Quantum Physics

1707 Submissions

[72] viXra:1707.0414 [pdf] submitted on 2017-07-31 07:56:45

Novel Electron Microscopy

Authors: George Rajna
Comments: 17 Pages.

Accordingly, techniques such as the one developed in this study will be very valuable in research on new nano-thin films in which the qualitative consistency of the film across a large area needs to be ensured. [10] As our devices get ever smaller, so do the materials we use to make them. And that means you have to get really close to see them. Really close. A new electron microscope unveiled at the UK's national SuperSTEM facility images objects at an unprecedented resolution, right down to the individual atoms. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[71] viXra:1707.0408 [pdf] submitted on 2017-07-31 06:51:38

Chemical Processes with Quantum Computers

Authors: George Rajna
Comments: 30 Pages.

Researchers at ETH Zurich have now come up with a concrete example that demonstrates what quantum computers will actually be able to achieve in the future. [17] While breakthroughs in quantum computing technology seem to be in tech news every day, very little is said about the actual applications of the super fast computers of the future. [16] Deep learning and machine learning both offer ways to train models and classify data. This article compares the two and it offers ways to help you decide which one to use. [15] Physicists have shown that quantum effects have the potential to significantly improve a variety of interactive learning tasks in machine learning. [14] A Chinese team of physicists have trained a quantum computer to recognise handwritten characters, the first demonstration of " quantum artificial intelligence ". Physicists have long claimed that quantum computers have the potential to dramatically outperform the most powerful conventional processors. The secret sauce at work here is the strange quantum phenomenon of superposition, where a quantum object can exist in two states at the same time. [13] One of biology's biggest mysteries-how a sliced up flatworm can regenerate into new organisms-has been solved independently by a computer. The discovery marks the first time that a computer has come up with a new scientific theory without direct human help. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10]
Category: Quantum Physics

[70] viXra:1707.0406 [pdf] submitted on 2017-07-30 22:28:42

An Addendum on Our Previous Demonstration of Wave Function Collapse in Quantum Mechanics

Authors: Elio Conte
Comments: 2 Pages.

In this brief note we introduce only some further technical detail on the demonstration that we have given in previous years on the algebraic and physical manner in which the wave function of quantum mechanics collapses.
Category: Quantum Physics

[69] viXra:1707.0402 [pdf] replaced on 2017-08-08 05:00:54

A Classical Explanation for the Correlation of Entangled Quantum Particles Via the Detection Loophole

Authors: Declan Traill
Comments: 19 Pages.

Quantum Mechanics claim that particles can become entangled such that there is a correlation in the detected results from EPR type experiments that cannot be explained by Classical Physics. This paper shows one way, via the detection loophole, that the result can be fully explained by Classical Physics, and that the correlation curve for different angles between the two detectors can by reproduced when modelled this way.
Category: Quantum Physics

[68] viXra:1707.0401 [pdf] submitted on 2017-07-30 12:11:03

Applications for Quantum Computers

Authors: George Rajna
Comments: 28 Pages.

While breakthroughs in quantum computing technology seem to be in tech news every day, very little is said about the actual applications of the super fast computers of the future. [16] Deep learning and machine learning both offer ways to train models and classify data. This article compares the two and it offers ways to help you decide which one to use. [15] Physicists have shown that quantum effects have the potential to significantly improve a variety of interactive learning tasks in machine learning. [14] A Chinese team of physicists have trained a quantum computer to recognise handwritten characters, the first demonstration of " quantum artificial intelligence ". Physicists have long claimed that quantum computers have the potential to dramatically outperform the most powerful conventional processors. The secret sauce at work here is the strange quantum phenomenon of superposition, where a quantum object can exist in two states at the same time. [13] One of biology's biggest mysteries-how a sliced up flatworm can regenerate into new organisms-has been solved independently by a computer. The discovery marks the first time that a computer has come up with a new scientific theory without direct human help. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[67] viXra:1707.0398 [pdf] submitted on 2017-07-30 10:51:44

Robotic 4D Cameras

Authors: George Rajna
Comments: 33 Pages.

Presented at CVPR this week, the camera designed by Gordon Wetzstein, Donald Dansereau and colleagues at the University of California in San Diego, is the very first light field, single-lens, wide field of view camera intended to improve the vision of robots. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been “squeezed” to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. [17]
Category: Quantum Physics

[66] viXra:1707.0387 [pdf] submitted on 2017-07-29 04:28:25

Quantum Communication Network

Authors: George Rajna
Comments: 19 Pages.

Just two weeks ago, China demonstrated its prowess in the field of quantum technology by becoming the first to teleport information from Earth to a satellite in space using the simple mechanics of quantum entanglement. [13] The researchers showed that the combination of these two properties can be used to transfer an encoded digital signal without information loss, which has potential applications for realizing highly efficient optical communication systems. [12] Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape. [11] Quantum cryptography involves two parties sharing a secret key that is created using the states of quantum particles such as photons. The communicating parties can then exchange messages by conventional means, in principle with complete security, by encrypting them using the secret key. Any eavesdropper trying to intercept the key automatically reveals their presence by destroying the quantum states. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[65] viXra:1707.0366 [pdf] submitted on 2017-07-28 02:54:05

Ultracold Molecules for Quantum Computing

Authors: George Rajna
Comments: 32 Pages.

The new work shows that collections of ultracold molecules can retain the information stored in them, for hundreds of times longer than researchers have previously achieved in these materials. [21] Quantum entanglement can improve the sensitivity of a measurement, as has been demonstrated previously for atomic clocks and magnetic-field sensors. [20] Thanks to a new fabrication technique, quantum sensing abilities are now approaching this scale of precision. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10] Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[64] viXra:1707.0358 [pdf] submitted on 2017-07-27 08:57:13

Ultrafocused Electromagnetic Fields

Authors: George Rajna
Comments: 40 Pages.

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24] What is the relationship of consciousness to the neurological activity of the brain? Does the brain behave differently when a person is fully conscious, when they are asleep, or when they are undergoing an epileptic seizure? [23] Consciousness appears to arise naturally as a result of a brain maximizing its information content. So says a group of scientists in Canada and France, which has studied how the electrical activity in people's brains varies according to individuals' conscious states. The researchers find that normal waking states are associated with maximum values of what they call a brain's "entropy". [22] New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could emerge. [21]
Category: Quantum Physics

[63] viXra:1707.0357 [pdf] submitted on 2017-07-27 09:25:18

Robustness of Quantum Coherence

Authors: George Rajna
Comments: 32 Pages.

Researchers at the UAB have come up with a method to measure the strength of the superposition coherence in any given quantum state. [22] Experiments tested whether electrons could escape an atom instantaneously. [21] Quantum entanglement can improve the sensitivity of a measurement, as has been demonstrated previously for atomic clocks and magnetic-field sensors. [20] Thanks to a new fabrication technique, quantum sensing abilities are now approaching this scale of precision. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14]
Category: Quantum Physics

[62] viXra:1707.0355 [pdf] submitted on 2017-07-26 14:14:16

Quantum Tunneling Time

Authors: George Rajna
Comments: 31 Pages.

Experiments tested whether electrons could escape an atom instantaneously. [21] Quantum entanglement can improve the sensitivity of a measurement, as has been demonstrated previously for atomic clocks and magnetic-field sensors. [20] Thanks to a new fabrication technique, quantum sensing abilities are now approaching this scale of precision. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11]
Category: Quantum Physics

[61] viXra:1707.0350 [pdf] submitted on 2017-07-26 12:10:33

Quantum Magnetic Sensing

Authors: George Rajna
Comments: 30 Pages.

Quantum entanglement can improve the sensitivity of a measurement, as has been demonstrated previously for atomic clocks and magnetic-field sensors. [20] Thanks to a new fabrication technique, quantum sensing abilities are now approaching this scale of precision. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10]
Category: Quantum Physics

[60] viXra:1707.0348 [pdf] submitted on 2017-07-26 13:28:29

Superconductors Break Crystal Symmetry

Authors: George Rajna
Comments: 37 Pages.

Strange electrons break the crystal symmetry of high-temperature superconductors. [40] Researchers at North Carolina State University have significantly increased the temperature at which carbon-based materials act as superconductors, using a novel, boron-doped Q-carbon material. [39] Magnetic quantum objects in superconductors, so-called "fluxons," are particularly suitable for the storage and processing of data bits. [38] Researchers have made the first direct visual observation and measurement of ultra-fast vortex dynamics in superconductors. [37] By gently prodding a swirling cloud of supercooled lithium atoms with a pair of lasers, and observing the atoms' response, researchers at Swinburne have developed a new way to probe the properties of quantum materials. [36] The nickel-bismuth (Ni-Bi) sample studied here is the first example of a 2-D material where this type of superconductivity is intrinsic, meaning that it happens without the help of external agents, such as a nearby superconductor. [35] Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory have collaborated to design, build and test two devices that utilize different superconducting materials and could make X-ray lasers more powerful, versatile, compact and durable. [34] A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity. [33]
Category: Quantum Physics

[59] viXra:1707.0347 [pdf] submitted on 2017-07-26 07:41:01

Developing Quantum Algorithms

Authors: George Rajna
Comments: 30 Pages.

The study presents a new quantum algorithm that could speed up solutions to semidefinite problems, sometimes exponentially. Quantum algorithms are sets of instructions that tell quantum computers what to do to solve problems. [20] The group, led by Dr Steve Chick and Professor of Physics Ben Murdin, has developed a way of making phosphorous atoms 'dance', which could be the next breakthrough in the quest to make quantum computers a viable reality. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11]
Category: Quantum Physics

[58] viXra:1707.0344 [pdf] submitted on 2017-07-26 11:36:17

An Approximate Non-Quantum Calculation of the Aharonov-Bohm Effect

Authors: Gary Osborn
Comments: 6 pages, 1 figure

In the Aharonov-Bohm effect for a magnetic solenoid a moving charged particle seems to be influenced by the 4-potential in a region where there are no fields in the laboratory frame of reference. The 4-potential should be transformed to the frame of reference of the particle before computing the fields. There is an E field in its frame of reference. The field accelerates a moving charged particle. One of the components of the acceleration vector is in the same direction as the particle's velocity in the first frame of reference. The resulting longitudinal displacement in the path integral, when scaled in units of the de Broglie wavelength for the particle, is approximately the same as the phase of the Aharonov-Bohm solution for long paths. The scalar solution does not require transformation. It follows from the static Coulomb solution and the Newton equations.
Category: Quantum Physics

[57] viXra:1707.0343 [pdf] replaced on 2017-07-26 15:16:31

Modified QED (MQED) Predicts How to Demonstrate FTL Communication

Authors: Paul J. Werbos
Comments: 9 Pages. 9p, 25 references, 4 figures, 2 eqs. Minor typos fixed.

Canonical Copenhagen QED (KQED) predicts that substantive information cannot be communicated faster than light (FTL) or backwards in time. KQED is essentially just the combination of three assumptions used together to make predictions: (1) the assumption that the wave function ψ(t) evolves according to the time-symmetric system ∂tψ=iHψ where is H is the normal product form of the Maxwell-Dirac Hamiltonian; (2) the classical Copenhagen measurement formalism, including metaphysical observers and collapse of the wave function; (3) Fermi’s Golden Rule for spontaneous emission. MQED, published in 2015, replaces the measurement part with a new measurement formalism without observers based on what (1) actually predicts. MQED is not a local realistic theory, but (unlike KQED) it might be derived as a good statistical approximation to one. The 2015 paper proposed a decisive experiment to test which is right, KQED or MQED. This paper proposes a simpler if messier decisive experiment, to demonstrate FTL communication, more details of MQED and the possibility in principle of an underlying local realistic theory of physics.
Category: Quantum Physics

[56] viXra:1707.0333 [pdf] replaced on 2017-08-07 03:24:48

Mass Interaction Principle as a Common Origin of Special Relativity and Quantum Behaviours of Massive Particles

Authors: Chu-Jun Gu
Comments: 56 Pages.

The author believes there are spacetime particles(STP) which can sense all matter particles ubiquitously. Matter particles will change their states collided by STP . The underlying property of mass is a statistical property emerging from random impact in spacetime. We propose a mass interaction principle (MIP) which states any particle with mass m will involve a random motion without friction, due to random impacts from spacetime. Each impact changes the amount nh (n is any integer) for an action of the particle. Starting from the concept of statistical mass, we propose the fundamental MIP. We conclude that inertial mass has to be a statistical property, which measures the diffusion ability of all matter particles in spacetime. We prove all the essential results of special relativity come from MIP. Speed of light in the vacuum need no longer any special treatment. Instead, speed of STP has more fundamentally physical meaning, which represents the upper limit of information propagational speed in physics. Moreover, we derive the uncertainty relation asserting a fundamental limit to the precision regarding mass and diffusion coefficient. Within this context, wave-particle duality is a novel property emerging from random impact by STP. Further more, an interpretation of Heisenberg’s uncertainty principle is suggested, with a stochastic origin of Feynman’s path integral formalism. It is shown that we can construct a physical picture distinct from Copenhagen interpretation, and reinvestigate the nature of spacetime and reveal the origin of quantum behaviours from a realistic point of view.
Category: Quantum Physics

[55] viXra:1707.0330 [pdf] submitted on 2017-07-25 10:56:14

Quantum Electronics in Quantum Communications

Authors: Solomon Budnik
Comments: 19 Pages. NextGen electronics

We discuss the virtual model of a bosonic superconducting cosmic string (fig. 1) compared to our actual model of a quantum electronic system (fig. 2) that enables the creation of quantum generator for flexible (folded) quantum nano-computers, and space computer and TV displays in quantum telecom and cyberspace based on three fundamental laws of physical-chemical kinetics: (1) the law of entire equilibrium, (2) the law of the duality of elementary processes (or the equality of direct and reverse transition probabilities), and (3) the law of equal a priori probabilities. It is shown that said three laws follow from the law of the symmetry of time, and furthermore, that the first and third of these laws are both derivable from the second.
Category: Quantum Physics

[54] viXra:1707.0327 [pdf] submitted on 2017-07-25 11:37:49

Quantum Sensors in Diamond

Authors: George Rajna
Comments: 29 Pages.

Thanks to a new fabrication technique, quantum sensing abilities are now approaching this scale of precision. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11]
Category: Quantum Physics

[53] viXra:1707.0322 [pdf] submitted on 2017-07-25 07:30:59

True Local Realism: Bell's Dilemma Resolved, QM Demystified, Etc.

Authors: Gordon Watson
Comments: 18 Pages.

To be or not to be; that is the issue. Using (what we term) Bell's definition of true local realism — the union of true locality and true realism — we resolve Bell’s ‘action-at-a-distance’ dilemma in favor of true locality: ie, no influence propagates superluminally (after Einstein). As to Bell's realism, we prefer (what we duly term) true realism: ie, some beables change interactively (after Bell’s handy term for existents and Bohr's ‘disturbance' insight). Put simply: defining beables by properties and values, we allow interactions to yield new beables. (Thus, since observables are clearly beables, existing or not existing prior to an interaction, we reject the quantum/classical divide.) We then predict the probabilities of interaction outcomes by simply distinguishing between classes of beables. In this way, delivering results in full accord with quantum theory and experiment — in 3-space; and contra Bell — we also advance QM's reconstruction in spacetime with a new vector-product for geometric algebra. True local realism thus resolves Bell's dilemma, demystifies QM, etc.
Category: Quantum Physics

[52] viXra:1707.0321 [pdf] submitted on 2017-07-25 08:13:14

Surface Code Quantum Computing

Authors: George Rajna
Comments: 29 Pages.

The group, led by Dr Steve Chick and Professor of Physics Ben Murdin, has developed a way of making phosphorous atoms 'dance', which could be the next breakthrough in the quest to make quantum computers a viable reality. [19] For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10]
Category: Quantum Physics

[51] viXra:1707.0320 [pdf] submitted on 2017-07-25 05:23:30

Magnetic Quantum Superconductors

Authors: George Rajna
Comments: 34 Pages.

Magnetic quantum objects in superconductors, so-called "fluxons," are particularly suitable for the storage and processing of data bits. [38] Researchers have made the first direct visual observation and measurement of ultra-fast vortex dynamics in superconductors. [37] By gently prodding a swirling cloud of supercooled lithium atoms with a pair of lasers, and observing the atoms' response, researchers at Swinburne have developed a new way to probe the properties of quantum materials. [36] The nickel-bismuth (Ni-Bi) sample studied here is the first example of a 2-D material where this type of superconductivity is intrinsic, meaning that it happens without the help of external agents, such as a nearby superconductor. [35] collaborated to design, build and test two devices that utilize different superconducting materials and could make X-ray lasers more powerful, versatile, compact and durable. [34] A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity. [33] An international team led by scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University has detected new features in the electronic behavior of a copper oxide material that may help explain why it becomes a perfect electrical conductor – a superconductor – at relatively high temperatures. [32] An artistic representation of the data showing the breaking of spatial inversion and rotational symmetries in the pseudogap region of superconducting materials-evidence that the pseudogap is a distinct phase of matter. [31] Superconductivity is a state in a material in which there is no resistance to electric current and all magnetic fields are expelled. This behavior arises from a so-called "macroscopic quantum state" where all the electrons in a material act in concert to move cooperatively through the material without energy loss. [30]
Category: Quantum Physics

[50] viXra:1707.0319 [pdf] submitted on 2017-07-25 05:58:47

High-Temperature Superconductivity

Authors: George Rajna
Comments: 35 Pages.

Researchers at North Carolina State University have significantly increased the temperature at which carbon-based materials act as superconductors, using a novel, boron-doped Q-carbon material. [39] Magnetic quantum objects in superconductors, so-called "fluxons," are particularly suitable for the storage and processing of data bits. [38] Researchers have made the first direct visual observation and measurement of ultra-fast vortex dynamics in superconductors. [37] By gently prodding a swirling cloud of supercooled lithium atoms with a pair of lasers, and observing the atoms' response, researchers at Swinburne have developed a new way to probe the properties of quantum materials. [36] The nickel-bismuth (Ni-Bi) sample studied here is the first example of a 2-D material where this type of superconductivity is intrinsic, meaning that it happens without the help of external agents, such as a nearby superconductor. [35] Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory have collaborated to design, build and test two devices that utilize different superconducting materials and could make X-ray lasers more powerful, versatile, compact and durable. [34] A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity. [33]
Category: Quantum Physics

[49] viXra:1707.0304 [pdf] submitted on 2017-07-24 09:20:25

Building Blocks of Quantum Computing

Authors: George Rajna
Comments: 28 Pages.

For decades scientists have known that a quantum computer—a device that stores and manipulates information in quantum objects such as atoms or photons—could theoretically perform certain calculations far faster than today's computing schemes. [18] Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10] Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature.
Category: Quantum Physics

[48] viXra:1707.0286 [pdf] submitted on 2017-07-21 08:10:26

Gravitational Anomaly on Earth

Authors: George Rajna
Comments: 17 Pages.

Now however, a new type of materials, the so-called Weyl semimetals, similar to 3-D graphene, allow us to put the symmetry destructing quantum anomaly to work in everyday phenomena, such as the creation of electric current. [10] Physicist Professor Chunnong Zhao and his recent PhD students Haixing Miao and Yiqiu Ma are members of an international team that has created a particularly exciting new design for gravitational wave detectors. [9] A proposal for a gravitational-wave detector made of two space-based atomic clocks has been unveiled by physicists in the US. [8] The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. [7] A team of researchers with the University of Lisbon has created simulations that indicate that the gravitational waves detected by researchers with the LIGO project, and which are believed to have come about due to two black holes colliding, could just have easily come from another object such as a gravaster (objects which are believed to have their insides made of dark energy) or even a wormhole. In their paper published in Physical Review Letters, the team describes the simulations they created, what was seen and what they are hoping to find in the future. [6] In a landmark discovery for physics and astronomy, international scientists said Thursday they have glimpsed the first direct evidence of gravitational waves, or ripples in space-time, which Albert Einstein predicted a century ago. [5] Scientists at the National Institute for Space Research in Brazil say an undiscovered type of matter could be found in neutron stars (illustration shown). Here matter is so dense that it could be 'squashed' into strange matter. This would create an entire 'strange star'-unlike anything we have seen. [4] The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the electromagnetic inertia, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[47] viXra:1707.0280 [pdf] submitted on 2017-07-21 05:43:57

Vortex Photons

Authors: George Rajna
Comments: 41 Pages.

Researchers at IMS and their coworkers have shown theoretically and experimentally that a high energy electron in circular/spiral motion radiates vortex photons from the radio wavelength to gamma rays. [30] Brown University researchers have developed a new method of manipulating the polarization of light at terahertz frequencies. [29] In a recent publication, Aalto University researchers show that in a transparent medium each photon is accompanied by an atomic mass density wave. [28] New research has made it possible for the first time to compare the spatial structures and positions of two distant objects, which may be very far away from each other, just by using a simple thermal light source, much like a star in the sky. [27] In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. [26] At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21]
Category: Quantum Physics

[46] viXra:1707.0278 [pdf] submitted on 2017-07-20 13:45:12

Evidence for the Majorana Fermion

Authors: George Rajna
Comments: 27 Pages.

Now a team including Stanford scientists says it has found the first firm evidence of such a Majorana fermion. [19] Majorana fermions are particles that could potentially be used as information units for a quantum computer. [18] According to current estimates, dozens of zettabytes of information will be stored electronically by 2020, which will rely on physical principles that facilitate the use of single atoms or molecules as basic memory cells. [17] EPFL scientists have developed a new perovskite material with unique properties that can be used to build next-generation hard drives. [16] Scientists have fabricated a superlattice of single-atom magnets on graphene with a density of 115 terabits per square inch, suggesting that the configuration could lead to next-generation storage media. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[45] viXra:1707.0277 [pdf] submitted on 2017-07-21 01:33:42

Manipulate Nanomagnets and Store Information

Authors: George Rajna
Comments: 27 Pages.

Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. [17] Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10] Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[44] viXra:1707.0273 [pdf] submitted on 2017-07-20 08:52:50

Quantum World and Local Realism

Authors: George Rajna
Comments: 21 Pages.

Physicists have reported some of the strongest evidence yet that that the quantum world does not obey local realism by demonstrating new evidence for the existence of quantum entanglement. [12] Mathematicians at the Universities of York, Munich and Cardiff have identified a unique property of quantum mechanical particles – they can move in the opposite way to the direction in which they are being pushed. [11] For the first time, physicists have experimentally demonstrated the violation of "bilocal causality"—a concept that is related to the more standard local causality, except that it accounts for the precise way in which physical systems are initially generated. The results show that it's possible to violate local causality in an entirely new and more general way, which could lead to a potential new resource for quantum technologies. [10] The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. [9] For the past 100 years, physicists have been studying the weird features of quantum physics, and now they're trying to put these features to good use. One prominent example is that quantum superposition (also known as quantum coherence)—which is the property that allows an object to be in two states at the same time—has been identified as a useful resource for quantum communication technologies. [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[43] viXra:1707.0267 [pdf] submitted on 2017-07-20 03:54:52

Polarization of Terahertz Radiation

Authors: George Rajna
Comments: 40 Pages.

Brown University researchers have developed a new method of manipulating the polarization of light at terahertz frequencies. [29] In a recent publication, Aalto University researchers show that in a transparent medium each photon is accompanied by an atomic mass density wave. [28] New research has made it possible for the first time to compare the spatial structures and positions of two distant objects, which may be very far away from each other, just by using a simple thermal light source, much like a star in the sky. [27] In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. [26] At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21] Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20]
Category: Quantum Physics

[42] viXra:1707.0263 [pdf] submitted on 2017-07-20 05:38:08

Chaos in Ultracold Reactions

Authors: George Rajna
Comments: 49 Pages.

Researchers have performed the first ever quantum-mechanical simulation of the benchmark ultracold chemical reaction between potassium-rubidium (KRb) and a potassium atom, opening the door to new controlled chemistry experiments and quantum control of chemical reactions that could spark advances in quantum computing and sensing technologies. [26] An international team led by the University of Chicago's Institute for Molecular Engineering has discovered how to manipulate a weird quantum interface between light and matter in silicon carbide along wavelengths used in telecommunications. [25] The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). [24] One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. [23] Based on early research involving the storage of movies and documents in DNA, Microsoft is developing an apparatus that uses biology to replace tape drives, researchers at the company say. [22] Our brains are often compared to computers, but in truth, the billions of cells in our bodies may be a better analogy. The squishy sacks of goop may seem a far cry from rigid chips and bundled wires, but cells are experts at taking inputs, running them through a complicated series of logic gates and producing the desired programmed output. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20] Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18]
Category: Quantum Physics

[41] viXra:1707.0261 [pdf] submitted on 2017-07-20 06:49:38

Moving Vortices in Superconductors

Authors: George Rajna
Comments: 32 Pages.

Researchers have made the first direct visual observation and measurement of ultra-fast vortex dynamics in superconductors. [37] By gently prodding a swirling cloud of supercooled lithium atoms with a pair of lasers, and observing the atoms' response, researchers at Swinburne have developed a new way to probe the properties of quantum materials. [36] The nickel-bismuth (Ni-Bi) sample studied here is the first example of a 2-D material where this type of superconductivity is intrinsic, meaning that it happens without the help of external agents, such as a nearby superconductor. [35] collaborated to design, build and test two devices that utilize different superconducting materials and could make X-ray lasers more powerful, versatile, compact and durable. [34] A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity. [33] An international team led by scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University has detected new features in the electronic behavior of a copper oxide material that may help explain why it becomes a perfect electrical conductor – a superconductor – at relatively high temperatures. [32] An artistic representation of the data showing the breaking of spatial inversion and rotational symmetries in the pseudogap region of superconducting materials-evidence that the pseudogap is a distinct phase of matter. [31] Superconductivity is a state in a material in which there is no resistance to electric current and all magnetic fields are expelled. This behavior arises from a so-called "macroscopic quantum state" where all the electrons in a material act in concert to move cooperatively through the material without energy loss. [30] Harvard researchers found a way to transmit spin information through superconducting materials. [29]
Category: Quantum Physics

[40] viXra:1707.0251 [pdf] submitted on 2017-07-18 11:42:17

Spintronics Material for Quantum Computing

Authors: George Rajna
Comments: 25 Pages.

Scientists have recently created a new spintronics material called bismuthene, which has similar properties to that of graphene. [16] The expanding field of spintronics promises a new generation of devices by taking advantage of the spin degree of freedom of the electron in addition to its charge to create new functionalities not possible with conventional electronics. [15] An international team of researchers, working at the fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10] Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[39] viXra:1707.0245 [pdf] submitted on 2017-07-18 10:45:10

Quantum Particle Travels Backwards

Authors: George Rajna
Comments: 18 Pages.

Mathematicians at the Universities of York, Munich and Cardiff have identified a unique property of quantum mechanical particles – they can move in the opposite way to the direction in which they are being pushed. [11] For the first time, physicists have experimentally demonstrated the violation of "bilocal causality"—a concept that is related to the more standard local causality, except that it accounts for the precise way in which physical systems are initially generated. The results show that it's possible to violate local causality in an entirely new and more general way, which could lead to a potential new resource for quantum technologies. [10] The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. [9] For the past 100 years, physicists have been studying the weird features of quantum physics, and now they're trying to put these features to good use. One prominent example is that quantum superposition (also known as quantum coherence)—which is the property that allows an object to be in two states at the same time—has been identified as a useful resource for quantum communication technologies. [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[38] viXra:1707.0235 [pdf] submitted on 2017-07-17 12:43:41

Entanglement in a 2-D Quantum Material

Authors: George Rajna
Comments: 30 Pages.

Now, scientists from EPFL and the Paul Scherrer Institut (PSI) have realized experimentally a new quantum many body state in a material. [19] Researchers have devised an improved method for checking whether two particles are entangled. [18] A group of researchers from the Faculty of Physics at the University of Warsaw has shed new light on the famous paradox of Einstein, Podolsky and Rosen after 80 years. They created a multidimensional entangled state of a single photon and a trillion hot rubidium atoms, and stored this hybrid entanglement in the laboratory for several microseconds. [17] Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[37] viXra:1707.0229 [pdf] replaced on 2017-07-23 10:10:35

Entanglement

Authors: Peter V. Raktoe
Comments: 2 Pages.

Physicists claimed that a quantum process between photons was instantaneous, but the conclusion of an instantaneous entangled state was a fallacy. The physicists compared the time that they needed for their measurement to the time that was required for a quantum process, that quantum process was a change in the quantum state of entangled photon over a distance of 1.3 kilometers. They concluded that there wasn't enough time to complete that quantum process within the time period of their measurement, so they concluded that it was instantaneous. But they were wrong, those physicists didn't realize that there was another option.
Category: Quantum Physics

[36] viXra:1707.0212 [pdf] submitted on 2017-07-15 05:03:42

Quantum Dot Position Determination

Authors: George Rajna
Comments: 30 Pages.

Scientists from the Swiss Nanoscience Institute and the University of Basel have succeeded in coupling an extremely small quantum dot with 1,000 times larger trumpet-shaped nanowire. The movement of the nanowire can be detected with a sensitivity of 100 femtometers via the wavelength of the light emitted by the quantum dot. [18] The rapidly developing science and technology of graphene and atomically-thin materials has taken another step forward with new research from The University of Manchester. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11] Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10] Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9] Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[35] viXra:1707.0210 [pdf] submitted on 2017-07-15 08:31:23

Carbon Quantum Effects

Authors: George Rajna
Comments: 19 Pages.

Chemists at Ruhr-Universität Bochum have found evidence that carbon atoms cannot only behave like particles but also like waves. This quantum-mechanical property is well-known for light particles such as electrons or hydrogen atoms. [32] A team of scientists has used microwaves to unravel the exact structure of a tiny molecular motor. The nano-machine consists of just a single molecule, made up of 27 carbon and 20 hydrogen atoms (C27H20). [31] Skyrmions are swirling spin structures with spiral shapes described in 2009. They have attracted attention in academia as representing a possible basic unit of ultra-high-density next-generation memory devices due to their unique topological stability, small size, and efficient movement. [30] That could lead to new devices such as polariton transistors, Fei said. And that could one day lead to breakthroughs in photonic and quantum technologies. [29] The future of nano-electronics is here. A team of researchers from the Air Force Research Laboratory, Colorado School of Mines, and the Argonne National Laboratory in Illinois have developed a novel method for the synthesis of a composite material that has the potential of vastly improving the electronics used by the Air Force. [28] Physicists have theoretically shown that a superconducting current of electrons can be induced to flow by a new kind of transport mechanism: the potential flow of information. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[34] viXra:1707.0202 [pdf] submitted on 2017-07-14 10:58:21

Reflective Nanostructures

Authors: George Rajna
Comments: 30 Pages.

A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13]
Category: Quantum Physics

[33] viXra:1707.0201 [pdf] submitted on 2017-07-14 04:54:54

Laser-Cooled Ions Friction

Authors: George Rajna
Comments: 27 Pages.

Scientists from the QUEST Institute at the Physikalisch-Technische Bundesanstalt (PTB) have now presented a model system that allows the investigation of atomic-scale friction effects and friction dynamics that are similar to those taking place in proteins, DNA strands and other deformable nanocontacts. [18] New research could make lasers emitting a wide range of colors more accessible and open new applications from communications and sensing to displays. [17] A novel way to harness lasers and plasmas may give researchers new ways to explore outer space and to examine bugs, tumors and bones back on planet Earth. [16] A team of researchers at Harvard University has successfully cooled a three-atom molecule down to near absolute zero for the first time. [15] A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14] UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[32] viXra:1707.0192 [pdf] submitted on 2017-07-13 13:44:51

Control and Measure Electron Spin Voltage

Authors: George Rajna
Comments: 53 Pages.

Information technologies of the future will likely use electron spin—rather than electron charge—to carry information. But first, scientists need to better understand how to control spin and learn to build the spin equivalent of electronic components, from spin transistors, to spin gates and circuits. [28] In the quest to make computers faster and more efficient, researchers have been exploring the field of spintronics—shorthand for spin electronics—in hopes of controlling the natural spin of the electron to the benefit of electronic devices. [27] When two researchers from the Swiss Federal Institute of Technology (ETH Zurich) announced in April that they had successfully simulated a 45-qubit quantum circuit, the science community took notice: it was the largest ever simulation of a quantum computer, and another step closer to simulating "quantum supremacy"—the point at which quantum computers become more powerful than ordinary computers. [26] Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing. [25] The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). [24] One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. [23] Based on early research involving the storage of movies and documents in DNA, Microsoft is developing an apparatus that uses biology to replace tape drives, researchers at the company say. [22] Our brains are often compared to computers, but in truth, the billions of cells in our bodies may be a better analogy. The squishy sacks of goop may seem a far cry from rigid chips and bundled wires, but cells are experts at taking inputs, running them through a complicated series of logic gates and producing the desired programmed output. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20]
Category: Quantum Physics

[31] viXra:1707.0191 [pdf] submitted on 2017-07-13 07:28:41

Smart Atomic Cloud

Authors: George Rajna
Comments: 31 Pages.

Scientists at the University of Copenhagen have developed a hands-on answer to a challenge linked to Heisenberg's Uncertainty Principle. [18] ICFO Researchers report the discovery of a new technique that could drastically improve the sensitivity of instruments such as magnetic resonance imagers (MRIs) and atomic clocks. [17] Research groups at Aalto University and the University of Jyväskylä have demonstrated a new microwave measurement method that goes to the quantum limit of measurement and beats it. [16] New method allows for quick, precise measurement of quantum states. [15] The fact that it is possible to retrieve this lost information reveals new insight into the fundamental nature of quantum measurements, mainly by supporting the idea that quantum measurements contain both quantum and classical components. [14] Researchers blur the line between classical and quantum physics by connecting chaos and entanglement. [13] Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information. [12] Using lasers to make data storage faster than ever. [11] Some three-dimensional materials can exhibit exotic properties that only exist in "lower" dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, electrons can separate into three distinct entities, each carrying information about just one aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries information about electron spin, has been known to control magnetism in certain insulating materials whose electron spins can point in any direction and easily flip direction. Now, a new study just published in Science reveals that spinons are also present in a metallic material in which the orbital movement of electrons around the atomic nucleus is the driving force behind the material's strong magnetism. [10] Currently studying entanglement in condensed matter systems is of great interest. This interest stems from the fact that some behaviors of such systems can only be explained with the aid of entanglement. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[30] viXra:1707.0187 [pdf] submitted on 2017-07-13 09:07:27

Atomic Cousins Team Up

Authors: George Rajna
Comments: 49 Pages.

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn't stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes. [26] Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing. [25] The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). [24] One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. [23] Based on early research involving the storage of movies and documents in DNA, Microsoft is developing an apparatus that uses biology to replace tape drives, researchers at the company say. [22] Our brains are often compared to computers, but in truth, the billions of cells in our bodies may be a better analogy. The squishy sacks of goop may seem a far cry from rigid chips and bundled wires, but cells are experts at taking inputs, running them through a complicated series of logic gates and producing the desired programmed output. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20] Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18]
Category: Quantum Physics

[29] viXra:1707.0184 [pdf] submitted on 2017-07-13 06:44:47

Quantum Cooling Process

Authors: George Rajna
Comments: 26 Pages.

New research at the U of A is helping physicists better understand optomechanical cooling, a process that is expected to find applications in quantum technology. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11] Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10] Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9] Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[28] viXra:1707.0173 [pdf] replaced on 2017-07-30 01:01:21

Quantum Inverse Measurement Theory Contributing to the Birth of Interpretation System of Quantum Mechanics of Local-Realism and Determinism

Authors: Runsheng Tu
Comments: 61 Pages.

The existing interpretation of quantum mechanics is contrary to common sense. The existing quantum mechanical interpretation schemes are puzzling. The confusing theory is unconvincing, and need to be amended and completed. The successful interpretation program of quantum mechanics of local-realism and determinism is undoubtedly the most attractive. Preparing the interpretation program deserves to be chosen as a research goal. It is a very good premise to believe that an object particle consist of light-knot of monochromatic waves. According to this premise, the erroneous recognition about "superposition principle, wave-particle duality and uncertainty principle" can be corrected. Under this premise, above research goal is achieved by establishing, applying quantum mechanics inverse measurement theory, adhering to the principle that there must be a complete empirical chain in the derivation process of experimental conclusion, and using the side effect caused by accompanying-light to explain the diffraction experiment of object particles. Electron secondarily diffraction and other experiments directly prove that there is the measurement (observation) which may not destroy quantum coherence. The diffraction experiments of all kinds of particles show that the Keeping and playing of the coherence of moving particles in the vacuum have nothing to do with their previous experience. These are the existing experiments, to be found, that support the theory of quantum inverse measurements. The verification experiment of quantum inverse measurement is designed. The absolute superiorities of quantum inverse measurement and the new view of measurement of quantum mechanics are listed.These superiorities are: that it has the characteristics of local-realism and determinism; it is not contrary to common sense and there is no confusing place; it can predict several phenomena that cannot be predicted by other theories. A solid theoretical foundation has been laid for “correctly understanding the microscopic world” and establishment of local realism quantum mechanics.
Category: Quantum Physics

[27] viXra:1707.0171 [pdf] submitted on 2017-07-12 08:29:36

Molecules Breathe

Authors: George Rajna
Comments: 18 Pages.

Molecules Breathe Laser light excited an electron in the central iron atom (red). The electron transferred to one of the attached bipyridine structures, and then returned to the iron atom 100 femtoseconds later. [31] Skyrmions are swirling spin structures with spiral shapes described in 2009. They have attracted attention in academia as representing a possible basic unit of ultra-high-density next-generation memory devices due to their unique topological stability, small size, and efficient movement. [30] That could lead to new devices such as polariton transistors, Fei said. And that could one day lead to breakthroughs in photonic and quantum technologies. [29] The future of nano-electronics is here. A team of researchers from the Air Force Research Laboratory, Colorado School of Mines, and the Argonne National Laboratory in Illinois have developed a novel method for the synthesis of a composite material that has the potential of vastly improving the electronics used by the Air Force. [28] Physicists have theoretically shown that a superconducting current of electrons can be induced to flow by a new kind of transport mechanism: the potential flow of information. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[26] viXra:1707.0169 [pdf] submitted on 2017-07-11 16:45:28

The Particle Model for the Higgs’ Condensate and the Anomalous Geometrical Diffraction

Authors: Jiri Soucek
Comments: 19 Pages.

In this paper we propose a particle model for the Higgs’ condensate: we propose that this condensate is the set of (infinite velocity) non-local tachyons. We show that then there exists the anomalous geometrical diffraction (which contradicts to quantum mechanics). We show that there exists a universal time constant which defines the limits of the validity of quantum mechanics. We propose an experiment testing the existence of the anomalous geometrical diffraction. We proposed the dark energy conjecture which enables to make an estimate of the time constant. We assume certain (“Feynman”) interaction between standard particle and the non-local tachyon. All this is related to the new (finite) form of the Feynman integral.
Category: Quantum Physics

[25] viXra:1707.0162 [pdf] submitted on 2017-07-11 12:04:39

What Went Wrong with the “interpretation” of Quantum Theory?

Authors: Robert H. McEachern
Comments: 41 Pages.

This slideshow is a preliminary account of how the misinterpretation of quantum theory originated.
Category: Quantum Physics

[24] viXra:1707.0157 [pdf] submitted on 2017-07-11 07:52:28

Earth-to-Space Quantum Entanglement

Authors: George Rajna
Comments: 33 Pages.

Two teams of researchers in China have advanced the distance that entangled particles can be used to send information, including encryption keys. [20] Scientists at the University of York's Centre for Quantum Technology have made an important breakthrough in the theory of quantum secure communications. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11]
Category: Quantum Physics

[23] viXra:1707.0156 [pdf] submitted on 2017-07-11 08:12:37

Space Quantum Communication

Authors: George Rajna
Comments: 37 Pages.

NICT developed the world's smallest and lightest quantum communication transmitter (SOTA) onboard the microsatellite SOCRATES. [21] Two teams of researchers in China have advanced the distance that entangled particles can be used to send information, including encryption keys. [20] Scientists at the University of York's Centre for Quantum Technology have made an important breakthrough in the theory of quantum secure communications. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13]
Category: Quantum Physics

[22] viXra:1707.0151 [pdf] submitted on 2017-07-10 13:29:52

Second Quantization of the Square-Root Klein-Gordon Operator, Microscopic Causality, Propagators, and Interactions

Authors: John R. Smith
Comments: 60 Pages.

The square-root Klein-Gordon operator, √m^2 − ∇^2 , is a non-local operator with a natural scale inversely proportional to the mass (the Compton wavelength). The fact that there is a natural scale in the operator as well as the fact that the single particle theory for the Coulomb potential, V (r) = −Ze2/r, yields a different eigenvalue spectrum from either the Dirac Hamiltonian or the Klein-Gordon Hamiltonian indicates that this operator is truly distinct from either of the other two Hamiltonians (all three single-particle Hamiltonians have eigenspectra for the 1s states that converge at small atomic numbers, Z → 0, but diverge from each other at large Z). We see no fundamental reason to exclude negative energy states from a “square-root” propagation law and we find several possible Hamiltonians associated with √m2 − ∇2 which include both positive and negative energy plane wave states. Depending on the specific Hamiltonian, it is possible to satisfy the equations of motion with commutators or anticommutators. However, for the scalar case considered, only the Hamiltonian that requires commutation rules has a stable vacuum. We investigate microscopic causality for the commutator of the Hamiltonian density. Also we find that despite the non-local dependence of the energy density on the field operators, the commutators of the physical observables vanish for space-like separations. This result extends the application of Pauli’s1 result to the non-local case. Pauli explicitly excluded √m2 − ∇2 because this op- erator acts non-locally in the coordinate space. We investigate the problems with applying minimal coupling to the square-root equation and why this method of interactions is inconsistent with the exponential shift property of the square-root operator and the demand for gauge-invariance. The Mandelstam representation offers the possibility of avoiding the difficulties inherent in minimal coupling (Lorentz invariance and gauge-invariance). We also compute the propagators for the scat- tering problem and investigate the solutions of the square-root equation in the Aharonov-Bohm problem.
Category: Quantum Physics

[21] viXra:1707.0140 [pdf] submitted on 2017-07-10 09:01:10

Maxwell's Demon in Quantum Measurement

Authors: George Rajna
Comments: 26 Pages.

Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11] Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10] Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9] Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[20] viXra:1707.0137 [pdf] submitted on 2017-07-10 05:41:54

An Interpretation of Quantum Mechanics

Authors: Tejas A. Chaudhari
Comments: 8 Pages. Email id:- tejastalk@gmail.com

This paper gives interpretation of Quantum Mechanics (QM) by redefining the theory using 3 new postulates. The first of these postulates specifies the underlying structure that every massive fundamental particle must possess. The mass-Energy equivalence and wave nature of matter emerge as a direct consequence. The second postulate describes the quantum state of particles. Wave function, its conjugate, Born interpretation and the Energy-momentum operators can be derived from these two postulates. The third postulate describes the effect of measurement and interaction on the wave function. The equations of QM starting from Schrödinger’s equation are described. The phenomenon of Quantum entanglement and Schrödinger’s cat thought experiment are described under this interpretation. Finally, the origin of spin resulting from the first postulate is discussed.
Category: Quantum Physics

[19] viXra:1707.0121 [pdf] submitted on 2017-07-09 05:49:29

Dynamics of Statistical Fermionic and Boson-Fermionic Quantum System in Terms of Occupation Numbers

Authors: I. V. Drozdov, B. Drozdov
Comments: 17 Pages.

The ergodic second-order approach of entropy gradient maximization, applied on the problem of a quantum bosonic system, does not provide dynamic equations for pure fermionic system. The first-order dynamic equation results for a system of bosonic and fermionic \dofs interacting by a conservation of a common sum of quantum occupation numbers.
Category: Quantum Physics

[18] viXra:1707.0117 [pdf] submitted on 2017-07-08 08:00:43

Majorana Highway

Authors: George Rajna
Comments: 14 Pages.

A collaboration of researchers has now combined novel nanowires with a high-quality interface to other required materials on a chip. This allows for bullet-like collisionless quantum transport of charges through the nanowires: a requirement for larger-scale Majorana-based experiment. [9] On a more fundamental level, the GeTe compound used in this study shows that the electric and magnetic polarization are exactly antiparallel, unlike the few other known multiferroic materials. Exactly this property forms the basis for the formation of Majorana particles to be used in quantum computers. [8] Researchers in the University of Tokyo have demonstrated that it is possible to exchange a quantum bit, the minimum unit of information used by quantum computers, between a superconducting quantum-bit circuit and a quantum in a magnet called a magnon. This result is expected to contribute to the development of quantum interfaces and quantum repeaters. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[17] viXra:1707.0116 [pdf] replaced on 2017-07-13 13:14:05

Unique Relativistic Extension of the Pauli Hamiltonian

Authors: Steven Kenneth Kauffmann
Comments: 11 Pages.

Relativistic extension of the Pauli Hamiltonian is ostensibly achieved by minimal coupling of electromagnetism to the free-particle Dirac Hamiltonian. But the free-particle Pauli Hamiltonian is pathology-free in its nonrelativistic domain, while the free-particle Dirac Hamiltonian yields completely fixed particle speed which is greater than c, spin orbit torque whose ratio to kinetic energy tends to infinity in the zero-momentum limit, and mega-violation of Newton's First Law in that limit. Furthermore, relativistic extension of the Pauli Hamiltonian is unique in principle because inertial frame hopping can keep the particle nonrelativistic. That extension is indeed readily achieved by upgrading the terms of the Pauli Hamiltonian's corresponding action to appropriate Lorentz invariants. The resulting relativistic Lagrangian yields a canonical momentum that can't be analytically inverted in general, but a physically-sensible successive-approximation scheme applies. For hydrogen and simpler systems approximation isn't needed, and the result, which includes spin-orbit coupling, is as transparently physically sensible as the relativistic Lorentz Hamiltonian is, a far cry from the Dirac Hamiltonian pathologies.
Category: Quantum Physics

[16] viXra:1707.0111 [pdf] submitted on 2017-07-07 08:34:01

Manipulate Silicon Qubits

Authors: George Rajna
Comments: 56 Pages.

Jiang and his team created a way to measure and control the energy differences of electron valley states in silicon quantum dots, which are a key component of quantum computing research. [29] Now, researchers at Stanford University and MIT have built a new chip to overcome this hurdle. [28] In the quest to make computers faster and more efficient, researchers have been exploring the field of spintronics—shorthand for spin electronics—in hopes of controlling the natural spin of the electron to the benefit of electronic devices. [27] When two researchers from the Swiss Federal Institute of Technology (ETH Zurich) announced in April that they had successfully simulated a 45-qubit quantum circuit, the science community took notice: it was the largest ever simulation of a quantum computer, and another step closer to simulating "quantum supremacy"—the point at which quantum computers become more powerful than ordinary computers. [26] Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing. [25] The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). [24] One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. [23] Based on early research involving the storage of movies and documents in DNA, Microsoft is developing an apparatus that uses biology to replace tape drives, researchers at the company say. [22] Our brains are often compared to computers, but in truth, the billions of cells in our bodies may be a better analogy. The squishy sacks of goop may seem a far cry from rigid chips and bundled wires, but cells are experts at taking inputs, running them through a complicated series of logic gates and producing the desired programmed output. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20]
Category: Quantum Physics

[15] viXra:1707.0108 [pdf] submitted on 2017-07-07 11:09:27

Nanoscale Motion Sends Light

Authors: George Rajna
Comments: 24 Pages.

AMOLF researchers have developed nanoscale strings whose motion can be converted to light signals with unprecedented strength. [16] Twisted PCFs show some amazing features, from circular birefringence to conservation of the angular momentum. [15] Photonics applications rely greatly on what physicists call nonlinear optics - the different way in which materials behave depending on the intensity of light that passes through them. The greater the nonlinearity, the more promising the material for real-life applications. Now a team, led by Robert W. Boyd, Professor of Optics and Physics at the University of Rochester and the Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa, has demonstrated that the transparent, electrical conductor indium tin oxide can result in up to 100 times greater nonlinearity than other known materials. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[14] viXra:1707.0103 [pdf] submitted on 2017-07-06 20:04:58

Second Quantization of the Square-Root Klein-Gordon Operator

Authors: John R. Smith
Comments: 58 Pages.

The square-root Klein-Gordon operator,√(m^2− ∇^2), is a non-local operator with a natural scale inversely proportional to the mass (the Compton wavelength). There is no fundamental reason to exclude negative energy states from a “square-root” propagation law. We find several possible Hamiltonians associated with √(m^2− ∇^2) which include both positive and negative energy plane wave states. It is possible to satisfy the equations of motion with commutators or anticommutators. For the scalar case, only the canonical commutation rules yield a stable vacuum. We investigate microscopic causality for the commutator of the Hamiltonian density. We find that despite the non-local dependence of the energy density on the field operators, the commutators of the physical observables vanish for space-like separations. Hence, Pauli’s result can be extended to the non-local case. Pauli explicitly excluded √(m^2− ∇^2) because this operator acts non-locally in the coordinate space. The Mandelstam representation offers the possibility of avoiding the difficulties inherent in minimal coupling (Lorentz invariance and gauge invariance). We also compute the propagators for the scattering problem and investigate thesolutions of the square-root equation in the Aharonov-Bohm problem.
Category: Quantum Physics

[13] viXra:1707.0093 [pdf] submitted on 2017-07-06 10:51:15

Schrodinger’s Register: Foundational Issues and Physical Realization

Authors: Stephen Pink, Stanley Martens
Comments: 4 Pages. In the Proceedings of the Future Computer Conference, Rome, Italy, 2011

This work-in-progress paper consists of four points which relate to the foundations and physical realization of quantum computing. The first point is that the qubit cannot be taken as the basic unit for quantum computing, because not every superposition of bit-strings of length n can be factored into a string of n-qubits. The second point is that the “No-cloning” theorem does not apply to the copying of one quantum register into another register, because the mathematical representation of this copying is the identity operator, which is manifestly linear. The third point is that quantum parallelism is not destroyed only by environmental decoherence. There are two other forms of decoherence, which we call measurement decoherence and internal decoherence, that can also destroy quantum parallelism. The fourth point is that processing the contents of a quantum register “one qubit at a time” destroys entanglement.
Category: Quantum Physics

[12] viXra:1707.0089 [pdf] submitted on 2017-07-05 13:20:12

Retrocausal Quantum Theory

Authors: George Rajna
Comments: 28 Pages.

However, recently some physicists have been looking into this idea, called "retrocausality," because it can potentially resolve some long-standing puzzles in quantum physics. [15] The likelihood of seeing quantum systems violating the second law of thermodynamics has been calculated by UCL scientists. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11] Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10] Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9] Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[11] viXra:1707.0068 [pdf] submitted on 2017-07-05 10:01:56

The Spin Switched Off

Authors: George Rajna
Comments: 26 Pages.

The experiment setup consists of a heterostructure of graphene and molybdenum disulphide; a spintronic device. [16] DESY scientist Lars Bocklage has discovered a new way of producing ultrafast spin currents. [15] An international team of researchers, working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics." [14] The emerging field of spintronics aims to exploit the spin of the electron. [13] In a new study, researchers measure the spin properties of electronic states produced in singlet fission – a process which could have a central role in the future development of solar cells. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10] Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[10] viXra:1707.0062 [pdf] submitted on 2017-07-05 06:43:11

Quantum Sensors Brain Imaging

Authors: George Rajna
Comments: 41 Pages.

Scientists in Greece have devised a new form of biometric identification that relies on humans' ability to see flashes of light containing just a handful of photons. [22] A research team led by Professor CheolGi Kim has developed a biosensor platform using magnetic patterns resembling a spider web with detection capability 20 times faster than existing biosensors. [21] Researchers at Columbia University have made a significant step toward breaking the so-called "color barrier" of light microscopy for biological systems, allowing for much more comprehensive, system-wide labeling and imaging of a greater number of biomolecules in living cells and tissues than is currently attainable. [20] Scientists around the Nobel laureate Stefan Hell at the Max Planck Institute for Biophysical Chemistry in Göttingen have now achieved what was for a long time considered impossible – they have developed a new fluorescence microscope, called MINFLUX, allowing, for the first time, to optically separate molecules, which are only nanometers (one millionth of a millimeter) apart from each other. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15]
Category: Quantum Physics

[9] viXra:1707.0060 [pdf] submitted on 2017-07-04 13:10:40

New Spin on Computer Technology

Authors: George Rajna
Comments: 51 Pages.

In the quest to make computers faster and more efficient, researchers have been exploring the field of spintronics—shorthand for spin electronics—in hopes of controlling the natural spin of the electron to the benefit of electronic devices. [27] When two researchers from the Swiss Federal Institute of Technology (ETH Zurich) announced in April that they had successfully simulated a 45-qubit quantum circuit, the science community took notice: it was the largest ever simulation of a quantum computer, and another step closer to simulating "quantum supremacy"—the point at which quantum computers become more powerful than ordinary computers. [26] Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing. [25] The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). [24] One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. [23] Based on early research involving the storage of movies and documents in DNA, Microsoft is developing an apparatus that uses biology to replace tape drives, researchers at the company say. [22] Our brains are often compared to computers, but in truth, the billions of cells in our bodies may be a better analogy. The squishy sacks of goop may seem a far cry from rigid chips and bundled wires, but cells are experts at taking inputs, running them through a complicated series of logic gates and producing the desired programmed output. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20] Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18] Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage. [17] Researchers at the University of Connecticut have uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs. [16] For the past 15 years, the big data techniques pioneered by NASA's Jet Propulsion Laboratory in Pasadena, California, have been revolutionizing biomedical research. On Sept. 6, 2016, JPL and the National Cancer Institute (NCI), part of the National Institutes of Health, renewed a research partnership through 2021, extending the development of data science that originated in space exploration and is now supporting new cancer discoveries. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14]
Category: Quantum Physics

[8] viXra:1707.0047 [pdf] submitted on 2017-07-04 11:39:20

Breakthrough Quantum Benchmark

Authors: George Rajna
Comments: 30 Pages.

By gently prodding a swirling cloud of supercooled lithium atoms with a pair of lasers, and observing the atoms' response, researchers at Swinburne have developed a new way to probe the properties of quantum materials. [36] The nickel-bismuth (Ni-Bi) sample studied here is the first example of a 2-D material where this type of superconductivity is intrinsic, meaning that it happens without the help of external agents, such as a nearby superconductor. [35]
Category: Quantum Physics

[7] viXra:1707.0045 [pdf] submitted on 2017-07-04 05:49:46

The Wheeler-Feynman Interpretation of the Delayed-Choice Experiment and its Consequences for Quantum Computation

Authors: Stephen Pink, Stanley Martens
Comments: 8 Pages.

In this paper, we shall describe the delayed-choice experiment first proposed by Wheeler and then analyze the experiment based on both our interpretation of what is happening and the Wheeler/Feynman interpretation. Our interpretation includes wave-function collapse due to a measurement, while the Wheeler/Feynman interpretation attempts to avoid wave-function collapse in a measurement, as part of their explanation, to preserve consistent unitarity. in quantum processes. We will also show that there are severe consequences for quantum computing if there is no wave function collapse due to a measurement.
Category: Quantum Physics

[6] viXra:1707.0042 [pdf] submitted on 2017-07-03 07:59:50

Individual Atomic Collisions

Authors: George Rajna
Comments: 25 Pages.

Now, physicists in Kaiserslautern and Erlangen have succeeded in observing the fundamental steps of diffusion by individual atoms in a gas and have provided a theoretical description of this mechanism. [18] Van der Waals interactions between molecules are among the most important forces in biology, physics, and chemistry, as they determine the properties and physical behavior of many materials. [17] Physicists at the Swiss Nanoscience Institute and the University of Basel have succeeded in measuring the very weak van der Waals forces between individual atoms for the first time. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[5] viXra:1707.0041 [pdf] submitted on 2017-07-03 08:24:06

45-Qubit Quantum Computing

Authors: George Rajna
Comments: 50 Pages.

When two researchers from the Swiss Federal Institute of Technology (ETH Zurich) announced in April that they had successfully simulated a 45-qubit quantum circuit, the science community took notice: it was the largest ever simulation of a quantum computer, and another step closer to simulating "quantum supremacy"—the point at which quantum computers become more powerful than ordinary computers. [26] Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing. [25] The central idea of TQC is to encode qubits into states of topological phases of matter (see Collection on Topological Phases). [24] One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. [23] Based on early research involving the storage of movies and documents in DNA, Microsoft is developing an apparatus that uses biology to replace tape drives, researchers at the company say. [22] Our brains are often compared to computers, but in truth, the billions of cells in our bodies may be a better analogy. The squishy sacks of goop may seem a far cry from rigid chips and bundled wires, but cells are experts at taking inputs, running them through a complicated series of logic gates and producing the desired programmed output. [21] At Caltech, a group of researchers led by Assistant Professor of Bioengineering Lulu Qian is working to create circuits using not the usual silicon transistors but strands of DNA. [20] Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18]
Category: Quantum Physics

[4] viXra:1707.0038 [pdf] submitted on 2017-07-03 04:37:19

Quantum Detection of Nuclear Spins

Authors: George Rajna
Comments: 26 Pages.

Researchers at the University of Melbourne have demonstrated a way to detect nuclear spins in molecules non-invasively, providing a new tool for biotechnology and materials science. [16] Precision measurement on heavy ions contradicts theory of interaction between atomic nucleus and electron. [15] For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. [14] International team solves mystery of colloidal chains. [13] An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons-thought to be indivisible building blocks of nature-to break into pieces. [12] In a single particle system, the behavior of the particle is well understood by solving the Schrödinger equation. Here the particle possesses wave nature characterized by the de Broglie wave length. In a many particle system, on the other hand, the particles interact each other in a quantum mechanical way and behave as if they are "liquid". This is called quantum liquid whose properties are very different from that of the single particle case. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[3] viXra:1707.0019 [pdf] submitted on 2017-07-02 06:00:23

Laser Illuminates the Subatomic Realm

Authors: George Rajna
Comments: 42 Pages.

The brightest light ever created by humans has revealed that at high enough intensities the interactions between light and subatomic particles change drastically. [30] A new theory proposes that faster-than-light particles known as tachyons could answer a lot of questions about the universe, writes Robyn Arianrhod. [29] In a recent publication, Aalto University researchers show that in a transparent medium each photon is accompanied by an atomic mass density wave. [28] New research has made it possible for the first time to compare the spatial structures and positions of two distant objects, which may be very far away from each other, just by using a simple thermal light source, much like a star in the sky. [27] In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. [26] At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21]
Category: Quantum Physics

[2] viXra:1707.0018 [pdf] submitted on 2017-07-02 06:30:15

Quantum Cryptography Based on the Deutsch-Jozsa Algorithm

Authors: Koji Nagata, Tadao Nakamura, Ahmed Farouk
Comments: 10 Pages. International Journal of Theoretical Physics, (2017), DOI: 10.1007/s10773-017-3456-x

Recently, secure quantum key distribution based on Deutsch's algorithm using the Bell state is reported \cite{NN2}. Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present secure quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Originally, Bob has promised to use a function $f$ which is of one of the two kinds; either the value of $f(x)$ is constant for all $x$, or the value of $f(x)$ is balanced, that is, it is equal to $1$ for exactly half of all the possible $x$, and $0$ for the other half. Here, Bob uses a special function when it is not constant. We may say the value of $f(x)$ is special. Our quantum key distribution overcomes a classical counterpart by a factor $O(2^N)$.
Category: Quantum Physics

[1] viXra:1707.0007 [pdf] submitted on 2017-07-01 08:27:45

Transparency with a Magnetic Field

Authors: George Rajna
Comments: 29 Pages.

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. [17] Now in a new paper published in Physical Review Letters, mathematical physicist Paul Sutcliffe at Durham University in the UK has theoretically shown that nanoparticles called magnetic skyrmions can be tied into various types of knots with different magnetic properties. [16] A new study by researchers at the U.S. Department of Energy's Argonne National Laboratory determined that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball getting deflected by air. [15] Researchers at Aalto University and Lawrence Berkeley National Laboratory have demonstrated that polaron formation also occurs in a system of magnetic charges, and not just in a system of electric charges. Being able to control the transport properties of such charges could enable new devices based on magnetic rather than electric charges, for example computer memories. [14] The electronic energy states allowed by quantum mechanics determine whether a solid is an insulator or whether it conducts electric current as a metal. Researchers at ETH have now theoretically predicted a novel material whose energy states exhibit a hitherto unknown peculiarity. [13] Quantum magnetism, in which – unlike magnetism in macroscopic-scale materials, where electron spin orientation is random – atomic spins self-organize into one-dimensional rows that can be simulated using cold atoms trapped along a physical structure that guides optical spectrum electromagnetic waves known as a photonic crystal waveguide. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10]
Category: Quantum Physics