E-01 1.95E-01 3.82E-02 2.89E-02 2.31E-02 1.50E-02 9.02E-03 1.20E-02 4.30E-04 7.43E-03 3.96E-03 6.60E-03 3.52E-04 2.45E-06 3.63E-01 4.54E-01 4.90E-01 5.08E-01 2.50E-01 6.25E-02 4.81E-02 1.44E-02

4.5 1.00E-02 1.76E-01 1.90E-01 3.73E-02 1.87E-02 3.36E-02 1.35E-02 4.62E-03 1.67E-02 8.59E-04 6.40E-03 1.77E-03 8.96E-03 6.95E-04 6.51E-06 3.76E-01 4.65E-01 5.01E-01 5.19E-01 2.22E-01 4.94E-02 3.84E-02 1.10E-02

5 4.54E-03 1.90E-01 1.75E-01 3.06E-02 9.06E-03 4.53E-02 9.77E-03 1.30E-03 2.13E-02 1.55E-03 4.33E-03 3.21E-04 1.11E-02 1.24E-03 1.53E-05 3.70E-01 4.55E-01 4.88E-01 5.05E-01 2.00E-01 4.00E-02 3.28E-02 7.19E-03

6 8.85E-04 1.78E-01 1.34E-01 1.09E-02 0.00E+00 6.95E-02 1.75E-03 1.05E-03 2.84E-02 4.05E-03 4.76E-04 1.05E-03 1.38E-02 3.11E-03 6.34E-05 3.13E-01 3.94E-01 4.29E-01 4.47E-01 1.67E-01 2.78E-02 2.52E-02 2.56E-03

7.2 1.16E-04 1.31E-01 8.36E-02 1.01E-04 1.29E-02 9.32E-02 1.64E-03 1.10E-02 2.97E-02 9.56E-03 1.49E-03 6.80E-03 1.26E-02 6.91E-03 2.43E-04 2.15E-01 3.21E-01 3.73E-01 4.01E-01 1.39E-01 1.93E-02 1.77E-02 1.59E-03

8 2.88E-05 9.66E-02 5.73E-02 7.60E-03 3.22E-02 1.03E-01 8.14E-03 1.95E-02 2.60E-02 1.49E-02 5.32E-03 1.07E-02 9.61E-03 1.02E-02 5.06E-04 1.54E-01 2.97E-01 3.65E-01 4.02E-01 1.25E-01 1.56E-02 1.38E-02 1.87E-03

9 4.93E-06 6.12E-02 3.37E-02 2.97E-02 5.95E-02 1.07E-01 1.88E-02 2.68E-02 1.80E-02 2.32E-02 1.04E-02 1.28E-02 4.91E-03 1.48E-02 1.10E-03 9.50E-02 2.91E-01 3.78E-01 4.22E-01 1.11E-01 1.23E-02 1.02E-02 2.11E-03

10.8 1.94E-07 2.30E-02 1.16E-02 7.68E-02 9.51E-02 9.63E-02 2.78E-02 2.34E-02 3.50E-03 4.05E-02 1.18E-02 7.81E-03 1.14E-05 2.17E-02 3.32E-03 3.46E-02 3.03E-01 3.98E-01 4.43E-01 9.26E-02 8.57E-03 6.82E-03 1.76E-03

12 2.17E-08 1.11E-02 5.31E-03 9.62E-02 1.02E-01 8.14E-02 2.23E-02 1.34E-02 0.00E+00 5.16E-02 7.07E-03 2.51E-03 1.86E-03 2.36E-02 5.89E-03 1.64E-02 2.96E-01 3.83E-01 4.24E-01 8.33E-02 6.94E-03 5.58E-03 1.37E-03

14.4 2.58E-10 2.22E-03 9.99E-04 9.51E-02 8.35E-02 4.91E-02 3.12E-03 1.34E-05 1.30E-02 6.69E-02 8.32E-06 1.90E-03 1.36E-02 1.90E-02 1.40E-02 3.22E-03 2.31E-01 3.14E-01 3.62E-01 6.94E-02 4.82E-03 3.89E-03 9.31E-04

16 1.30E-11 7.06E-04 3.07E-04 7.64E-02 6.21E-02 3.18E-02 5.96E-04 5.73E-03 3.05E-02 6.98E-02 4.11E-03 9.45E-03 2.00E-02 1.19E-02 2.11E-02 1.01E-03 1.71E-01 2.78E-01 3.44E-01 6.25E-02 3.91E-03 3.11E-03 8.00E-04

18 3.01E-13 1.58E-04 6.66E-05 4.98E-02 3.78E-02 1.70E-02 1.41E-02 2.55E-02 5.12E-02 6.59E-02 1.46E-02 1.89E-02 2.00E-02 3.42E-03 3.08E-02 2.25E-04 1.05E-01 2.62E-01 3.49E-01 5.56E-02 3.09E-03 2.46E-03 6.29E-04

20 6.80E-15 3.34E-05 1.37E-05 2.87E-02 2.06E-02 8.43E-03 3.64E-02 4.73E-02 6.31E-02 5.63E-02 2.08E-02 2.04E-02 1.26E-02 0.00E+00 3.97E-02 4.71E-05 5.78E-02 2.61E-01 3.54E-01 5.00E-02 2.50E-03 2.06E-03 4.40E-04

25.2 3.28E-19 4.86E-07 1.91E-07 4.64E-03 3.06E-03 1.05E-03 6.40E-02 6.16E-02 5.10E-02 2.66E-02 4.20E-03 1.23E-03 1.08E-03 1.92E-02 5.00E-02 6.77E-07 8.75E-03 2.12E-01 2.88E-01 3.97E-02 1.57E-03 1.35E-03 2.26E-04

28 1.50E-21 4.58E-08 1.77E-08 1.48E-03 9.45E-04 3.06E-04 5.38E-02 4.80E-02 3.48E-02 1.52E-02 3.51E-04 2.44E-03 1.21E-02 3.44E-02 4.68E-02 6.35E-08 2.73E-03 1.55E-01 2.51E-01 3.57E-02 1.28E-03 1.04E-03 2.37E-04

32 6.57E-25 1.46E-09 5.53E-10 2.54E-04 1.57E-04 4.74E-05 3.11E-02 2.58E-02 1.64E-02 5.99E-03 1.63E-02 2.22E-02 3.42E-02 4.55E-02 3.59E-02 2.01E-09 4.58E-04 7.97E-02 2.34E-01 3.13E-02 9.77E-04 7.48E-04 2.29E-04

36 2.79E-28 4.34E-11 1.62E-11 3.86E-05 2.32E-05 6.68E-06 1.41E-02 1.12E-02 6.48E-03 2.08E-03 3.74E-02 4.09E-02 4.50E-02 4.19E-02 2.36E-02 5.97E-11 6.85E-05 3.39E-02 2.23E-01 2.78E-02 7.72E-04 5.77E-04 1.95E-04

40 1.16E-31 1.23E-12 4.53E-13 5.36E-06 3.16E-06 8.73E-07 5.43E-03 4.16E-03 2.24E-03 6.54E-04 4.51E-02 4.46E-02 4.10E-02 3.07E-02 1.36E-02 1.68E-12 9.39E-06 1.25E-02 1.88E-01 2.50E-02 6.25E-04 4.34E-04 1.91E-04

50.4 1.70E-40 9.62E-17 3.48E-17 2.33E-08 1.32E-08 3.41E-09 2.69E-04 1.94E-04 9.32E-05 2.29E-05 2.04E-02 1.78E-02 1.29E-02 7.03E-03 2.15E-03 1.31E-16 3.99E-08 5.79E-04 6.09E-02 1.98E-02 3.94E-04 1.30E-04 2.64E-04

fit to 1/r

b1 = 40

b2 = 15

b3 = 7

b4 = 4

b5 = 2

devided 32

{N=0,n//6}, 

fit U

ΔΣ, 

{{0,n//6}, 

fit U

5.17E-04 1.00E+02
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4.47E-03 3.33E+01
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Figure 1a. Comparing radial Born probability density function 𝑟2|𝑅(𝑛, 𝑙)|2 for n = 1, 2, 3, 4, and 5 (with different l quantum 

numbers).  

Figure 1b. (Manual fitting) Use eq-2 with a single N super shell {0,n=1..5//6}o QM to fit to |�⃗� | ∝ 1/r2 curve (see the red 

solid-line curve vs. the black dotted curve). For the blue solid-line, it was eq-2 with aNbn ≡ 1 (see SunQM-6’s Fig-9a). 

Figure 1c. (Manual fitting) Use eq-2 with two N super shells {N=-1..0,n=1..5//6}o QM to fit to |�⃗� | ∝ 1/r2 curve (see the red 

solid-line curve vs. the black dotted curve). 

Figure 1d. (Manual fitting) Use eq-2 with three N super shells {N=-2..0,n=1..5//6}o QM to fit to |�⃗� | ∝ 1/r2 curve (see the 

green solid-line curve vs. the black dotted curve). 

Figure 1e. (Manual fitting) A plot of log(aNbn) vs. log(r) by using the eq-2’s coefficient aNbn in Figure 1d (see the red dots). 

The black solid line is the linear regression.  

Figure 1f. A plot for log(1/r^2) vs. log(r), see the solid line; and for log(1/r) vs. log(r), see the dashed line. 

 

 

Table 2. Use eq-2 with two N super shells {N=-1..0,n=1..5//6}o QM to fit to |�⃗� | ∝ 1/r2 curve. 

 
 

 

In Figure 1e, the log(aNbn) was plotted against log(r) for the fitting of {N=-2..0,n//6} to the |�⃗� | ∝ 1/r2 curve. It 

showed a linear relationship. After a linear regression, the slope = -1.9943. When plotting log(1/r2) vs. log(r) for the |�⃗� | ∝ 

1/r2 curve, it also showed a linear relationship with the slope = -2 (see Figure 1f). So, these two slopes are practically equal. 

Then, Figure 1e trigged me to develop a new “global fitting” method for fitting eq-2 to |�⃗� | ∝ 1/r2 curve. 

 

 

 

I-b.   “Global fitting” of eq-2 to |�⃗� | ∝ 1/r2  

 

From the undergraduate course (~ 40 years ago), I learned that for an exponential curve, if appropriately cut it into 

three segments (along x-axis), and then re-scale the y-scale of these three segments appropriately, we will obtain three 

rn fit to 1/r^2

1 b1 = 110

4 b2 = 12

9 b3 = 2

16 b4 = 0.7

For 2nd super shell, N = -1 (plus N = 0 super shell) 25 b5 = 0.1

devided 0.1

r1= 1.000 1 1

r/36 r =
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0)|^2
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1)|^2
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3)|^2

r^2*|R(5,

4)|^2 Σ(n=1..2) Σ(n=1..3) Σ(n=1..4) Σ(n=1..5) U ∝ 1/r E ∝ 1/r^2

{N=-

1..0,n//6}, 

fit E

ΔΣ, {-1,n} + 

{0,n}, fit E

0.01 0.36 2.52E-01 3.04E-02 4.88E-04 8.95E-03 1.71E-04 1.39E-07 3.76E-03 7.59E-05 8.35E-08 1.14E-11 1.93E-03 3.98E-05 4.90E-08 9.80E-12 3.66E-16 2.83E-01 2.92E-01 2.96E-01 2.98E-01 1.00E+02 1.00E+04 2.81E+02 9718.5

0.02 0.72 4.91E-01 5.17E-02 5.45E-03 1.48E-02 1.88E-03 7.01E-06 6.18E-03 8.34E-04 4.19E-06 2.44E-09 3.15E-03 4.36E-04 2.46E-06 2.09E-09 3.24E-13 5.48E-01 5.65E-01 5.72E-01 5.76E-01 5.00E+01 2.50E+03 5.48E+02 1952.33

0.03 1.08 5.38E-01 4.19E-02 1.93E-02 1.13E-02 6.52E-03 6.28E-05 4.61E-03 2.86E-03 3.74E-05 5.22E-08 2.32E-03 1.49E-03 2.19E-05 4.47E-08 1.62E-11 5.99E-01 6.17E-01 6.25E-01 6.28E-01 3.33E+01 1.11E+03 6.00E+02 511.49

0.04 1.44 4.66E-01 1.93E-02 4.24E-02 4.41E-03 1.39E-02 2.78E-04 1.69E-03 6.04E-03 1.64E-04 4.36E-07 8.26E-04 3.13E-03 9.57E-05 3.72E-07 2.49E-10 5.27E-01 5.46E-01 5.54E-01 5.58E-01 2.50E+01 6.25E+02 5.20E+02 104.99

0.06 2.16 2.48E-01 1.72E-03 1.05E-01 1.46E-03 3.09E-02 1.96E-03 7.89E-04 1.29E-02 1.13E-03 7.79E-06 4.48E-04 6.59E-03 6.54E-04 6.61E-06 1.08E-08 3.55E-01 3.89E-01 4.04E-01 4.11E-01 1.67E+01 2.78E+02 2.87E+02 -8.82

0.08 2.88 1.05E-01 4.51E-02 1.61E-01 1.68E-02 3.99E-02 6.80E-03 7.53E-03 1.56E-02 3.81E-03 5.43E-05 3.95E-03 7.71E-03 2.17E-03 4.56E-05 1.43E-07 3.11E-01 3.74E-01 4.01E-01 4.15E-01 1.25E+01 1.56E+02 1.41E+02 15.04

0.1 3.6 3.87E-02 1.13E-01 1.91E-01 3.37E-02 3.57E-02 1.61E-02 1.40E-02 1.24E-02 8.61E-03 2.26E-04 7.07E-03 5.77E-03 4.79E-03 1.87E-04 1.00E-06 3.43E-01 4.29E-01 4.64E-01 4.82E-01 1.00E+01 1.00E+02 8.11E+01 18.88

0.2 7.2 1.16E-04 1.31E-01 8.36E-02 1.01E-04 1.29E-02 9.32E-02 1.64E-03 1.10E-02 2.97E-02 9.56E-03 1.49E-03 6.80E-03 1.26E-02 6.91E-03 2.43E-04 2.15E-01 3.21E-01 3.73E-01 4.01E-01 5.00E+00 2.50E+01 2.85E+01 -3.4820

0.3 10.8 1.94E-07 2.30E-02 1.16E-02 7.68E-02 9.51E-02 9.63E-02 2.78E-02 2.34E-02 3.50E-03 4.05E-02 1.18E-02 7.81E-03 1.14E-05 2.17E-02 3.32E-03 3.46E-02 3.03E-01 3.98E-01 4.43E-01 3.33E+00 1.11E+01 1.04E+01 0.6840

0.4 14.4 2.58E-10 2.22E-03 9.99E-04 9.51E-02 8.35E-02 4.91E-02 3.12E-03 1.34E-05 1.30E-02 6.69E-02 8.32E-06 1.90E-03 1.36E-02 1.90E-02 1.40E-02 3.22E-03 2.31E-01 3.14E-01 3.62E-01 2.50E+00 6.25E+00 5.86E+00 0.3901

0.5 18 3.01E-13 1.58E-04 6.66E-05 4.98E-02 3.78E-02 1.70E-02 1.41E-02 2.55E-02 5.12E-02 6.59E-02 1.46E-02 1.89E-02 2.00E-02 3.42E-03 3.08E-02 2.25E-04 1.05E-01 2.62E-01 3.49E-01 2.00E+00 4.00E+00 3.67E+00 0.3253

0.7 25.2 3.28E-19 4.86E-07 1.91E-07 4.64E-03 3.06E-03 1.05E-03 6.40E-02 6.16E-02 5.10E-02 2.66E-02 4.20E-03 1.23E-03 1.08E-03 1.92E-02 5.00E-02 6.77E-07 8.75E-03 2.12E-01 2.88E-01 1.43E+00 2.04E+00 2.16E+00 -0.1202

1 36 2.79E-28 4.34E-11 1.62E-11 3.86E-05 2.32E-05 6.68E-06 1.41E-02 1.12E-02 6.48E-03 2.08E-03 3.74E-02 4.09E-02 4.50E-02 4.19E-02 2.36E-02 5.97E-11 6.85E-05 3.39E-02 2.23E-01 1.00E+00 1.00E+00 9.73E-01 0.0266

1.4 50.4 1.70E-40 9.62E-17 3.48E-17 2.33E-08 1.32E-08 3.41E-09 2.69E-04 1.94E-04 9.32E-05 2.29E-05 2.04E-02 1.78E-02 1.29E-02 7.03E-03 2.15E-03 1.31E-16 3.99E-08 5.79E-04 6.09E-02 7.14E-01 5.10E-01 5.46E-01 -0.0357

1.8 64.8 8.72E-53 1.49E-22 5.29E-23 7.79E-12 4.29E-12 1.04E-12 1.97E-06 1.35E-06 5.94E-07 1.28E-07 1.63E-03 1.31E-03 8.20E-04 3.59E-04 8.35E-05 2.02E-22 1.31E-11 4.04E-06 4.21E-03 5.56E-01 3.09E-01 3.64E-01 -0.0556

2.2 79.2 4.05E-65 1.88E-28 6.59E-29 1.86E-15 1.01E-15 2.35E-16 8.61E-09 5.77E-09 2.40E-09 4.75E-10 5.70E-05 4.41E-05 2.54E-05 9.84E-06 1.96E-06 2.54E-28 3.10E-15 1.73E-08 1.38E-04 4.55E-01 2.07E-01 2.47E-01 -0.0400

2.6 93.6 1.76E-77 2.06E-34 7.16E-35 3.56E-19 1.90E-19 4.34E-20 2.73E-11 1.79E-11 7.18E-12 1.35E-12 1.24E-06 9.30E-07 5.08E-07 1.82E-07 3.28E-08 2.77E-34 5.90E-19 5.38E-11 2.89E-06 3.85E-01 1.48E-01 1.62E-01 -0.0142

3 108 7.27E-90 2.04E-40 7.07E-41 5.85E-23 3.10E-23 6.94E-24 6.92E-14 4.49E-14 1.75E-14 3.17E-15 1.95E-08 1.44E-08 7.59E-09 2.58E-09 4.32E-10 2.75E-40 9.64E-23 1.35E-13 4.45E-08 3.33E-01 1.11E-01 1.07E-01 0.0043

3.6 129.6 1.81E-108 1.78E-49 6.10E-50 1.00E-28 5.25E-29 1.16E-29 6.59E-18 4.22E-18 1.60E-18 2.78E-19 2.58E-11 1.87E-11 9.47E-12 3.05E-12 4.73E-13 2.39E-49 1.64E-28 1.27E-17 5.74E-11 2.78E-01 7.72E-02 6.25E-02 0.0146

4 144 6.95E-121 1.51E-55 5.19E-56 1.30E-32 6.76E-33 1.47E-33 1.19E-20 7.57E-21 2.83E-21 4.82E-22 2.55E-13 1.83E-13 9.12E-14 2.85E-14 4.28E-15 2.03E-55 2.12E-32 2.28E-20 5.62E-13 2.50E-01 6.25E-02 4.81E-02 0.0144

4.5 162 2.04E-136 3.70E-63 1.27E-63 1.64E-37 8.50E-38 1.83E-38 3.92E-24 2.48E-24 9.16E-25 1.53E-25 6.76E-16 4.81E-16 2.35E-16 7.17E-17 1.04E-17 4.97E-63 2.67E-37 7.47E-24 1.47E-15 2.22E-01 4.94E-02 3.84E-02 0.0110

5 180 5.84E-152 8.62E-71 2.94E-71 1.91E-42 9.90E-43 2.12E-43 1.16E-27 7.30E-28 2.67E-28 4.37E-29 1.55E-18 1.10E-18 5.29E-19 1.58E-19 2.22E-20 1.16E-70 3.12E-42 2.20E-27 3.36E-18 2.00E-01 4.00E-02 3.28E-02 0.0072

6 216 4.53E-183 4.16E-86 1.41E-86 2.20E-52 1.13E-52 2.39E-53 7.98E-35 4.97E-35 1.79E-35 2.86E-36 5.94E-24 4.16E-24 1.96E-24 5.68E-25 7.66E-26 5.57E-86 3.56E-52 1.50E-34 1.27E-23 1.67E-01 2.78E-02 2.52E-02 0.0026

7.2 259.2 1.95E-220 1.50E-104 5.07E-105 2.07E-64 1.06E-64 2.22E-65 1.48E-43 9.19E-44 3.26E-44 5.13E-45 1.25E-30 8.69E-31 4.03E-31 1.14E-31 1.48E-32 2.01E-104 3.35E-64 2.78E-43 2.65E-30 1.39E-01 1.93E-02 1.77E-02 0.0016

8 288 2.33E-245 7.11E-117 2.40E-117 1.80E-72 9.17E-73 1.91E-73 1.96E-49 1.21E-49 4.27E-50 6.64E-51 3.72E-35 2.57E-35 1.18E-35 3.29E-36 4.23E-37 9.51E-117 2.91E-72 3.66E-49 7.84E-35 1.25E-01 1.56E-02 1.38E-02 0.0019

9 324 1.59E-276 2.64E-132 8.92E-133 1.38E-82 7.05E-83 1.46E-83 7.80E-57 4.80E-57 1.68E-57 2.59E-58 7.01E-41 4.83E-41 2.20E-41 6.06E-42 7.65E-43 3.54E-132 2.24E-82 1.45E-56 1.47E-40 1.11E-01 1.23E-02 1.02E-02 0.0021

10.8 388.8 0.00E+00 3.96E-160 1.33E-160 7.23E-101 3.67E-101 7.57E-102 2.92E-70 1.79E-70 6.22E-71 9.47E-72 2.54E-51 1.74E-51 7.85E-52 2.12E-52 2.62E-53 5.29E-160 1.17E-100 5.43E-70 5.30E-51 9.26E-02 8.57E-03 6.82E-03 0.0018

12 432 0.00E+00 1.05E-178 3.52E-179 4.25E-113 2.15E-113 4.43E-114 2.86E-79 1.75E-79 6.05E-80 9.15E-81 2.34E-58 1.60E-58 7.18E-59 1.93E-59 2.35E-60 1.40E-178 6.84E-113 5.31E-79 4.87E-58 8.33E-02 6.94E-03 5.58E-03 0.0014

14.4 518.4 0.00E+00 6.52E-216 2.19E-216 1.23E-137 6.23E-138 1.28E-138 2.17E-97 1.32E-97 4.55E-98 6.81E-99 1.48E-72 1.00E-72 4.47E-73 1.19E-73 1.43E-74 8.70E-216 1.98E-137 4.02E-97 3.06E-72 6.94E-02 4.82E-03 3.89E-03 0.0009

16 576 0.00E+00 9.59E-241 3.22E-241 4.90E-154 2.47E-154 5.05E-155 1.58E-109 9.63E-110 3.30E-110 4.92E-111 4.26E-82 2.89E-82 1.28E-82 3.38E-83 4.03E-84 1.28E-240 7.87E-154 2.92E-109 8.81E-82 6.25E-02 3.91E-03 3.11E-03 0.0008

18 648 0.00E+00 8.27E-272 2.78E-272 1.42E-174 7.16E-175 1.46E-175 9.51E-125 5.78E-125 1.97E-125 2.93E-126 4.38E-94 2.97E-94 1.31E-94 3.44E-95 4.07E-96 1.10E-271 2.28E-174 1.75E-124 9.05E-94 5.56E-02 3.09E-03 2.46E-03 0.0006

20 720 0.00E+00 6.79E-303 2.28E-303 3.82E-195 1.92E-195 3.91E-196 5.16E-140 3.13E-140 1.07E-140 1.58E-141 3.97E-106 2.68E-106 1.18E-106 3.08E-107 3.63E-108 9.06E-303 6.13E-195 9.52E-140 8.18E-106 5.00E-02 2.50E-03 2.06E-03 0.0004

25.2 907.2 0.00E+00 0.00E+00 0.00E+00 9.69E-249 4.88E-249 9.88E-250 7.44E-180 4.51E-180 1.53E-180 2.24E-181 1.24E-137 8.39E-138 3.68E-138 9.51E-139 1.10E-139 0.00E+00 1.56E-248 1.37E-179 2.56E-137 3.97E-02 1.57E-03 1.35E-03 0.0002

28 1008 0.00E+00 0.00E+00 0.00E+00 1.19E-277 6.01E-278 1.22E-278 2.25E-201 1.36E-201 4.60E-202 6.74E-203 1.11E-154 7.50E-155 3.28E-155 8.45E-156 9.77E-157 0.00E+00 1.92E-277 4.13E-201 2.29E-154 3.57E-02 1.28E-03 1.04E-03 0.0002

32 1152 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.54E-232 2.14E-232 7.23E-233 1.05E-233 4.14E-179 2.78E-179 1.21E-179 3.12E-180 3.59E-181 0.00E+00 0.00E+00 6.51E-232 8.48E-179 3.13E-02 9.77E-04 7.48E-04 0.0002

36 1296 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.91E-263 2.96E-263 1.00E-263 1.46E-264 1.31E-203 8.80E-204 3.83E-204 9.80E-205 1.12E-205 0.00E+00 0.00E+00 9.02E-263 2.68E-203 2.78E-02 7.72E-04 5.77E-04 0.0002

40 1440 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.16E-294 3.72E-294 1.25E-294 1.82E-295 3.66E-228 2.45E-228 1.07E-228 2.72E-229 3.11E-230 0.00E+00 0.00E+00 1.13E-293 7.48E-228 2.50E-02 6.25E-04 4.34E-04 0.0002

50.4 1814.4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.41E-292 2.29E-292 9.91E-293 2.52E-293 2.86E-294 0.00E+00 0.00E+00 0.00E+00 6.97E-292 1.98E-02 3.94E-04 1.30E-04 0.0003

fit to 1/r

b1 = 40

b2 = 14

b3 = 6

b4 = 2.5

b5 = 1

devided 0.8

{N=-

1..0,n//6}, 

fit U

ΔΣ, {-1,n} 

+ {0,n}, fit 

U

1.32E+01 86.8

2.57E+01 24.3

2.81E+01 5.2

2.45E+01 0.5

1.46E+01 2.1

9.44E+00 3.1

8.08E+00 1.92

4.89E+00 0.106

3.23E+00 0.1024

2.46E+00 0.0372

1.87E+00 0.1281

1.43E+00 -0.0020

1.05E+00 -0.0528

7.07E-01 0.0073

4.90E-01 0.0657

3.60E-01 0.0950

2.78E-01 0.1064

2.36E-01 0.0973

2.15E-01 0.0624

2.13E-01 0.0375

2.09E-01 0.0132

2.01E-01 -0.0007

1.71E-01 -0.0040

1.32E-01 0.0067

1.14E-01 0.0108

1.01E-01 0.0100

8.96E-02 0.0030

8.23E-02 0.0011

6.47E-02 0.0047

5.52E-02 0.0073

4.81E-02 0.0075

4.39E-02 0.0061

3.20E-02 0.0076

2.56E-02 0.0101

1.96E-02 0.0116

1.60E-02 0.0117

1.25E-02 0.0125

3.84E-03 0.0160
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(apparently) exactly same shaped curves (note: it can be seen more straightforward in the linearized log(exp) plotting). Based 

on the preliminary fitting result in Figure 1e, I realized that we maybe can do the same trick in the fitting of Figure 1d. Eq-2 

already naturally segregated r-1D into many N super shells. We only need to fix the values of b1 ~ b5 as one set, and then use 

the same (fixed) b1 ~ b5 values for each of all N super shells, and then re-scale the y-axis appropriately by adjusting the 

coefficient aN in eq-2.  

In Table 3 (columns 1 ~ 10) and Figure 2, I successfully applied this idea in the fitting of four N super shells to the 

|�⃗� | ∝ 1/r2 curve. Here is the brief explanation on how it works. In Table 3, from the relative r (or r/r1 =1, 4, 9, 16, 25, see 

column 2) of each of the four N super shells (see column 1), we first calculated out the real r values (see column 4) by using 

the standard {N,n//6} QM method (see column 3). Then, we calculated out the 1/r2 curve values (see column 6) and used it as 

the template curve for the fitting. In column 7, according to the previous results (see Table 1, Table 2, etc.), I first assumed 

the initial values for aN=-3 , aN=-2 , aN=-1 , and aN=0 , and then used them to divided the template 1/r2 curve in column 6 (note: 

need to match the right color for each cell in the spread sheet). Then, the “global fitting” was done by manually and 

repetitively adjusting the values of aN=-3 through aN=0 , until the four sets of b1 ~ b5 values become exactly the same (see 

column 7). (Note: After many tries, I realized that there is a relationship of aN=-3 = 362× aN=-2  = 362×362 × aN=-1 = 

362×362×362 × aN=0). The final result obtained was: b1 = 1296, b2 = 81, b3 = 16, b4 ≈ 5.06, b5 ≈ 2.07, and this set of b1 ~ b5 

values were fixed for all four N super shells of {N=-3..0,n//6} fitting curve (see the column 7 in Table 3). The y-axis re-

scaling factors were manually adjusted to be: aN=-3 ≈ 1679616, aN=-2 ≈ 1679616 / 36^2 ≈ 1296, aN=-1 ≈ 1679616 / 36^4 ≈ 1, 

aN=-1 ≈ 1679616 / 36^6 ≈ 0.0007716, (see the column 7 in Table 3). I called this method as the “Global Fitting”. In Figure 2a, 

when we plotted the log(aNbn) vs. log(r), (i.e., column 10 vs. column 5), it showed a perfect linear relationship with a slop = -

2 exactly. This slope is exactly the same as that for log(1/r^2) vs. log(r) plot (as shown in Figure 1f). Then, in Figure 2b, we 

put this set of b1 ~ b5 (fixed values) and aN=0 into Table 1 (that using a single super shell of {0,n//6} to fit to |�⃗� | ∝ 1/r2 curve), 

it fitted quite well (within the range of 1 ≤ r ≤ 36). In Figure 2c, we put this set of b1 ~ b5 (fixed values) and aN=0 and aN=-1 into 

Table 2 (that using two super shells of {N=-1..0,n//6} to fit to |�⃗� | ∝ 1/r2 curve), it fitted reasonably well (within the range of 
1

36
 ≤ r ≤ 36). In Figure 2d, we put this set of b1 ~ b5 (fixed values) and aN=-2..0 into a three super shells of {N=-2..0,n//6} to fit 

to |�⃗� | ∝ 1/r2 curve, it fitted reasonably well (within the range of 
1

362 ≤ r ≤ 36). In Figure 2e, we put this set of b1 ~ b5 (fixed 

values) and aN=-3..0 into a four super shells of {N=-3..0,n//6} to fit to |�⃗� | ∝ 1/r2 curve, it fitted reasonably well (within the 

range of 
1

363 ≤ r ≤ 36). Under the eq-2, the real equation for Figure 3a and figure 3e is shown in eq-5 below   

 

∑ 𝑎𝑁

𝑁=0

𝑁=−3

[∑ 𝑏𝑛

𝑛=5

𝑛=1

𝑟𝑁
2|𝑅(𝑛, 𝑙)|2] = 

364 × [1296 𝑟𝑁=−3
2|𝑅(1,0)|2 + 81 𝑟𝑁=−3

2|𝑅(2, 𝑙)|2 + 16 𝑟𝑁=−3
2|𝑅(3, 𝑙)|2 + 5.06 𝑟𝑁=−3

2|𝑅(4, 𝑙)|2 + 2.07 𝑟𝑁=−3
2|𝑅(5, 𝑙)|2] +  

362 × [1296 𝑟𝑁=−2
2|𝑅(1,0)|2 + 81 𝑟𝑁=−2

2|𝑅(2, 𝑙)|2 + 16 𝑟𝑁=−2
2|𝑅(3, 𝑙)|2 + 5.06 𝑟𝑁=−2

2|𝑅(4, 𝑙)|2 + 2.07 𝑟𝑁=−2
2|𝑅(5, 𝑙)|2] +  

360 × [1296 𝑟𝑁=−1
2|𝑅(1,0)|2 + 81 𝑟𝑁=−1

2|𝑅(2, 𝑙)|2 + 16 𝑟𝑁=−1
2|𝑅(3, 𝑙)|2 + 5.06 𝑟𝑁=−1

2|𝑅(4, 𝑙)|2 + 2.07 𝑟𝑁=−1
2|𝑅(5, 𝑙)|2] +  

36−2 × [1296 𝑟𝑁=0
2|𝑅(1,0)|2 + 81 𝑟𝑁=0

2|𝑅(2, 𝑙)|2 + 16 𝑟𝑁=0
2|𝑅(3, 𝑙)|2 + 5.06 𝑟𝑁=0

2|𝑅(4, 𝑙)|2 + 2.07 𝑟𝑁=0
2|𝑅(5, 𝑙)|2]  

 

            eq-5 

 

(Note: It seems that there is always some under-fitting (at the small r side) in the global fitted curves in Figure 2 (c, 

d, e), and it is normal. This under-fitting will be filled-in if we add more and more N super shells for the fitting. In contrast, 

the manually fitted curve (see Figure 1 (c, d)) seems more perfect (at the smaller r side) than that of the global fitted curves 

(see Figure 2 (c, d, e)), but actually they are over-fitted. This over-fitting left no room for adding more N super shells for the 

better fitting at the smaller r side. Therefore, the global fitting is always better than the manual fitting, and the global fitting 

will become a perfect fitting once we increased the N super shell numbers to -∞ < N < ∞). 

 

 

Table 3. A global fitting of eq-2 that used four N super shells {N=-3..0,n//6} to fit to |�⃗� | ∝ 1/r2 curve. 
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Figure 2a. Global fitting of eq-2 with four N super shells {N=-3..1,n//6} to fit to |�⃗� | ∝ 1/r2 curve, the coefficient aNbn plot 

(see the red dots). The black solid line is the linear regression. 

Figure 2b. Global fitting of eq-2 with a single N super shell {0,n//6} QM to fit to |�⃗� | ∝ 1/r2 curve (see the red solid-line curve 

vs. the black dotted curve).  

Figure 2c. Global fitting of eq-2 with two N super shells {N=-1..0,n//6} to fit to |�⃗� | ∝ 1/r2 curve (see the red solid-line curve 

vs. the black dotted curve). 

Figure 2d. Global fitting of eq-2 with three N super shells {N=-2..0,n//6} QM to fit to |�⃗� | ∝ 1/r2 curve (see the green solid-

line curve vs. the black dotted curve). 

global fitting to E

dev. (=aN)

aN=-3 = 1679616

aN=-2 = 1296 1296

aN=-1 = 1 1296

aN=0 = 0.000772 1296

N = 

relative 

r = (real) r = 

real rn = 

r/36^x log(rn) 1/r^2

raw 

b1 ~ b5

check 

(b1~b5)*r

^2 aN bn = log(aNbi)

-3 1 r/36^3 2.14E-05 -4.66891 2.18E+09 1296.00 1296 2.18E+09 9.337815

4 r/36^3 8.57E-05 -4.06685 1.36E+08 81.00 1296 1.36E+08 8.133695

9 r/36^3 0.000193 -3.71466 2.69E+07 16.00 1296 2.69E+07 7.42933

16 r/36^3 0.000343 -3.46479 8.50E+06 5.06 1296 8.50E+06 6.929575

25 r/36^3 0.000536 -3.27097 3.48E+06 2.07 1296 3.48E+06 6.541935

-2 1 r/36^2 0.000772 -3.11261 1.68E+06 1296.00 1296 1.68E+06 6.22521

4 r/36^2 0.003086 -2.51055 1.05E+05 81.00 1296 1.05E+05 5.02109

9 r/36^2 0.006944 -2.15836 2.07E+04 16.00 1296 2.07E+04 4.316725

16 r/36^2 0.012346 -1.90849 6.56E+03 5.06 1296 6.56E+03 3.81697

25 r/36^2 0.01929 -1.71466 2.69E+03 2.07 1296 2.69E+03 3.42933

-1 1 r/36 0.027778 -1.5563 1296 1296.00 1296 1296 3.112605

4 r/36 0.111111 -0.95424 81 81.00 1296 81 1.908485

9 r/36 0.25 -0.60206 16 16.00 1296 16 1.20412

16 r/36 0.444444 -0.35218 5.0625 5.06 1296 5.0625 0.704365

25 r/36 0.694444 -0.15836 2.0736 2.07 1296 2.0736 0.316725

0 1 r 1 0 1 1296.00 1296 1 0

4 r 4 0.60206 0.0625 81.00 1296 0.0625 -1.20412

9 r 9 0.954243 0.01235 16.00 1296 0.012346 -1.90849

16 r 16 1.20412 0.00391 5.06 1296 0.003906 -2.40824

25 r 25 1.39794 0.0016 2.07 1296 0.0016 -2.79588

global fitting to U

dev. (=aN)

aN=-3 = 1296

aN=-2 = 36 36

aN=-1 = 1 36

aN=0 = 0.027778 36

1/r raw bn

check 

(b1~b5)*r aN bn = log(aNbi)

46656 36.00 36 46656 4.668908

11664 9.00 36 11664 4.066848

5184 4.00 36 5184 3.714665

2916 2.25 36 2916 3.464788

1866.24 1.44 36 1866.24 3.270967

1296 36.00 36 1296 3.112605

324 9.00 36 324 2.510545

144 4.00 36 144 2.158362

81 2.25 36 81 1.908485

51.84 1.44 36 51.84 1.714665

36 36.00 36 36 1.556303

9 9.00 36 9 0.954243

4 4.00 36 4 0.60206

2.25 2.25 36 2.25 0.352183

1.44 1.44 36 1.44 0.158362

1 36.00 36 1 0

0.25 9.00 36 0.25 -0.60206

0.111111 4.00 36 0.111111 -0.95424

0.0625 2.25 36 0.0625 -1.20412

0.04 1.44 36 0.04 -1.39794
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Figure 2e. Global fitting of eq-2 with four N super shells {N=-3..0,n//6} QM to fit to |�⃗� | ∝ 1/r2 curve (see the pink solid-line 

curve vs. the black dotted curve). 

Figure 2f. Same as Figure 2e except that y-axis was scaled down to 1/10000. 

 

 

 

I-c.   Global fitting of eq-2 to U ∝ 1/r  

 

The exact same method can also be used to reconstitute (or to fit) the electric potential U ∝ 1/r curve for the range of 

0 < r < ∞ (by using the Born probability’s r-1D distribution function). Column 25 ~ 27 in Table 1 showed the single N = 0 

super shell (manually) fitted data, and column 26 ~ 28 in Table 2 showed the N = -1..0 two super shells manually fitted data, 

and column 11 ~ 15 in Table 3 showed the four super shells {N=-3..0,n//6} global fitted data (all fit to U ∝ 1/r). From now 

on, we are interested only in the global fitting. Table 3 showed the global fitting result of b1 = 36, b2 = 9, b3 = 4, b4 ≈ 2.25, b5 

≈ 1.44, and they were fixed for each of all four N super shells of {N=-3..0,n//6} fitting curve (see the column 12 in Table 3). 

The y-axis re-scaling factors were manually adjusted to be: aN=-3 = 1296, aN=-2 = 1296 / 36 = 36, aN=-1 = 1296 / 36^2 = 1, aN=0 

= 1296 / 36^3 ≈ 0.0278, (see the column 12 in Table 3). 

 

 

     
 

     
 

Figure 3a. Global fitting of eq-2 with four N super shells {N=-3..1,n//6} to fit to U ∝ 1/r curve, the coefficient aNbn plot (see 

the red dots). The black solid line is the linear regression. 

Figure 3b. Global fitting of eq-2 with a single N super shell {0,n//6} QM to fit to U ∝ 1/r curve (see the red solid-line curve 

vs. the black dash-line curve). For the blue solid-line, it was eq-2 with aNbn ≡ 1 (see SunQM-6’s Fig-9a). 

Figure 3c. Global fitting of eq-2 with two N super shells {N=-1..0,n//6} to fit to U ∝ 1/r curve (see the red solid-line curve vs. 

the black dash-line curve). 

Figure 3d. Global fitting of eq-2 with three N super shells {N=-2..0,n//6} QM to fit to U ∝ 1/r curve (see the green solid-line 

curve vs. the black dash-line curve). 

Figure 3e. Global fitting of eq-2 with four N super shells {N=-3..0,n//6} QM to fit to U ∝ 1/r curve (see the pink solid-line 

curve vs. the black dash-line curve). 

Figure 3f. Same as Figure 2e except that y-axis was scaled down to 1/100. 
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In Figure 3a, when we plotted the log(aNbn) vs. log(r), (see column 15 vs. column 5 in Table 3), it showed a perfect 

linear relationship with a slop = -1. This slope is exactly the same as that for log(1/r) vs. log(r) plot (as shown in Figure 1f). 

Then, in Figure 3b, we used this set of the (fixed) b1 ~ b5 values and aN=0 value to fit to (or to reconstitute) U ∝ 1/r curve (by 

using a single super shell of {0,n//6} ), it fitted reasonably well (within the range of 1 ≤ r ≤ 36). In Figure 3c, we used this set 

of the (fixed) b1 ~ b5 values and aN=-1..0 values to fit to U ∝ 1/r curve (by using two super shell of {N=-1..0,n//6} ), it fitted 

reasonably well (within the range of 
1

36
 ≤ r ≤ 36). In Figure 3d, we used this set of the (fixed) b1 ~ b5 values and aN=-2..0 values 

to fit to U ∝ 1/r curve (by using three super shell of {N=-2..0,n//6} ), it fitted reasonably well (within the range of 
1

362 ≤ r ≤ 

36). In Figure 3e, we used this set of the (fixed) b1 ~ b5 values and aN=-3..0 values to fit to (or to reconstitute) U ∝ 1/r curve (by 

using four super shell of {N=-3..0,n//6} ), it fitted reasonably well (within the range of 
1

363 ≤ r ≤ 36). 

Comparing Figure 3 with Figure 2, it was obvious that the fitting for U ∝ 1/r curve was significantly poor (or 

significantly under-fit) than the fitting for E ∝ 1/r2 curve (e.g., see the green line curves in Figure 3d vs. in Figure 2d). It 

means that when using eq-2 to fit to E ∝ 1/r2 curve for the {-1,n//6} range, (i.e., for the range of 
1

36
 ≤ r ≤ 1), we may only 

need to use three super shells, or ΔN = 3, or{N=-2..0,n//6}, to fit and it will get a reasonably good fitting. But when using eq-

2 to fit to U ∝ 1/r curve for the same {-1,n//6} range, (i.e., also for the range of 
1

36
 ≤ r ≤ 1), we may have to use seven super 

shells, or ΔN = 7, or{N=-4..2,n//6}, to fit to get the same quality of fitting. This further means, if we treat eq-2 as a 

mathematical series (like Tayler Series), it has a (relative) good convergence for the 1/r2 curve reconstitution, and it has a 

(relative) poor convergence for the 1/r curve reconstitution. 

Furthermore, when comparing Figure 3f with Figure 2f, we see that the fitting curve for U ∝ 1/r is much bumpier 

than the fitting curve for E ∝ 1/r2. Besides that it may needs many more N super shells to improve the fitting for 1/r, there 

may be a second explanation for it. According to the above QM analysis, we may can say that under the wave mechanics (of 

QM), both electric field and the potential field are (truly? or not truly?) composed by the Schrodinger equation/solution’s 

radial wave functions. While a single point charge’s static electric field does behave exactly (or nearly exactly) like the 

classical physics’ |�⃗� | ∝ 1/r2 curve (or, has its strength smoothly decrease vs. r), its potential field may have some significant 

quantum effect (in comparison with the classical physics’ U ∝ 1/r smooth curve). Its strength may have a noticeable quantum 

drop (besides the general 1/r smooth decreasing) at the out edge of each super shell of its {N,n//q} QM. And its strength may 

even have a less noticeable quantum drop at the out edge of each n shell (within each single super shell of its{N,n//q} QM). 

In other words, the classical physics |�⃗� | ∝ 1/r2 curve may describe the true electric field with high accuracy, while the 

classical physics U ∝ 1/r curve may only describe the true electric potential field with approximation. If this hypothesis is 

correct, then the quantum effect of the proton’s electric potential may have made the significant contribution to a H-atom’s 

electron orbital configuration. Also, the quantum effect of our Sun’s gravitational potential may have made the significant 

contribution to the eight planets’ orbital configuration in our solar system. In other words, is it possible that a potential field 

is more towards to a true quantum field, not exactly a 1/r smooth field? 

 

 

 

I-d.   A complete global fitting in {N,n//q} QM (with its Born probability density) may can be used to reconstitute any 

point-centered field 

 

Because the global fitting will produce a perfect fitting once we increased the N super shell numbers to -∞ < N < ∞, 

therefore, from the result of section I-b, the formula of eq-2 can be re-written as a true equation as 

 

∑ 𝑎𝑁
𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=5
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2] =  
1

𝑟2         eq-6 

 

Then, times 
q

4πϵ0
 on the both sides in eq-6, we will have 
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q

4πϵ0
∑ 𝑎𝑁

𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=5
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2] =  
q

4πϵ0

1

𝑟2 = |�⃗� |       eq-7 

 

(Note: To balance the physical unit at the two sides of eq-7, the coefficient bn in eq-7 should have a physical unit of 1/r). 

Similarly, from the result of section I-b, eq-2 can also be re-written as a true equation as 

 

∑ 𝑎𝑁
𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=5
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2] =  
1

𝑟
         eq-8 

 

Times 
q

4πϵ0
 on the both sides in eq-8, we will have 

 
q

4πϵ0
∑ 𝑎𝑁

𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=5
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2] =  
q

4πϵ0

1

𝑟
= |U|       eq-9 

 

(Note: To balance the physical unit at the two sides of eq-9, the coefficient bn in eq-9 should have a physical unit of zero). 

Both eq-7 and eq-9 formally confirmed that (the Coulomb Law based) electric field formula (and the electric potential 

formula) can be reconstituted by using the {N,n//6} QM structure, that is, by using the Born (radial) probability function.  

This result reminded me that what I had learned in my undergraduate courses (over 40 years ago): the Tayler series 
[28], the Fourier series [28], the Hilbert space that have the infinite vector basis for the infinite dimensions, etc. [29]. (But sorry, I 

already forgot almost all of them because since then I became a biophysicist for over 30 years). With aNbn determined under 

the global fitting, the radial Born probability density function in the eq-2 become a normalized mathematical series, or a 

series of the unit vector bases in the (high dimensional) Hilbert space, that can be used to reconstitute any point-centered field 

(e.g., the force field, the potential field, the mass field, etc.) with 1/r^x function (where x can be any integer like 1, 2, …, or 

can be any real number like 3.297, 2.33, 0.5, etc.). Furthermore, this conclusion can be extended to a general {N,n//q} QM 

(where q can be any integer number that greater than 1, not only limited to q = 6): a complete global fitting in {N,n//q} QM 

(with its Born probability density) can be used to reconstitute any point-centered field.  

Some of the well-known point-centered fields includes: a single point charge’s static electric field strength E =
q

4πϵ0

1

r2
 and its potential field U = −

1

4πϵ0

𝑒2

𝑟
 , two charges (Q and q)’s Coulomb force field F =

1

4πϵ0

Qq

r2
 , Newton’s law of 

universal gravitation (between two objects M and m) F = G
Mm

r2
 and its potential field U = −G

Mm

𝑟
 , the (roughly) estimated 

mass (density radial distribution) field inside the Sun, D ≈ 1.26 × 1023 1

r2.33 (kg/m3), (see SunQM-3’s eq-17), and the 

(roughly) estimated mass (density radial distribution) field in Solar system’s {N=3..4,n=1..5//6}o region, D ≈ 4.37 ×

1028 1

r3.279 (kg/m3), (see SunQM-1s1’s Table 3b. Remember that I had used it to estimate the original mass not only for all 

eight known planets, but also for the four undiscovered planets {3,2}, {3,3}, {3,4} and {3,5}). 

It is interesting to see that this method had been used in my early SunQM papers (even I did not fully understand it 

at that time): in SunQM-3's Fig-3b, I used D(r) * ∑ [∑ 𝑟𝑁
2|𝑅(𝑛, 𝑙)|2𝑛=5

𝑛=1 ]𝑁=−2
𝑁=0  , (where D(r) is the mass density inside the 

Sun), to plot Sun’s radial mass distribution (inside the Sun). It actually is to use D(r) to modulate the amplitude of each 

𝑟2|𝑅(𝑛, 𝑙)|2. In that case, the function of D(r) is equivalent to the coefficient of aNbn in the eq-2.  

When I proposed that we should be able to use Schrodinger equation/solution to describe the E/RFe-force field (see 

SunQM-6’s eq-1), there were two major (conceptual) obstacles (at least for me). The first (and most important) obstacle was, 

we need to give one real example to show how to do it, and here we showed one real example (with eq-7 and eq-9). The 

second obstacle was, the traditional Schrodinger equation/solution is always explained as the Born probability density 

distribution (in a steady QM state), which is conceptually different than either the force field, or the trajectory of a motion of 

an object. Now with the new concept of NPB (see SunQM-4s1), and with the re-explanation of the Born probability 3D 

density distribution as the collection of all orbital tracks (see SunQM-6s2’s Fig-1 through Fig-5), and with the 3D wave 

packet description and the dis-entanglement of the outmost shell (or the “general decaying” process, see SunQM-6s1, -6s2, -

6s3, etc.), the “|nL0> elliptical/parabolic/hyperbolic orbital transition model” (see SunQM-6s2, -6s3), this problem has also 

been solved. So, by now, I am 100% sure that the E/RFe-force field (and also the G/RFg-force field) do can be described by 

Schrodinger equation/solution. The next question is, is the eq-7 the simplest (analytical?) formula that using Schrodinger 
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equation/solution to represent a single point charge’s static electric field strength E =
q

4πϵ0

1

r2
 ? In other words, is there any 

formula (or equation) that is simpler (or more analytical, or better) than the eq-7 for this purpose? 

In SunQM-3s8’s Fig-1b, when using D(r) * ∑ [∑ 𝑟𝑁
2|𝑅(𝑛, 𝑙)|2𝑛=5

𝑛=1 ]𝑁=−1
𝑁=0  to mimic Sun’s radial mass density r-

distribution, we saw that the curve had some bumps on top of a smooth declining curve (D = A/rB – C), and we explained the 

bumpiness as the quantum change of the mass in the r-1D distribution (something equivalent to the “planetary 

differentiation”). Based on this result, here I guess that even the real electric field strength |�⃗� (𝑟)| maybe is not completely as 

smooth as the 1/r2 curve, and it may also have some (minor or unnoticeable) quantum drop as r increasing. However, our 

fitting result (by using eq-2) is too preliminary to show any result on this issue.  

 

 

 

II.   Alternatively, we may can use the traditional QM to fit to |�⃗� | ∝ 1/r2, although the r1 has to be moved inward 

infinitely (according to the concept from the {N,n} QM)  

 

In the college, I learned that in the Fourier transformation, because the sine functions (with all frequencies) formed a 

complete set of basis for the 1D space in a frequency domain, the combination of many sine waves with the appropriate 

frequencies and amplitudes can fit to any 1D (odd functional) shaped curve in the time domain. While working on this paper, 

I realized that all the radial wave functions (from n=1 to n=∞) of a H-atom’s Schrodinger equation/solution (or the Born 

probability’s radial density function) maybe formed a complete set of basis for a point-centered spherical space (or, for the r-

1D space with n >≈ 1), so that we should be able to use these whole set of r-1D basis (with the appropriate amplitudes, see 

eq-10) to reconstitute any point-centered field (including the force field and its potential field, and any point-centered mass 

distribution) function in the r-1D space. (Note: Maybe Hilbert (or other scientists) already explained the exact same idea 

~100 years ago. If so, readers please let me know. Sorry, I am a citizen scientist, don’t familiar with the history of the Hilbert 

space theory). 

 

∑ 𝑏𝑛
𝑛=∞
𝑛=1 𝑟2|𝑅(𝑛, 𝑙)|2           eq-10 

 

The key difference between eq-2 and eq-10 is: in eq-2, we used many (or infinite number of) N super shells (and 

each N super shell contains only finite number of n shells) to cover the r-1D space (from r = 0 to r = ∞), while in eq-10, we 

used a single N super shell (that contains infinity number n shells) to cover the r-1D space (from r = 1 to r = ∞). For the r-1D 

space with n < 1, we can use {N,n//q} QM’s (unusual) property to move the r1 inward, that is, to use the high frequency n’, to 

fit. (Note: for how to move the r1 inward, see either SunQM-3s11’s Table 1, or SunQM-5s2’s Table 4). So, in eq-10, n can be 

the base frequency n, but usually, it is the high-frequency n’. For example, to use eq-10 to describe a proton’s electric field in 

the H-atom, based on the {N,n//6} QM, we can move the r1 (usually is the Bohr radius a0 = 5.29E-11 meters) inward to r1 = 

rproton = 8.4E-16 meters. 

From Figure 1a, we know that for the small n number (like 1 ≤ n < 10), the curve of eq-10 shows more bumpiness 

(e.g., see the blue line curve of Figure 1b (for bn ≡ 1 in eq-10)), and for the large n number (or the high-frequency n’), the 

curve of eq-10 shows almost no bump (or completely no bump). In other words, if we see a r-1D curve (of one physical 

property) has bumps, it must reflect that this physical property in a strong quantum (mechanical) state (i.e., with n < 10), and 

if we see a r-1D curve (of one physical property) has no bumps, it must reflect that this physical property in a classical 

(mechanical) state (i.e., with n >> 10). For example, at high n’, the quantum effect is faded out to be the classical-like |�⃗� | =
q

4πε0

1

r2
 equation. So, we may can directly write down the true equation of  

 

∑ 𝑏𝑛𝑟
2|𝑅(𝑛, 𝑙)|2𝑛=∞

𝑛=1 = |�⃗� | =
q

4πε0

1

r2
         eq-11 

 

Furthermore, in eq-11, we may can define 
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𝑏𝑛 = 𝑏′
𝑛

q

4πε0

1

r2
            eq-12 

 

(Note: Since bn has the unit of 1/r, b’n must have a unit of r). Put eq-12 into eq-11, we have  

 

∑ 𝑏′
𝑛

q

4πε0

1

r2
[𝑟2|𝑅(𝑛, 𝑙)|2]𝑛=∞

𝑛=1 =
q

4πε0

1

r2
         eq-13 

 

or,  

 

∑ 𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2]𝑛=∞
𝑛=1 = 1,  (within 0 < r < ∞)       eq-14 

 

(Note: eq-14 has a zero physical unit). In eq-14, each ∑ 𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2]𝑛=∞
𝑛=1 = 1 function (at each n) becomes a unitary 

vector base (note: ideally it should be only within each Δr space of rn ≤ r < rn+1, however, in reality, it is within 0 < r < ∞), and 

all of them formed a complete set of unitary vector bases for a Hilbert space (for the reconstitution of the electric field |�⃗� | =
q

4πε0

1

r2
 curve in a Hilbert space of rn with vector bases from rn=1, rn=2, rn=3, up to rn=∞). (Note: Therefore, the function of 

𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] is not a “good” function to work as a unit vector base, because it spreads to its neighboring unit vector 

bases. Also see section III for more explanations). 

Then, can we check this method by showing one example? The answer is “No” for me, because it needs to know the 

H-atom’s radial wave function R(n,l) not only for n > 5, but also for n in extremely large number (e.g., 6^9, 6^9 +1, etc.), and 

I am not able to obtain those R(n,l) functions.  

If using eq-10, we only see the recognizable QM effect in the near-center distance range from n = 1 to n < 10, while 

in the far distance range (i.e., n >> 10), the QM process will fade away and become a continuous process. For example, when 

describing a proton’s electric field in an H-atom by using eq-10 (and ignoring the eq-2) with r1 = rproton = 8.4E-16 meters, we 

may see the quantum effect only at n < 10 (i.e., at the r that just outside the proton surface), we will unable to see (or to 

recognize) the (high level) quantum effect at n ≈ 6^3, (i.e., at the r that around the Bohr radius a0 = 5.29E-11 meters). In 

contrast, if using eq-2, it tells us that the above saying is only correct within a single super shell (i.e., within ΔN = 1). If we 

increased distance range far enough (e.g., ΔN > 2), we always can find another level of QM effect. The eq-2 showed that the 

extra (higher level) quantum effect of N super shells is always there, and it only can be seen under the condition that 1) not 

only the range of viewing has to be larger than several N super shells; 2) but also the scale of viewing has to be large enough 

(i.e., must be based on N super shell). That is why we always use the eq-2 as the primary method for the quantum description, 

and eq-10 is (mostly) good for the classical process description. In this sense, eq-2 shows more on the quantum side, while 

eq-10 shows more on the continue side. From this point of view, or from the view of the wave mechanics, any point-centered 

force (or field, or the mass distribution) that can be constituted as the collection of rθφ-3D radial waves, if viewed in a large 

enough scale, we will see that it (always) has the intrinsic quantum change character (from the top-down view). Meanwhile, 

if viewed in a small scale, we will see that it only shows the apparent continues change character (from the bottom-up view).  

This discussion turned my previous physical concept up-side-down. Before the discovery of {N,n} QM, I believed 

that the continues change is the foundation of physics, and the quantum effect is the special case in physics, (or the 

“continuous” is the absolute, the “quantum” is the relative). After {N,n} QM and after this discussion, now I start to believe 

that the quantum effect is the foundation of physics, and the continues change is the trivial case in physics, (or the “quantum” 

is the absolute, the “continuous” is the relative).  

 

 

 

III.   Using {N,n//2^j} QM structure’s radial Born probability to constitute the Earth’s radial mass density curve 

 

Figure 4a showed the Earth’s true mass density D(r) curve. Now we try to use Schrodinger equation/solution (or 

Born probability) to reconstitute it. The easiest way is to use eq-10 (or eq-11) kind of method: 
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∑ 𝑏𝑛𝑟
2|𝑅(𝑛, 𝑙)|2𝑛=∞

𝑛=1 = D(r)          eq-15 

 

with  

 

𝑏𝑛 = 𝑏′
𝑛 D(r)            eq-16 

 

(Note: by ignoring the mass unit and only consider the distance unit, D(r) has a unit of 1/r^3, bn has a unit of 1/r^2, and b’n 

has a unit of r). So that  

 

∑ D(r) 𝑏′
𝑛
[𝑟2|𝑅(𝑛, 𝑙)|2]𝑛=∞

𝑛=1 = D(r)         eq-17 

 

and  

 

∑ 𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2]𝑛=∞
𝑛=1 = 1,  (within 0 < r < ∞)       eq-18 

 

Then, in eq-18, each ∑ 𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2]𝑛=∞
𝑛=1 = 1 function becomes a unitary vector base (ideally should be only within each 

Δr space of rn ≤ r < rn+1, however, in reality, it is within 0 < r < ∞), and all of them formed a complete set of unitary vector 

bases for a Hilbert space (for the reconstitution of the Earth’s mass density D(r) curve in a Hilbert space of rn with vector 

bases from rn=1, rn=2, rn=3, up to rn=∞). (Note: For eq-17 and eq-18, we may can use integration to replace the sum, and change 

the range from 1 ≤ n ≤ ∞, to, r1 < r ≤ ∞ (by using rn = r1 * n^2)). 

However, there is a shortcoming for eq-17: it is a curve fitting for the classical process (or the continuous curve), 

because its “unit vector base function” does not provide any information on the Earth’s {N,n//2} quantum structure. Then, 

how to increase the Earth’s {N,n//2} quantum structure information in eq-17? Or, the more correct way to ask this question 

is, how to add the Earth’s {N,n//2} quantum structure information in the “unit vector base functions” of eq-17?  

Here we showed one possible way. First, in eq-17, instead of summing from n=1 to n=∞, let’s simplify the sum to 

be from n=1 to n= 256. (Note: Why we choose n = 256 = 2^8? It is because that based on {N,n//q} QM, Earth primarily 

belongs to a {N,n//2} QM structure, and it gives the inner core of the Earth has a radius (½)2 = ¼ of the Earth’s radius (see 

SunQM-1s3); Besides that, Earth also belongs to a {N,n//4} = {N,n//2^2} QM structure, and it gives the Earth’s outer core 

radius at the (¾)2 = 9/16 of the Earth’s radius, at the {-1,3//4} size with r ≈ 3.49E+6 meters (if using rEarth = 6.38E+6 meters 

as the r1, see SunQM-3s6); If more precisely, Earth can also belong to a {N,n//16} = {N,n/2^4} QM structure, and it gives 

Earth’s inner core radius at the size of {-1,7//16}, Earth’s outer core at the size of {-1,12//16}, and Earth’s mantle at the size 

of {-1,15//16}, see SunQM-3s6’s section I-i. Therefore, Earth’s can be described by a {N,n//2^j} QM structure with the 

integer j ≥ 1. The higher the j, the more precise the description. Here we used j = 8, or 2^8 = 256. We could have used 2^7, or 

2^10, it does not really matter in this example). This means, we are using a {N,n//2^8} = {N,n//256} QM structure to 

describe the Earth’s D(r). Let’s move the r1 to the size of {-1,1//256}, then, according to rn = r1 * n^2, the new r1 = rEarth *(1 / 

256)^2 = 6.38E+6 / 256^2 ≈ 97 meters (from the exact center of the Earth). So now, eq-17 becomes 

 

∑ D(r) 𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2]𝑛=256
𝑛=1 = D(r)         eq-19 

 

In eq-19, we hope the  𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] forms the unitary vector bases (i.e., the rn at each n) of a Hilbert space (for each Δr 

of rn ≤ r < rn+1). For example, for the first five n(s), the unitary vector bases of each Δr space are: 1 ≤ rn=1 < 4, 4 ≤ rn=2 < 9, 9 ≤ 

rn=3 < 16, 16 ≤ rn=4 < 25. The function of [𝑟2|𝑅(𝑛, 𝑙)|2] for the vector bases of n = 1 to n = 5 is shown in Figure 1a (with each 

l function showed separately), and also shown in Figure 4b (with all l functions summed for each n). We can see that for each 

vector base of the Δr space, its  𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] function is always affected by its neighboring  𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] functions. 

For example, for the (Hilbert space) vector base rn=3 with Δr in 9 ≤ rn=3 < 16, the corresponding function [𝑟2|𝑅(𝑛 = 3, 𝑙 =

0. .2)|2] only make the major (but not the 100%) contribution within 9 ≤ rn=3 < 16. The neighboring functions at n =2, n =4, n 

=5, (i.e., [𝑟2|𝑅(𝑛 = 2, 𝑙 = 0. .1)|2], [𝑟2|𝑅(𝑛 = 4, 𝑙 = 0. .3)|2], [𝑟2|𝑅(𝑛 = 5, 𝑙 = 0. .4)|2] ) are all making small but 
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significant contribution (see Figure 4b). That is why I said that the  𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] functions (in eq-17, or in eq-10, or even 

in eq-2) are not the “good” vector base function, because they are always crossover with each other and thus have low 

convergency. Then, what is the “good” function for eq-17 (as the vector basis of the Hilbert space)? It should be something 

like 

 

 𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] = {
1, 𝑟𝑛 ≤ 𝑟 < 𝑟𝑛+1

0, 𝑟 < 𝑟𝑛 𝑎𝑛𝑑 𝑟 ≥ 𝑟𝑛+1
        eq-20 

 

Interestingly, eq-20 is exactly what the rule of “all mass between rn and rn+1 belongs to orbit n (see SunQM-3s2)” 

means. (Note: However, we know that this rule is only an approximation. Nature has already shown us that there are many 

(minor) violations of this rule: Jupiter has a {-1,n=1..4//5}o orbital n shell structure (if using rJupiter = r1), and its outmost shell 

belongs to n=4 shell. However, the mass in the fast-moving zonal band (on the surface of Jupiter) belongs to the residue 

|5,4,m> QM state with n=5 (but not n=4, see Figure 4c, also see SunQM-3s3’s Fig-4). The similar natural phenomenon has 

been seen in many times (see Appendix A for more examples). This means that under the gravitational force (where the 

Schrodinger equation using U ∝ 1/r, so it is suitable not only for G/RFg-force, but also for E/RFe-force), the rule of “all mass 

between rn and rn+1 belongs to orbit n” is only an approximation, and the crossover  𝑏′
𝑛[𝑟

2|𝑅(𝑛, 𝑙)|2] functions are the real 

correct and accurate vector bases). Thus, if using eq-20, then the “unit vector base function” of eq-19 provided the 

information that the Earth’s D(r) belongs to a {N,n//2^8} quantum structure. 

Here is one guess: in eq-17, when r1 is moved infinitely close to r = 0, its Hilbert space’s vector bases (i.e., the eq-

18) is infinitely close to eq-20.  

Above is the discussion on how to use the eq-10 kind of equation (with a single N super shell) to reconstitute Earth’s 

D(r) curve. Below is the discussion on how to use the eq-2 kind of equation (with many N super shells) to reconstitute 

Earth’s D(r) curve. For Earth primary {N,n//2} QM structure (it means n ≡ 1), if we try to use Born probability radial 

function with n=1, and with many N super shells  

 

∑ 𝑎𝑁
𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=1
𝑛=1 𝑟𝑁

2|𝑅(1,0)|2]          eq-21 

 

to reconstitute the D(r) curve, the result is really poor. The reason is, eq-21 cannot fit to the cliff-drop in the Earth’s D(r) 

curve, it can only produce the smooth declining and/or up-rising curve (data was not shown here). So, eq-21 may be fine to 

reconstitute either |�⃗� | (∝ 1/r2) or U (∝ 1/r) curve, it is not fine for Earth’s D(r) curve. 

Although it doesn’t work well with {N,n//2}, using eq-2 to fit to Earth’s D(r) curve with {N,n//4}, or {N,n//8}, or 

{N,n//16}, it will be getting better and better. If fit with {N,n//2^8} = {N,n//256} 

 

∑ 𝑎𝑁
𝑁→∞
𝑁→−∞ [∑ 𝑏𝑛

𝑛=255
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2]         eq-22 

 

it should can fit well enough. However, it has no advantage to use eq-22 than to use eq-17, because the function of moving N 

→ -∞ (to cover the r → 0 by using the multiple N super shells) in eq-22 is already fulfilled by moving the r1 to very small in 

eq-17.  

 According to Figure 4a, using eq-2, the {N,n//4} QM structure of the Earth may can be expressed as 

 

∑ 𝑎𝑁[∑ 𝑏𝑛
𝑛=3
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2]𝑁=0
𝑁=−1 = 𝑎𝑁=−1[∑ 𝑏𝑛

𝑛=3
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2] + 𝑎𝑁=0[𝑏𝑛=1𝑟𝑁=0

2|𝑅(1,0)|2 + 𝑏𝑛=2 𝑟𝑁=0
2|𝑅(2, 𝑙)|2 +

𝑏𝑛=3𝑟𝑁=0
2|𝑅(3, 𝑙)|2]          

eq-23 

 

In eq-23, the last item 𝑎𝑁=0[𝑏𝑛=3𝑟𝑁=0
2|𝑅(3, 𝑙)|2] represents Earth’s mantle (quantum) layer, the second last item 

𝑎𝑁=0[𝑏𝑛=2 𝑟𝑁=0
2|𝑅(2, 𝑙)|2] represents Earth’s outer core (liquid iron) quantum layer, the third last item 

𝑎𝑁=0[𝑏𝑛=1𝑟𝑁=0

2|𝑅(1,0)|2] represents the Earth’s inner core (solid iron) quantum layer, the first item 
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𝑎𝑁=−1[∑ 𝑏𝑛
𝑛=3
𝑛=1 𝑟𝑁

2|𝑅(𝑛, 𝑙)|2] represents Earth’s inner-inner core (that was predicted to have r ≈ 430 km, see SumQM-3s6’s 

Table-6). Notice that eq-23 has the strongest quantum information of {N,n//4} QM in its unit vector base function. 

 

 

     
Figure 4a. Earth’s true mass density curve D(r), obtained from wiki “Structure of the Earth”, originally created by A. M. 

Dziewonski & D. L. Anderson (1981). (Also see SunQM-3s6’s Fig-1b). 

Figure 4b. Comparing radial Born probability density function 𝑟2|𝑅(𝑛, 𝑙)|2 for n = 1, 2, 3, 4, and 5 (with different l summed 

for each n). 

Figure 4c. Comparing radial Born probability density function 𝑟2|𝑅(𝑛, 𝑙)|2 for |1,0,0>, |2,l,m>, |3,l,m>, |4,l,m> and |5,4,m> 

QM states. In the Δr range of  23 ≤ r/r1 ≤ 25 (i.e., the atmosphere near the surface of Jupiter), the |5,4,m> QM state (the red 

line curve intensity) makes the significant contribution on top of the |4,l,m> QM state (the orange line curve intensity). 

 

 

 

IV.   The physical meaning of eq-2 (in view of the wave mechanics) 

 

First, let’s review that how to use the wave mechanics to explain the Earth’s orbital movement in the Solar system. 

In the solar system’s {N,n//6} QM structure, Earth’s r-1D position is fixed at {1,5//6} position. Under the wave mechanics, it 

means that Earth’s r-1D matter wave is in the standing wave mode, with the out-going traveling wave (from r = 0 to r = ∞) 

interfered with the in-going traveling wave (from r = ∞ to r = 0), and produced the maximum wave intensity that standing at 

{1,5//6} position (see red line curve in Figure 4b for better understanding). So it is better to be described by the Born 

probability. Similarly, Earth’s θ-1D position is fixed at θ = π/2. Under the wave mechanics, it means that Earth’s θ-1D matter 

wave is in the standing wave mode, with the θ = 0 to θ = π traveling wave interfered with the θ = π to θ = 0 traveling wave, 

and produced the maximum wave intensity that standing at θ = π/2. So it is also better to be described by the Born 

probability. However, Earth’s φ-1D position is not fixed at all, under the wave mechanics, it means that Earth’s φ-1D matter 

wave is still in the traveling wave mode, so it should be described as the non-Born probability (NBP). (Also see the 

discussions in SunQM-4s1’s section V). Now, let’s forget the θ and φ dimensions, only consider r-1D dimension. For the 

eight known planets in the Solar system, in the r-1D, they are fixed at the {1,n=3..6//6} and {2,n=2..5//6} positions 

respectively. Under the wave mechanics, it means that there are 8 pairs of out-going and in-going traveling matter waves, and 

each pair of them produced a standing matter wave with the maximum intensity standing at the position in one of the 

{1,n=3..6//6} and {2,n=2..5//6} positions.  

Figure 5a pretended to be a single point charge’s static “electric field” (in 2D), with each (radiated) line represents a 

(radiated) radial wave function 𝑟2|𝑅(𝑛, 𝑙)|2 at either n = 1, or 2, or 3. The small ball at the far end of the radiated line 

represents the maximum Born probability position. (Note: Because each 𝑟2|𝑅(𝑛, 𝑙)|2 function starts from r = 0 and ends at r 

= ∞ (see Figure 4b for better understanding), for each radiated line, we should have drawn from r = 0 to r = ∞. However, it is 

impossible to draw a line to r = ∞, so I drew the line up to the max of the probability). Now, let’s simplify the explanation: 

for each radial wave function, let’s suppose that it only exerts the field effect at the maximum probability site (in r-1D). For 

example, the n=1 radial wave function is supposed to exert its field effect only within 1 ≤ r < 4 (or, rn / r1= n2) range, the n=2 

radial wave function is supposed to exert its field effect only within 4 ≤ r < 9 range, and the n=3 radial wave function is 

supposed to exert its field effect only within (around) 9 ≤ r < 16 range (see Figure 4b for better understanding. Note: this is 

similar as what eq-20 means). In other words, in eq-2, each 𝑟2|𝑅(𝑛, 𝑙)|2 function with different n only exert its field effect 
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within rn ≤ r < rn+1 range in r-1D space. (Note: In this simplified explanation, it is equivalent to the rule of “all mass between 

rn and rn+1 belongs to orbit n (see SunQM-3s2)”). Then, in eq-2, the strength of the 2D “electric field” is determined by the 

number of the radial wave functions (i.e., the weight of the unit vector bases). For example, in Figure 5a, at r = 1 (or within 1 

≤ r < 4), there are 16 of n=1 radial wave functions (vector bases), so the relative strength of this “electric field” (or “potential 

field”) is 16; at r = 4 (or within 4 ≤ r < 9), there are 8 of n=2 radial wave functions (vector bases), so the relative strength of 

this “electric field” (or “potential field”) is 8; at r = 9 (or 9 ≤ r < 16), there are 4 of n=3 radial wave functions (vector bases), 

so the relative strength of this “electric field” (or “potential field”) is 4, and so on, so forth. (Note: The value of the 

𝑟2|𝑅(𝑛, 𝑙)|2 function at each n quantum number is different, it is decreasing as the n number increasing (see Figure 4b). So, 

at the smaller r side of the r-1D space, the field strength is stronger not only because it has a greater number of radial wave 

functions, but also because each radial wave function (the vector base) has higher value).  

 

 
Figure 5a. Illustration of a (pretended) single point charge’s 2D static “electric field”, in view of the wave mechanics, with 

each (radiated) straight line represents a radial wave function 𝑟2|𝑅(𝑛, 𝑙)|2 at either n = 1, or 2, or 3, and the small ball 

represents the position where the maximum probability density located.  

Figure 5b. Illustration of a (pretended) single point charge’s 2D static “electric field”, in view of the particle mechanics, with 

each small ball represents a particle (of electric force) that doing the ecliptic orbital movement around the (central) point 

charge, and the collection of the elliptical orbital trajectory forms the radial wave function 𝑟2|𝑅(𝑛, 𝑙)|2 probability density (at 

either n = 1, or 2, or 3).  

 

 

With the example of Figure 5a, we now can use the wave mechanics to (intuitively) explain the physical meaning of 

eq-2 for the description of a point charge’s static electric field |�⃗� | ∝ 1/r2. Let’s use eq-5 (and the Table 4) as the example. 

Notice that the product of aNbn in eq-5 is exactly the value of 1/r2 (in column 6 of Table 3). It means, in the r range of {-

3,1//6}o orbital shell space (see Table 3 column 1~2), or in the r range of 1/363 ≤ r < 4/363 (see Table 3 column 2~4), there 

are 2.18E+9 number of 𝑟𝑁=−3
2|𝑅(1,0)|2 Born probability radial functions (vector bases) to represent the (relative) strength of 

a point charge’s static electric field |�⃗� | ∝ 1/r2; in the r range of {-3,2//6}o orbital shell space (see Table 3 column 1~2), or in 

the r range of 4/363 ≤ r < 9/363 (see Table 3 column 2~4), there are 1.36E+8 number of 𝑟𝑁=−3
2|𝑅(2, 𝑙)|2 Born probability 

radial functions (vector bases) to represent the (relative) strength of the |�⃗� | ∝ 1/r2; in the r range of {-3,3//6}o orbital shell 

space, or in the r range of 9/363 ≤ r < 16/363, there are 2.69E+7 number of 𝑟𝑁=−3
2|𝑅(3, 𝑙)|2 Born probability radial functions 

(vector bases) to represent the (relative) strength of the |�⃗� | ∝ 1/r2; … in the r range of {0,5//6}o orbital shell space, or in the r 

range of 25/360 ≤ r < 36/360 (i.e., 25 ≤ r < 36), there are 1/252 = 0.0016 number of 𝑟𝑁=0
2|𝑅(5, 𝑙)|2 Born probability radial 

functions to represent the (relative) strength of the |�⃗� | ∝ 1/r2. In this way, we transformed a classical physics |�⃗� | ∝ 1/r2 field 

into a fully quantum (wave) mechanical represented form (as shown in eq-2, or exampled in eq-5). 

 

 

 

V.   The physical meaning of eq-2 (in view of the particle mechanics) 
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The same eq-2 can also be explained in view of the particle mechanics (see Figure 5b). (Note: Readers need to read 

SunQM-6s2’s section-I before reading the current section. There, the H-atom’s Born probability density 3D map of the 

electron was re-explained as the collection of the trajectory of a single electron’s particle movement). For each 𝑟2|𝑅(𝑛, 𝑙)|2 

function in eq-2 (that equivalent to each single line in Figure 5a), if we use one particle (named as the “E-particle”) to 

represent its electric force, then the collection of the trajectory of this one E-particle’s elliptical orbital movement will form a 

Born probability density (2D) map (as shown by any one of the single elliptical orbit in Figure 5b). Again, for each single 

𝑟2|𝑅(𝑛, 𝑙)|2 function in eq-2 with a specific n, it can be approximated (or simplified) that it only exerts its force field effect 

within rn ≤ r < rn+1 range in r-1D space (at the aphelion site of its elliptical orbit, because the highest Born probability 

density). Again, in eq-2, the strength of the 2D static “electric field” is determined by the number of the radial wave functions 

that is now equivalent to the number of the E-particles. For example, in Figure 5b, within the range of 1 ≤ r < 4, there are 

total 16 of n=1 radial wave functions (or E-particles), so the relative strength of this “electric field” (or “potential field”) is 

16; within the range of 4 ≤ r < 9, there are total 8 of n=2 radial wave functions (or E-particles), so the relative strength of this 

“electric field” (or “potential field”) is 8, and so on, so forth. 

Therefore, the explanation of eq-5 (as an example of eq-2) is: in the r range of {-3,1//6}o orbital shell space, or in 

the r range of 1/363 ≤ r < 4/363, there are total 2.18E+9 number of 𝑟𝑁=−3
2|𝑅(1,0)|2 Born probability radial functions (or E-

particles) to represent the (relative) strength of the electric field |�⃗� | ∝ 1/r2; in the r range of {-3,2//6}o orbital shell space, or 

in the r range of 4/363 ≤ r < 9/363, there are total 1.36E+8 number of 𝑟𝑁=−3
2|𝑅(2, 𝑙)|2 Born probability radial functions (or E-

particles) to represent the (relative) strength of the electric field |�⃗� | ∝ 1/r2; and so on, so forth. 

Before this description, there was always a major obstacle to use particle to explain the electric field (at least for 

me): because a single point charge’s static electric field radiates from r = 0 to r = ∞ at the light speed, any trying of using 

particles (noticing that these particles must contain energy) to represent the static electric field will cause the particle to fly 

away (from the charge) to the infinity, and thus cause the charge to lose energy. (Note: This is similar as that in the old 

physics, the electromagnetic radiation of an orbiting electron in the planetary model of the atom will cause the electron to 

lose energy and then to spiral-in to crash to the nucleus [30]). If we used the Bohr-QM’s circular orbit (like that the early QM 

did), it does not have any r-1D component, and thus cannot reflect the character of the electric field that propagating in r-1D 

at the light speed. Then, using the elliptical orbit, this obstacle has been removed, the (energy containing) E-particles are not 

completely moving away (from the point charge), they follow the elliptical orbit (notice that the 3D elliptical orbital motion 

is equivalent to an oscillation motion in r-1D), so that the radiation of them do have the component in r-1D space, but do not 

lose the energy of a single point charge’s static electric field. Remember that all these elliptical orbits follow the Born 

probability density map, so it become a perfect description. 

 

 

 

VI.   In the view of wave mechanics, a point-centered field (that can be described with eq-2) should can also be 

described by the 3D spherical wave packet  

 

In {N,n} QM field theory, everything (i.e., both the point-centered mass field and the point-centered force field) can 

be described in the form of 3D spherical wave packet. SunQM-6s2’s Fig-6a (that was copied here as the Figure 6b) showed 

that how a 1D wave packet looks like. Before, we don’t really know the detailed structure of a 3D spherical wave packet 

(except it has onion-like multiple shells). Now, with the help of eq-2, we try to look into the detail. If we degenerate a rθφ-3D 

spherical wave packet (with many n shells and N super shells) into r-1D, each one n shell of the 3D spherical wave packet 

should look like Figure 6b. For the 2D pseudo “electric field” in Figure 5a (now we can think it as the 3D pseudo “electric 

field”), once we degenerate it into r-1D (not with 0 < r < ∞, but with -∞ < r < ∞), then each one n shell should have the ±r 1D 

wave function with two peaks as shown in Figure 6a. (Notice that Figure 6a was constructed with Figure 4b with a mirroring 

operation along y-axis). By comparing Figure 6a to Figure 6b, we can easily understand that the two blue line curve peaks (of 

the Born probability density at n=1) in Figure 6a represent the two edge of an n=1 QM state rθφ-3D spherical wave packet 

(of the Born probability density). (Note: it looks like a spherical shell with a hollow center). Then, the two dark-orange line 

curve peaks (of the Born probability density at n=2) in Figure 6a represent the two edge of a n=2 QM state (a shell-like) 3D 
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spherical wave packet (of the Born probability density), and then, one-by-one, the two green peaks at n=3, the two light-

orange peaks at n=4, and the two red peaks at n=5 in Figure 6a, each represent the two edge of an n=3 (shell-like), n=4 (shell-

like), and n=5 (shell-like) rθφ-3D spherical wave packet (of the Born probability density) respectively. Then, after combining 

all of them, the whole rθφ-3D spherical wave packet (of the Born probability density) with a structure of n = 1, 2, 3, 4, 5 

shells (within one N super shell of a {N,n//6} QM structure) was depictured in Figure 6c. (Note: in Figure 6c, the n = 1 core 

of the 3D spherical wave packet is not shown, because it belongs to the ΔN = -1 super shell in a {N,n//6} QM structure).  

 

 

    

   
 

Figure 6a. To illustrate the eq-2 formed 3D spherical wave packet (for n = 1, 2, 3, 4, 5) that is viewed in ±r 1D. 

Figure 6b. Copied from SunQM-6s2’s Fig-6a, to show a 1D wave packet (with its “main” wavelength is shown in the red 

thick line curve). 

Figure 6c. To illustrate the eq-2 formed 3D spherical wave packet (for n = 1, 2, 3, 4, 5) that is viewed in 2D. 

Figure 6d. To illustrate the eq-2 formed 3D spherical wave packet (for n = 3 shell only) that can be further divided into 3 sub-

shells of 3D spherical wave packet (viewed in ±r 1D). 

 

 

Note: As shown in Figure 6c, the thickness of each n shell (of 3D spherical wave packet) is very thick, and it covers 

(at least) from rn to rn+1, so that there is no gap left in between of these shells. We can see the same thing in Figure 6a, the all 

the probability density peaks are very broad so that no gap is left in between. However, it is inaccurate to say that “all 

probability between rn to rn+1 belongs to n QM state” (note: this saying is equivalent to eq-20), instead, it is correct to say that 

“for the general point-centered field’s 3D spherical wave packet, the main probability between rn to rn+1 belongs to n 

QM state” (note: this saying is equivalent to eq-2). Similarly, it is correct to say that “for a point-centered mass field’s 3D 

spherical wave packet, the mass between rn to rn+1 mainly belongs to orbit n” (note: this saying is equivalent to eq-2). 

Although the rule of “all mass between rn to rn+1 belongs to n orbit” is still fine to use in many cases if the low accuracy is 

enough (because it does greatly simplify the explanation). 

According to the result of SunQM-6s2’s Fig-6a, in the wave mechanics, each 3D spherical wave packet (of the Born 

probability density), or each shell, has the “main” or the “effective” wavelength λn (approximately) equals to the diameter of 

this spherical shell, or λn ≈ 2rn . Therefore, from Figure 6a, we can easily read out the (approximate) “main” wavelength of 

each 3D spherical wave packet, such as for |3,l,m> , |4,l,m> , |5,l,m> QM states, λn=3 ≈ 2rn=3 ≈ 24, λn=4 ≈ 2rn=4 ≈ 46, and λn=5 ≈ 

2rn=5 ≈ 74, respectively. Because the matter wave’s frequency fn ∝ 1/λn, and the matter wave’s energy En ∝ fn , so the inner 
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shell of the 3D spherical wave packet has the lower n quantum number, the shorter λn , the higher field fn, and the higher 

field energy, and vice versa.  

The 3D spherical wave packet description is not only valid for each n shell, but also valid for each l sub-shell (see 

Figure 6d), and even valid for each N super shell (figure not shown). For example, in Figure 6d, it showed that in the n = 3 

shell of the 3D spherical wave packet, it can still be further divided into three sub-shells. They are (from inner to outer): 

|3,2,m> sub-shell, |3,1,m> sub-shell, and |3,0,m> sub-shell. Again, for each sun-shell of the 3D spherical wave packet, we can 

easily read out its (approximate) “main” wavelength. For example, for the |3,2,2> , |4,3,3> , |5,4,4> QM states correlated 3D 

spherical wave packet sub-shell, it has λn=3 ≈ 2*9 =18, λn=4 ≈ 2*16 = 32, and λn=5 ≈ 2*25 = 50, respectively. (Note: For the 

general |n,l,m>, its rn of the maximum probability is greater than rn = r1n2. Only for nLL, its rn of the maximum probability is 

exactly same as rn = r1n2). 

Then, what is the difference between the eq-2 reconstitution and the 3D spherical wave packet representation (since 

both of them are based on {N,n} QM structure)? By comparing Figure 5a and Figure 6d, they have practically the same 

morphology for all n shells, but with different weighting number for each n shell. Then, learned from the explanation of 

Figure 5a, we can treat each n shell of the 3D spherical wave packet in Figure 6d as a “unit vector base” for a high-

dimensional Hilbert space (that covers from r → 0 to r = ∞). By using different set of weighting numbers, the 3D spherical 

wave packet can be used to describe either the |�⃗� | ∝ 1/r2 field, or the U ∝ 1/r field, or the Sun core’s D ≈ 1.26 × 1023 1

r2.33 

(kg/m3) mass field, etc., (just like what the eq-2 did). For example, according to Table 3, by using the weighting number of 

2.18E+9 for the {-3,1//6}o orbital n shell, and 1.36E+8 for the {-3,2//6}o orbital n shell, ... , this (weighted) 3D spherical 

wave packet is perfect to describe the |�⃗� | ∝ 1/r2 field. Alternatively, by using the weighting number of 46656 for the {-

3,1//6}o orbital n shell, and 11664 for the {-3,2//6}o orbital n shell, ... , this (weighted) 3D spherical wave packet is perfect to 

describe the U ∝ 1/r field. In this way, these two description methods, the eq-2 reconstitution and the (weighted) 3D spherical 

wave packet representation, are completely equivalent and switchable.  

Notice that this eq-2 described (or eq-2 weighted) 3D spherical wave packet is valid not only for the point charge’s 

static electric field, but also for the electromagnetic field (i.e., the photon particle), the point-centered G/RFg-force field, the 

point-centered mass field, etc. Here are some examples: 

1)  A single proton’s positive charge generated static electric field can be described by this (weighted) 3D spherical wave 

packet; 

2)  According to the text book [31], a single charge (named as Q)’s electric field �⃗�  is defined as this charge Q’s electric force 

field 𝐅  divided by the magnitude of a tiny test charge q:  �⃗� = 𝐅 𝑞⁄ . So, it is obvious that for a tiny test charge q, a single 

charge Q’s 3D pattern of the force field 𝐅  should be (almost exactly) the same as that of the 3D pattern of the electric field �⃗� , 

and thus can be described by this (weighted) 3D spherical wave packet; 

3)  In an H-atom, the collection of the motion trajectory of the electron that orbiting around the proton (and that formed Born 

probability density map) can be described by this (weighted) 3D spherical wave packet; This also means, in an H-atom, a pair 

of (the heavy) proton and (the light) electron generated E/RFe-force field in the {N=-3..0,n=1..5//6}o orbital shell space 

(centered on the proton, using Bohr radius a0 = r1) may can be described by this (weighted) 3D spherical wave packet;  

4)  In an H-atom, an orbital moving electron itself can be described by this (weighted) 3D spherical wave packet (see 

SunQM-6s2’s section II-b); Similarly, a single proton itself can be described by this (weighted) 3D spherical wave packet; 

5)  In an H-atom, an orbital moving electron de-excited from n=3 to n=2 orbit, and spun-off its outmost shell of the 3D 

spherical wave packet (of the E/RFe-force field) as a new born photon, and this photon’s E/RFe-force field (or the 

electromagnetic field) can also be described by the (weighted) 3D spherical wave packet (see SunQM-6s2’s Fig-7j, Fig-7k, 

also see SunQM-6s5’s Fig-6);  

6)  In the Solar system, our Sun generated G/RFg-force field in the {N=0..4,n=1..5//6}o orbital shell space (using Sun core’s 

radius as r1) can be described by this (weighted) 3D spherical wave packet;  

7)  Not only the G/RFg-force field, but also the mass field generated by our Sun in the {N=0..4,n=1..5//6}o orbital shell space 

(using Sun core’s radius as r1) can also be described by this (weighted) 3D spherical wave packet;  

8)  An ancient planet Triton generated G/RFg-force field can be described by this (weighted) 3D spherical wave packet;  
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9)  When the ancient planet Triton (at {2,6//6} orbit) was captured by the planet Neptune (at {2,5//6} orbit), the de-exciting 

from n=6 to n=5 orbit made Triton to spin-off its outmost shell of the 3D spherical wave packet (of the G/RFg-force field) as 

a new born G-photon, and this G-photon’s G/RFg-force field can also be described by the (weighted) 3D spherical wave 

packet (see SunQM-6s2’s Fig-1).   

 

 

 

VII.   More discussions 

 

1)  Using eq-2 to reconstitute any point-centered field (like|�⃗� | ∝ 1/r2 or U ∝ 1/r) is an intrinsic property (or the natural 

attribute) of {N,n//q} QM field theory, and it can be used with q number from q = 2, 3, 4, 5, 6, 7, etc. For example: a {N,n//6} 

QM may be appropriate for the reconstitution of a proton’s electric field for an H-atom; a {N,n//7} QM may be appropriate 

for the reconstitution of the nucleus’s electric field for a Xe atom (Z = 54). 

2)  From the mathematic point view of the Hilbert space, the Born probability formed “unit vector base functions” in the eq-2 

has a “low quality”, because each vector base contains some (impurity) contamination from the neighboring vector bases (if 

each N super shell contains only a few n shells). However, from the point view of the {N,n} QM field theory, it is a great 

success, because it has provided a generalized way so that all point-center fields can be reconstituted by using Schrodinger 

equation/solution.  

3)  In SunQM-6s1’s Fig-3, when using the 3D wave packet to describe a photon’s propagation, its core propagates with the 

light speed c, its wave-front propagates with 2c, its wave-tail propagates with 0c. This means, when we set the coordinate at 

the photon’s core, this photon’s electromagnetic field radiates from the point center of the photon to all 4π directions in the 

light speed c, and it is just like a single point charge’s static electric field radiates to all 4π directions in the light speed c. 

Thus, everything make sense. Therefore, it added one more positive point to the {N,n} QM field theory. 

4)  The 3D wave packet description perfectly explained the wave-particle duality for all fields (including the mass field, force 

field, etc.): while the core of the 3D wave packet reflects the particle character of the field, the outer shells of the 3D wave 

packet reflect the wave character of the field (also see SunQM-6s1’s section III-d). 

5)  All above discussions are based on the H-atom’s Schrodinger equation/solution (with the attractive potential function of U 

∝ -1/r). Can we put other “potential” function (e.g., 1/r^2, or something like eq-20, or the repulsive potential) into the 

Schrodinger equation (and still keep the energy conservation) to obtain the new kind of radial wave function? I tried the 

repulsive potential one time, but failed (due to my math is not high enough, as a citizen scientist).  

6)  So far, the 3D spherical wave packet constructed in Figure 6 is mostly by visual. It still needs mathematician to prove it in 

a mathematical way.  

 

 

 

Conclusion 

 

Finally, this paper figured out how to use the Schrodinger equation/solution (in the form of Born probability) to reconstitute 

the electric field equation |�⃗� | =
q

4πϵ0

1

𝑟2 and the potential equation |U| =
q

4πϵ0

1

𝑟
 . And, all point-centered field can be 

represented in the form of 3D spherical wave packet. And, there two descriptions are equivalent. 
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Note: A series of SunQM papers that I am working on: 

SunQM-6s5: Using {N,n} QM Field Theory to Describe A Propagating Photon with … (drafted in Jan. 2023). 

SunQM-6s6: Using {N,n} QM Field Theory to Study the Atomic Electron … (drafted in Apr. 2023). 

SunQM-6s7: {N,n} QM Field Theory Development On the E/RFe-force … (drafted in Apr. 2023). 

SunQM-6s8: {N,n} QM Field Theory Development On the G/RFg-force … (drafted in Apr. 2023). 

SunQM-6s9: {N,n} QM Field Theory Development On the S/RFs-force … (drafted in May. 2023). 

SunQM-6s10: Schrodinger equation and {N,n} QM ... (drafted in January 2020). 

SunQM-4s4: More explanations on non-Born probability (NBP)’s positive precession in {N,n}QM. 

SunQM-7s1: Relativity and non-linear {N,n} QM 

SunQM-9s1: Addendums, Updates and Q/A for SunQM series papers. 

 

Note: Major QM books, data sources, software I used for SunQM series papers study: 

Douglas C. Giancoli, Physics for Scientists & Engineers with Modern Physics, 4th ed. 2009. 

David J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., 2015. 

Stephen T. Thornton & Andrew Rex, Modern Physics for Scientists and Engineers, 3rd ed. 2006. 

John S. Townsend, A Modern Approach to Quantum Mechanics, 2nd ed., 2012. 

James Binney & David Skinner, The Physics of Quantum Mechanics, 1st ed. 2014. 

Wikipedia at: https://en.wikipedia.org/wiki/ 

(Free) online math calculation software: WolframAlpha (https://www.wolframalpha.com/) 

(Free) online spherical 3D plot software: MathStudio (http://mathstud.io/) 

(Free) offline math calculation software: R 

Microsoft Excel, Power Point, Word. 

Public TV’s space science related programs: PBS-NOVA, BBC-documentary, National Geographic-documentary, etc. 

Journal: Scientific American. 

 

Note: I am still looking for endorsers to post all my SunQM papers (including the future papers) to arXiv.org. Thank you in advance! 
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Note: With my 28 of SunQM papers that have been posted out so far, I believe that the framework of the {N,n} QM has been fully established. It is clear 

now that the {N,n} QM description is not only suitable for the mass field, but also suitable for the force field (or potential field, or energy field, etc.). Thus, 

my (10 years of close-door) research phase on the {N,n} QM will be ended in about one year (most likely in the summer of 2024). After that, I will re-write 

the SunQM papers (~ 35 of them) in the form of a text book. Both the section III and the Appendix A of this paper will be re-written as the questions/excises 

at the end of one chapter of the text book. 

 

 

 

Appendix A. A list of examples that (minorly) violate the rule of “all mass between rn and rn+1 belongs to orbit n”. 

 

1)  If we treat the Earth’s as the pure {N,n//2} QM structure, e.g., treat the Earth’s inner core as the {-1,1//2} sized QM 

structure (with rEarth = r1), and treat the Earth’s mantle layer plus the outer core layer as the {-1,1//2}o orbital shell QM 

structure (note: this means that the mass in both the mantle layer and the outer core layer is in the |1,0,0> QM state), and treat 

the Earth’s atmosphere (the troposphere only) as a compressed {0,1//2}o orbital shell QM structure (note: this means that the 

mass in troposphere is also in the |1,0,0> QM state), then the polar jet stream may can be treated as the residue n=2 QM state 

with the |2,1,1> QM mode that are embedded in the background layer of |1,0,0> QM state (i.e., the troposphere). (Note: 

{N,n//2} should be the strong {N,n//q} QM mode for the Earth’s atmosphere). Alternatively, as shown in SunQM-4s2’s Fig-

3, we can treat Earth as a {N,n//3} QM structure, with the Earth core as the {-1,1//2} = {-1,1//3} sized QM structure (with 

rEarth = r1), and treat the Earth’s mantle plus layer the outer core layer as the {-1,1//2}o = {-1,1//3}o orbital shell QM structure 

(note: this means that the mass in both mantle layer and the outer core layer is in the |1,0,0> QM state), and then treat the 

Earth’s atmosphere (the troposphere only) as a compressed {-1,2//3}o orbital shell QM structure (note: this means that the 

mass in troposphere is in the |2,l,m> QM state), then the polar jet stream may can be treated as the residue |3,2,0> QM state, 

and the subtropical jet stream may can be treated as the residue |3,2,1> QM state, and both are embedded in the background 

layer of |2,0,0> QM state (i.e., the tropopause at the out-edge of the troposphere, see SunQM-4s2’s Fig-3). Notice that both 

polar jet residue |3,2,0> and subtropical jet residue |3,2,1> are moving eastward faster than that of the background mass that 

is in |2,0,0> QM mode. (Note: {N,n//3} should be the weak {N,n//q} QM mode for the Earth’s atmosphere). Because the 

polar jet stream shows up in (or it is the superposition QM state of) both Earth atmosphere’s strong {N,n//2} QM mode and 

the weak {N,n//3} QM mode, while the subtropical jet stream shows up only in Earth atmosphere’s weak {N,n//3} QM 

mode, this caused the polar jet stream to behave as a strong jet stream, and the subtropical jet stream to behave as a weak jet 

stream. 

 

2)  As shown in SunQM-4s2, Jupiter has a {-1,n=1..4//5}o orbital n shell structure (if using rJupiter = r1), and its outmost n shell 

belongs to n=4 shell with |4,l,m> QM state, and the outmost l sub-shell belongs to |4,0,0> QM mode. However, the mass in 

the fast-moving zonal bands (on the surface of Jupiter) belong to the residue |5,4,m> QM state (i.e., |5,4,4>, |5,4,±3>, 

|5,4,±2>, |5,4,±1>, seven of them) with n=5 (but not n=4, see SunQM-3s3’s Fig-4). Notice that these seven zonal bands are 

moving eastward faster than that of the background mass (i.e., the belt bands) that is in |4,0,0> QM mode. (Note: In 

comparison with the Earth atmosphere’s polar jet stream vs. the subtropical jet stream, all seven zonal bands on the Jupiter 

are similar as Earth’s polar jet stream. The Earth’s subtropical jet equivalent stream should be in the Jupiter’s belt band 

region and they are too weak to show up, see SunQM-3s3’s Fig-4).  

 

3)  In the pre-Sun ball that at the size of {3,1//6} = {2,6//6}, although the majority mass in the outmost n shell of {2,5//6}o 

orbital shell was at n=5 QM state (and after collapsing, the leftover mass accreted to be Neptune), there was minority mass in 

the outmost n shell of {2,5//6}o orbital shell was at the residue n=6 QM state, or the residue |6,5,m> QM state (and after 

collapsing, the leftover mass formed Pluto and the Kuiper belt, see SunQM-7’s Appendix B).  

 

4)  Similarly, in the pre-Sun ball that at the size of {2,1//6} = {1,6//6}, although the majority mass in the outmost n shell of 

{1,5//6}o orbital shell was at n=5 QM state (and after collapsing, the leftover mass accreted to be Earth), there was minority 

mass in the outmost n shell of {1,5//6}o orbital shell was at the residue n=6 QM state, or the residue |6,5,m> QM state (and 

after collapsing, the leftover mass formed Mars and the Asteroid Belt at the position of {1,6//6}o orbital n shell space. Note: 

then the Asteroid Belt moved to the current position of {1,8//6}o orbital n shell space, see SunQM-7’s Appendix B). 
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5)  Although the Sun core was initially determined to have 20% ~ 25% of the Sun radius (see wiki “Sun”), according to the 

Solar {N,n//6} QM structure, it should have ~ 25% of the Sun radius (see SunQM-1). Using Sun core’s radius as r1, the Sun 

mass at the outside of the Sun core occupies the {0,1//6}o orbital shell space with n=1, or at the |1,0,0> QM state. According 

to the standard {N,n} QM structure, part of the mass at the equator of the Sun’s surface must be in the residue |2,1,1> QM 

state (that has the eastward faster movement than the background |1,0,0> QM state). As shown in SunQM-3s9’s Fig-1, on the 

Sun surface, the evolution of the sunspot drifting is driven by this residue |2,1,1> QM state that further evolved to be the 

residue |3,2,2>, then to |4,3,3>, |5,4,4>, … |72,71,71> residue QM state, one by one, or evolved to high n quantum number 

but still in the (residue) nLL QM mode. 

 

6)  Similarly, if using rEarth = r1 , Earth’s mantle shell can be described as {-1,3//4}o orbital shell with n=3, or |3,l,m> QM 

mode, and with the outmost l sub-shell at the |3,0,0> QM mode. According to the standard {N,n} QM structure, part of the 

mass at the equator of Earth mantle shell’s surface must be in the residue n=4 QM state with the residue |4,3,3> QM mode 

(that has the eastward faster movement than the background |3,0,0> QM state). This fast-moving residue |4,3,3> QM mode 

further evolved to be higher n quantum numbered residue nLL QM state, like the residue |5,4,4>, |6,5,5>, etc., and thus 

causes the Earth’s continents (on top of the Earth’s mantle shell) to drift (also see SunQM-3s9). 

 

7)  From the above examples, we can see that in the standard {N,n//q} QM structure, for a (point-centered) mass ball with the 

outmost shell in n QM state, at the surface equator of this mass ball, there is always some residue mass that is in the nLL 

mode but at a higher n QM state (usually in the n+1 QM state). We named this as the “residue” nLL mode. This residue nLL 

mode (that is in the |n+1,n,n> QM state) is embedded (or inlaid) on the surface of the (background) n shell, and it has the 

faster moving speed than that of the background mass (that is in the n QM state). Of course, this phenomenon only happens 

in a self-spinning mass ball. Although (so far) this phenomenon is observed only for a self-spinning mass ball (i.e., a point-

centered self-spinning mass field), I believe that it should happen for any point-centered self-spinning field, including the 

point-centered self-spinning force field (see in SunQM-6s5 and SunQM-6s7). 

 

8)  One interesting question: we know that Earth was accreted from the < 1% leftover mass in the {1,5//6}o orbit shell space 

(after the {2,1//6} sized pre-Sun ball collapsed to be the {1,1//6} sized pre-Sun ball), but now, should we treat the Earth as 

the |5,4,4> QM state in the {1,5//6}o orbital shell, or, as the residue |5,4,4> QM mode that embedded on the surface of the 

{1,4//6}o orbital shell?  


