Quantum Physics

1810 Submissions

[69] viXra:1810.0516 [pdf] submitted on 2018-10-31 13:57:18

Interactive Quantum Matter

Authors: George Rajna
Comments: 43 Pages.

JILA researchers have, for the first time, isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. [25] University of Adelaide researchers have delved into the realm of Star Wars and created a powerful tractor beam – or light-driven energy trap – for atoms. [24] The Purcell effect also has another advantage: It shortens the time it takes the rubidium atom to store and release the quantum information. [23] Monika Aidelsburger uses a special type of optical lattice to simulate quantum many-body phenomena that are otherwise inaccessible to experimental exploration. [22] University of Illinois Professor Harry Hilton brought together several mathematical and physical theories to help look at problems in more unified ways and solve physical engineering problems. [21] A team of physicists from RUDN, JINR (Dubna), and the University of Hamburg (Germany) developed a mathematical model for describing physical processes in hybrid systems that consists of atoms and ions cooled down to temperatures close to absolute zero. [20] Recently, extensive study shows that the parity-time symmetry breaking in open systems leads to exceptional points, promising for novel applications leasers and sensing. [19] A recent discovery by William & Mary and University of Michigan researchers transforms our understanding of one of the most important laws of modern physics. [18] Now, a team of physicists from The University of Queensland and the NÉEL Institute has shown that, as far as quantum physics is concerned, the chicken and the egg can both come first. [17]
Category: Quantum Physics

[68] viXra:1810.0513 [pdf] submitted on 2018-10-30 07:33:44

Qubit State Represented by Pendulum Oscillations

Authors: Masataka Ohta
Comments: 4 Pages.

As qubit can be a polarization division multiplexed (PDM) quadrature amplitude modulated (QAM) symbol of light, its state has direct correspondence with polarization state of classical light. Even more intuitively, the state may be represented by pendulum oscillations.
Category: Quantum Physics

[67] viXra:1810.0512 [pdf] submitted on 2018-10-30 07:43:43

Quantum Beats Classical Computer

Authors: George Rajna
Comments: 74 Pages.

As multiple research groups around the world race to build a scalable quantum computer, questions remain about how the achievement of quantum supremacy will be verified. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37]
Category: Quantum Physics

[66] viXra:1810.0509 [pdf] submitted on 2018-10-30 10:24:59

Electron Microscope Revealed

Authors: George Rajna
Comments: 73 Pages.

The chips that drive everyday electronic gadgets such as personal computers and smartphones are made in semiconductor fabrication plants. These plants employ powerful transmission electron microscopes. [37] Researchers from Würzburg and London have succeeded in controlling the coupling of light and matter at room temperature. [36] Researchers have, for the first time, integrated two technologies widely used in applications such as optical communications, bio-imaging and Light Detection and Ranging (LIDAR) systems that scan the surroundings of self-driving cars and trucks. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[65] viXra:1810.0508 [pdf] submitted on 2018-10-30 11:05:20

Trapping Atoms

Authors: George Rajna
Comments: 41 Pages.

University of Adelaide researchers have delved into the realm of Star Wars and created a powerful tractor beam – or light-driven energy trap – for atoms. [24] The Purcell effect also has another advantage: It shortens the time it takes the rubidium atom to store and release the quantum information. [23] Monika Aidelsburger uses a special type of optical lattice to simulate quantum many-body phenomena that are otherwise inaccessible to experimental exploration. [22] University of Illinois Professor Harry Hilton brought together several mathematical and physical theories to help look at problems in more unified ways and solve physical engineering problems. [21] A team of physicists from RUDN, JINR (Dubna), and the University of Hamburg (Germany) developed a mathematical model for describing physical processes in hybrid systems that consists of atoms and ions cooled down to temperatures close to absolute zero. [20] Recently, extensive study shows that the parity-time symmetry breaking in open systems leads to exceptional points, promising for novel applications leasers and sensing. [19] A recent discovery by William & Mary and University of Michigan researchers transforms our understanding of one of the most important laws of modern physics. [18] Now, a team of physicists from The University of Queensland and the NÉEL Institute has shown that, as far as quantum physics is concerned, the chicken and the egg can both come first. [17] In 1993, physicist Lucien Hardy proposed an experiment showing that there is a small probability (around 6-9%) of observing a particle and its antiparticle interacting with each other without annihilating—something that is impossible in classical physics. [16]
Category: Quantum Physics

[64] viXra:1810.0504 [pdf] submitted on 2018-10-30 15:21:40

On Bell's Theorem

Authors: Jorma Jormakka
Comments: 5 Pages.

Bell's Theorem implies that quantum correlation of entangled particles as calculated in quantum mechanics violates elementary probabilistic inequalities. It is shown that the reason is a problem in scaling of detector directions.
Category: Quantum Physics

[63] viXra:1810.0503 [pdf] submitted on 2018-10-30 15:23:17

A Hidden Variable Solution to the EPR Paradox

Authors: Jorma Jormakka
Comments: 6 Pages.

The hidden variable solution to the EPR paradox proposes that correlation of measurements of entangled particles is due to variables that get decided when the entangled particles get created. It is shown that the correlation of spin measurements in Bell's form of the EPR paradox can be explained as deriving from spin of the entangled particles in the x-direction. This spin parameter is not hidden as it is included in the standard quantum mechanical formulation.
Category: Quantum Physics

[62] viXra:1810.0484 [pdf] submitted on 2018-10-29 22:36:02

Observation Noise

Authors: Masataka Ohta
Comments: 3 Pages.

When a qubit interacts with environment, it may, instead of lose coherence, be observed. As is well known in quantum cryptography, such observation destroys entangled state causing noise, in this letter, called “observation noise”. As quantum error correction fundamentally depends on entangled states, the observation noise makes error correction impossible. As such, quantum computation with practically large quantum parallelism is impossible. Classical computers are better than quantum ones.
Category: Quantum Physics

[61] viXra:1810.0483 [pdf] submitted on 2018-10-30 06:21:12

Integrated Quantum Chip Operations

Authors: George Rajna
Comments: 72 Pages.

Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35]
Category: Quantum Physics

[60] viXra:1810.0473 [pdf] submitted on 2018-10-28 13:05:56

The Theories of the Graviton, Part 2: The Quantum Framework of the Particle's Nature and Mechanics

Authors: Aaron Bain, Noah MacKay, Didier Rojas
Comments: 14 Pages.

Gravitons are the quanta of gravity that, if proven to exist, would potentially connect quantum mechanics with gravitation. The second part of the Graviton Theory entity focuses on the quantum side of the graviton’s mechanics and nature (which were first proposed in the classical framework in Part One). They will be explained in depth, as to how gravitons act as quantum particles, and how they can act as both strings in Sting Theory and as loops in Loop Quantum Gravity. This analysis is to propose how gravitons behave, not only in our set of four-dimensional spacetime, but also in higher dimensional sets of spacetime.
Category: Quantum Physics

[59] viXra:1810.0469 [pdf] submitted on 2018-10-28 17:31:22

“The Photon Double-Helicoidal Model” the Key to Solving the Problems of Modern Physics

Authors: Oreste Caroppo
Comments: 58 Pages.

"What is the structure of the photon?" is the question that has allowed us to arrive at this elegant model capable, in compliance with the laws of physics, to explain all the properties of the photon giving them physical consistency. The photon remains neutral but emerges as constituted by two sub-particles, forming an electric dipole, rototranslating, with the overall mass-energy of the photon divided equally between them, thus describing a double-helix trajectory. This allows to explain the double nature of electromagnetic radiation and of corpuscle of the photon: the frequency and the wavelength of the electromagnetic radiation emerge as connected to the characteristics of the rototranslating motion of the photon; a cross section is attributed to the photon trasversal to its propagation direction with a diameter proportional to its wavelength; the spin of the photon emerges from the model exactly; dynamic equilibrium of the photon gives the linear relation that binds energy and frequency in a photon, as we discover the physical meaning of the Planck Constant related to the electrical polarization properties of the vacuum and its inertia to the polarization; the velocity of light in the vacuum is understood to be that velocity at which vacuum "appears transparent", does not polarize, with respect to the charges of the electric photon dipole. This perfect model, of which the first results reported here were developed by the author in the early years of the 21st century, opened the way to the discovery of the baptized "Maxwell's Error" which shows how a physical-mathematical error kept away physicists, about 150 years ago, from the discovery of this fundamental structure of the photon, thus leading to today's problems of Modern Physics. For the great developments and in-depth analyzes established and permitted by this work visit the website at link: http://fiatlux.altervista.org/ See the most extensive abstract in English also at this link: http://fiatlux.altervista.org/-the-photon-double-helicoidal-model-the-key-to-solving-the-problems-of-modern-physics.html EXTENDED PRESENTATION Here we present the discovery of a theoretical structure of the photon capable of explaining all its multiple properties through an electric-magnetic-dynamic model; a symmetrical electric dipole structure, at the base, with the suggestive double-helical trajectory, with a helix angle of 45°, that emerges as a consequence of the basic physical laws of dynamics and of the electric and magnetic interaction between moving charges, (Coulomb force and Lorentz force). These are the results of a theoretical work developed by the author, Oreste Caroppo, in the early years of the 21st century and which were collected for the first time in this work. This surprising model characterized by a high elegance, simplicity and exorbitant explanatory skills, on the one hand has allowed to give a unitary explanation to the plurality of properties connoting the photon, on the other it has also opened the way for the better understanding and resolution of immense problems open and unresolved in Modern Physics. It has guided in the direction of a new revolutionary unification in Physics, passing through the discovery of the theoretical errors related to the conception of the nature of electromagnetic radiation, the "light"; errors which had been unconsciously absorbed, generating, over time, a theoretical propagation of the error that has come up to our days, which is now possible to retrace. We refer to what in later works will be baptized by the author the "Maxwell’s Error" or even "the great original sin of Modern Physics", a physical-mathematical error that, if understood, would have already allowed at the time of the discovery of Maxwell’s equations, about 150 years ago, and even more to the subsequent discovery of the quantization of the electric charge, to hypothesize a granular discrete nature of the electromagnetic radiation, and even already with a basic quantum which is the photon with the dipolar double-helicoidal structure as presented here in the model discovered. An error related to the correct physical and mathematical meaning of the zero setting of the charge density in the Maxwell’s Equations from which Maxwell arrived at the equations of the electromagnetic waves. The setting equal to 0 of the charge density in vacuum is no guarantee of the absence of charge in the empty space in which an electromagnetic wave is propagating, as believed and affirmed, thus concealing instead the compatibility of that null value with the presence in the electromagnetic radiation of electric dipoles as its constituents, whose algebraic sum of the total charge is always null, such as that dipole connoting the structure of the single independent photon studied in this work. The photon is therefore electrically neutral as theorized and ascertained empirically, but we find this to be true as a whole, but in its structural nature it has a dipolar charge distribution which now explains many of its properties, such as the link with the electric and magnetic field of electro-magnetic radiation to it physically intrinsically associated. The model shows how it is now physically possible to associate to the photon a cross section transversal to its propagation direction with a diameter proportional to its wavelength; the photon is therefore not a mono-point entity as up to now simplistically considered. In any case, all the classic properties of the point photon can be found in the center of mass of the photon described by the double-helicoidal model of the photon. We can now better understand the relationships between photon and Maxwell's equations which give a continuous approximate description of a reality whose true nature is at the base discontinuous. Various and numerous developments that start from this work the author has spread more widely on his website at the link: http://fiatlux.altervista.org/ New light is thus thrown from this work for the better understanding of the nature of matter and antimatter that find their basis in the basic symmetric structure of the photon composed according to this model of two sub-particles having the same mass-energy (each half of the total energy of the photon) and electric charge with the same module, (corresponding to the quantum of electric charge), but with opposite sign. Through this model we discover how the photon, on whose nature of "quantum" all Quantum Mechanics is based, is actually involved and the consequence of another more fundamental and basic quantification of Nature, that is the one of the electric charge and this allowing a theoretical simplification, in good agreement with the criterion of "Occam's razor", but also permitting a great unification in Physics between the results of the past and the twentieth-century discovery of the photon, which in the light of the model and of the theory here exposed, we now understand, does not represent more reason for a crisis in Physics, the one that led to Modern Physics in full conflict with Classical Physics, but the existence of the photon appears as the natural consequence and prediction of the basic physical laws and of the quantization of the electric charge. Through the double-helicoidal model of the photon the wavelength and the frequency of the electromagnetic radiation associated with the photon, and also emerging from the equations of the electromagnetic waves of Maxwell, now also assume a physical correlation with the rototraslative motion of the two charges of the dipole and therefore of the two sub-particles which, we discover, compose the photon. The linear relationship between the energy of a photon and its frequency now stands out wonderfully as a physical-mathematical consequence of the dynamic stability of the photon structure, and this finally allows a new understanding of the physical meaning of Planck constant, as well as of the fine-structure constant, which appear as physically linked to the electrical polarization properties of the vacuum and its inertia to this polarization, so much so that the same speed of light in vacuum, as physically-mathematically described by Maxwell's equations, we now understand better to be that velocity to which the vacuum, we can say, appears transparent, does not polarize itself, with respect to the electric charges of the photon dipole. A better understanding of the properties of the vacuum is therefore also allowed by the model. Thus, finally, we come to an understanding of why the value of Planck charge is so close to the value of the elementary electric charge, although in the expression of the Planck charge, obtained through fundamental physical constants, the Planck constant appears, but not the elementary electric charge. The model also leads, by adding the consideration of the gravitational interaction between the two sub-particles of the photon, to obtain all the Planck units and therefore also to better understand their physical meaning. Even finally the concepts of mass in relation to the photon, and not only, can be better understood in the light of the model, against the many ambiguities in which Modern Physics has occurred in the consideration of this very important concept. Even better now we can finally understand the meaning of the equivalence between mass and energy given by the famous equation of Einstein and Olinto de Pretto. In any case, the photon in the exposed model, whose center of mass behaves like a luminal particle, preserves in its entirety the same relativistic mass and the same total rest mass null as expected for the luminal particle photon in Special Relativity. This model also indicates the way to solve the problem of the wave-particle duality for the photon through a single structure capable of explaining both the corpuscular and the undulatory properties of light, together and at the same time, naturally and without any dogma. The double helicoidal model of the photon also leads to a better understanding of the nature of electric fields and magnetic fields indicating also the way to approach the problems opened by the EPR Paradox and Bell's inequalities, as well as indicating the road to overcoming the imposed dogmas with the so-called Copenhagen interpretation of quantum mechanics following an incomplete understanding of the nature of the light affected by the aforementioned errors. At the same time it also allows to deepen the error of having considered the electrical and magnetic interaction between electric charges based on the exchange of photons when instead, on the contrary, the existence of the photon is allowed by the same electric charges that we discover to be even its components. Treating the theme of light, of the speed of light, of the properties of vacuum, the open theory then leads in the direction of a critical re-reading of the theories of Relativity, as well as, as widely explained, it also inevitably leads, by treating the photon, to a critical re-reading of the developments in Quantum Physics. Nature is one and could not be fully described, as up to now in Modern Physics, by two theories, Quantum Mechanics and Relativity, with foundations conflicting between them: the Double-Helicoidal Model of the Photon, discovered thanks to the basic question "what is the structure of the photon that explains all its properties? ", was the long-awaited key for correction and reunification because the Physics could advance from the quagmire in which it had slipped because of small very simple but at the same time immense theoretical errors escaped attention. There are countless experimental results regarding the photon which find theoretical explanation through this photon model as well as experimental results on the question of the locality or non-locality of the electrical and magnetic interactions. I also refer, for the many details and developments on this subject, to my website, and to its paragraphs, to the link: http://fiatlux.altervista.org/ Oreste Caroppo
Category: Quantum Physics

[58] viXra:1810.0460 [pdf] submitted on 2018-10-27 09:59:33

Electron Quantized Impedance Network Calculations (From 2011-2012)

Authors: Peter Cameron
Comments: 19 Pages.

Mathcad calculation screensnaps of the quantized impedance network of the electron, pasted into powerpoint and saved as a pdf. For original mathcad file please contact the author.
Category: Quantum Physics

[57] viXra:1810.0449 [pdf] submitted on 2018-10-26 09:05:39

Quantum Bits Shielded

Authors: George Rajna
Comments: 69 Pages.

A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34]
Category: Quantum Physics

[56] viXra:1810.0448 [pdf] submitted on 2018-10-26 10:25:12

Superconducting Informatics

Authors: George Rajna
Comments: 25 Pages.

A NIMS-Ehime University joint research team succeeded in discovering new materials that exhibit superconductivity under high pressure using materials informatics (MI) approaches (data science-based material search techniques). [36] Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. [35] Scientists from Russia, China and the United States predicted and have now experimentally identified new uranium hydrides, predicting superconductivity for some of them. [34] Russian physicists from MIPT teamed up with foreign colleagues for a groundbreaking experimental study of a material that possesses both superconducting and ferromagnetic properties. [33] An international group of scientists, including a researcher from Skoltech, has completed an experimental and theoretical study into the properties displayed by strongly disordered superconductors at very low temperatures. [32] The researchers found that via quick-freeze technique, the metal changed into a superconducting state for over a week. [31] Scientists of the University of Twente and the University of Amsterdam now demonstrate a new property: the non-superconducting material bismuth shows lossless current conduction. [30] A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[55] viXra:1810.0439 [pdf] submitted on 2018-10-26 22:34:10

Topological Materials, Unnatural Fermions, the Higgs, and Geometry

Authors: Rodney Bartlett
Comments: 4 Pages.

The General Theory of Relativity (1) will be useful in this article dealing with an aspect of the quantum world. Specifically – the analogy of the theory’s curvature of space-time to a rubber sheet. A small body like the Earth is said to warp space-time only a little and create a dimple in the sheet. A larger body such as the Sun curves space-time much more and forms a deep valley in the rubber. And a black hole is often pictured as warping space-time so much that it tears a hole through the rubber fabric. Transferring the analogy to the quantum realm – the motion of electrons can be visualized as their gliding across hills and valleys of pure energy (gravitational energy). This is because Relativity says gravity is caused by the curvature of space-time. Therefore, gravity … gravitational energy … IS space-time. Materials that don’t conduct electricity (insulators) have deep valleys which electrons struggle to escape from. In 2004, U.S.A. physicist Charles Kane noticed something strange in his computer simulations of electrons flowing through different materials: an insulator whose quantum state had the equivalent of a hole. Kane had not found the first quantum black hole but had discovered the first topological insulator – a then theoretical material that could conduct electricity on its surface but not within its interior. (In 2007, American physicist M. Zahid Hasan led the team that made the first 3D topological insulator.) About 90 years ago, while experimenting with the equations of quantum physics, German physicist Hermann Weyl showed that a massless and charged particle (now called the Weyl fermion) could theoretically exist. (2) In topological insulators, the hole in its quantum state causes electrons to come together and behave like a single particle called a Weyl fermion. The Weyl fermion can be related to Topological Insulators (TI), the Majorana fermion^ can be related to future quantum computers’ Topological Superconductors (TS), while topological insulators and topological superconductors may be regarded as the inverse of each other. This state of topological materials and “unnatural” fermions can be expressed by another phenomenon which I call vector-tensor-scalar geometry. ^ The Majorana fermion was predicted in 1937 by Italian physicist Ettore Majorana playing with the same quantum math that had intrigued Weyl. Like a Weyl fermion, a Majorana fermion has no mass. It also has no charge, despite being made of a bunch of negatively charged electrons. (3)
Category: Quantum Physics

[54] viXra:1810.0437 [pdf] replaced on 2018-11-01 05:02:05

Maximum Velocity for Matter in Relation to the Schwarzschild Radius Predicts Zero Time Dilation for Quasars

Authors: Espen Gaarder Haug
Comments: 5 Pages.

This is a short note on a new way to describe Haug’s newly introduced maximum velocity for matter in relation to the Schwarzschild radius. This leads to a probabilistic Schwarzschild radius for elementary particles with mass smaller than the Planck mass. In addition, our maximum velocity, when linked to the Schwarzschild radius, seems to predict that particles just at that radius cannot move. This implies that radiation from the Schwarzschild radius not can undergo velocity time dilation. Our maximum velocity of matter, therefore, seems to predict no time dilation, even in high Z quasars, as has surprisingly been observed recently.
Category: Quantum Physics

[53] viXra:1810.0417 [pdf] submitted on 2018-10-24 07:37:13

Quantum Soccer

Authors: George Rajna
Comments: 40 Pages.

The Purcell effect also has another advantage: It shortens the time it takes the rubidium atom to store and release the quantum information. [23] Monika Aidelsburger uses a special type of optical lattice to simulate quantum many-body phenomena that are otherwise inaccessible to experimental exploration. [22] University of Illinois Professor Harry Hilton brought together several mathematical and physical theories to help look at problems in more unified ways and solve physical engineering problems. [21] A team of physicists from RUDN, JINR (Dubna), and the University of Hamburg (Germany) developed a mathematical model for describing physical processes in hybrid systems that consists of atoms and ions cooled down to temperatures close to absolute zero. [20] Recently, extensive study shows that the parity-time symmetry breaking in open systems leads to exceptional points, promising for novel applications leasers and sensing. [19] A recent discovery by William & Mary and University of Michigan researchers transforms our understanding of one of the most important laws of modern physics. [18] Now, a team of physicists from The University of Queensland and the NÉEL Institute has shown that, as far as quantum physics is concerned, the chicken and the egg can both come first. [17] In 1993, physicist Lucien Hardy proposed an experiment showing that there is a small probability (around 6-9%) of observing a particle and its antiparticle interacting with each other without annihilating—something that is impossible in classical physics. [16] Scientists at the University of Geneva (UNIGE), Switzerland, recently reengineered their data processing, demonstrating that 16 million atoms were entangled in a one-centimetre crystal. [15]
Category: Quantum Physics

[52] viXra:1810.0411 [pdf] submitted on 2018-10-24 10:22:05

Random Transistor Laser

Authors: George Rajna
Comments: 69 Pages.

Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33]
Category: Quantum Physics

[51] viXra:1810.0410 [pdf] submitted on 2018-10-24 11:18:23

On the Physical Nature of the Hong-ou-Mandel Effect

Authors: V.A. Kuz`menko
Comments: 3 Pages.

It is noted that widely known Hong-Ou-Mandel (HOM) effect is one of numerous manifestations of fundamental property of quantum physics – its time reversal noninvariance.
Category: Quantum Physics

[50] viXra:1810.0402 [pdf] submitted on 2018-10-25 03:04:44

Unhackable Quantum Network

Authors: George Rajna
Comments: 68 Pages.

As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33]
Category: Quantum Physics

[49] viXra:1810.0401 [pdf] submitted on 2018-10-25 03:09:46

Experimental Detection in Matter of the Quantum Electromagnetic Field

Authors: V.Vikulin, V. Korniienko
Comments: 8 Pages. In Russian

It is shown that any matter has the quantum electromagnetic field (QEF) which existence follows from STR Einstein. Therefore elastic deformation of matter causes indignation of her QEF in a wave mode of quantum electromagnetic energies (S-radiation). This property of matter causes that generators of power plants together with electric current develop quantum currents. On networks they come to the equipment which will transform them to high-frequency quantum fields which pollutes the environment. It makes changes to parameters of energies of elementary particles of matter of which the human body consists that has negative effect on health. Therefore it is offered to limit on the basis of standards emission of S-radiations from the world equipment.
Category: Quantum Physics

[48] viXra:1810.0392 [pdf] submitted on 2018-10-23 06:45:55

Chip-Based Spectrometry

Authors: George Rajna
Comments: 53 Pages.

A new advance by researchers at MIT could make it possible to produce tiny spectrometers that are just as accurate and powerful but could be mass produced using standard chip-making processes. [32] Scientists from the Department of Energy's SLAC National Accelerator Laboratory and the Massachusetts Institute of Technology have demonstrated a surprisingly simple way of flipping a material from one state into another, and then back again, with single flashes of laser light. [31] Materials scientists at Duke University computationally predicted the electrical and optical properties of semiconductors made from extended organic molecules sandwiched by inorganic structures. [30] KU Leuven researchers from the Roeffaers Lab and the Hofkens Group have now put forward a very promising direct X-ray detector design, based on a rapidly emerging halide perovskite semiconductor, with chemical formula Cs2AgBiBr6. [29] Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have proven that incoming light causes the electrons in warm perovskites to rotate, thus influencing the direction of the flow of electrical current. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23]
Category: Quantum Physics

[47] viXra:1810.0382 [pdf] replaced on 2018-11-28 14:54:08

The Generation of Gamma Ray Bursts by the Intermodulation of Static Magnetic Fields

Authors: Michael Harney
Comments: 9 Pages.

It is shown that by introducing two static magnetic fields into the same iron core which drives the core into its saturation region, that the non-linear response of the core inter-modulates the magnetic fields and produces gamma rays. This is consistent with the Wave Structure of Matter model which shows that a static magnetic field is a free-space wave with a Compton wavelength equal to that of the electron. The intermodulation of these free-space waves produces sum and difference products, generating gamma rays in the energy range that is measurable by a common Geiger counter.
Category: Quantum Physics

[46] viXra:1810.0378 [pdf] submitted on 2018-10-24 04:55:14

Cosmological Redshift

Authors: Kadir Aydogdu
Comments: 8 Pages.

Based on observations, it is clear that universe expands faster than the speed of light. Traveling photons for distances more than several mega parsecs become redshifted, so that photon loses some of its energy. To explain this event, we will try to create a logic in which photons have quasi-expansion-potential to carry the wave by redshift process. We will start with studying the energy density functions and modeling the vacuum as a standing wave. Later on, we will be studying about the functions of distribution of photons produced from the black body box to compare the energy densities of vacuum and photons with the logic of heat transfer as radiation. After we have shown all the cases about black body radiation, we will try to build up a conserved function dependent to the energy density of vacuum that results Planck’s distribution. We will see that there is an expansion energy that carries the thermodynamic energy. Contrary to popular belief, this new energy has no relation with the heat or thermodynamic energy but it only gives a motion to it. We will see a logarithmic energy that forces photons to move at the speed of light. This quasi-potential must be responsible for the cosmological redshift of light because it forces photon to move at the speed of light as it changes its medium.
Category: Quantum Physics

[45] viXra:1810.0373 [pdf] submitted on 2018-10-22 09:36:02

Quantum World Bridge

Authors: George Rajna
Comments: 38 Pages.

Monika Aidelsburger uses a special type of optical lattice to simulate quantum many-body phenomena that are otherwise inaccessible to experimental exploration. [22] University of Illinois Professor Harry Hilton brought together several mathematical and physical theories to help look at problems in more unified ways and solve physical engineering problems. [21] A team of physicists from RUDN, JINR (Dubna), and the University of Hamburg (Germany) developed a mathematical model for describing physical processes in hybrid systems that consists of atoms and ions cooled down to temperatures close to absolute zero. [20] Recently, extensive study shows that the parity-time symmetry breaking in open systems leads to exceptional points, promising for novel applications leasers and sensing. [19] A recent discovery by William & Mary and University of Michigan researchers transforms our understanding of one of the most important laws of modern physics. [18] Now, a team of physicists from The University of Queensland and the NÉEL Institute has shown that, as far as quantum physics is concerned, the chicken and the egg can both come first. [17] In 1993, physicist Lucien Hardy proposed an experiment showing that there is a small probability (around 6-9%) of observing a particle and its antiparticle interacting with each other without annihilating—something that is impossible in classical physics. [16] Scientists at the University of Geneva (UNIGE), Switzerland, recently reengineered their data processing, demonstrating that 16 million atoms were entangled in a one-centimetre crystal. [15] The fact that it is possible to retrieve this lost information reveals new insight into the fundamental nature of quantum measurements, mainly by supporting the idea that quantum measurements contain both quantum and classical components. [14]
Category: Quantum Physics

[44] viXra:1810.0370 [pdf] submitted on 2018-10-22 11:48:52

Denial of the Manipulation of Quaternions in Bivalent Logic

Authors: Colin James III
Comments: 1 Page. © Copyright 2018 by Colin James III All rights reserved. Respond to the author by email at: info@ersatz-systems dot com.

Quaternions do not map onto bivalent logic, and because of that cannot be manipulated by rules of classical logic "out of convenience".
Category: Quantum Physics

[43] viXra:1810.0355 [pdf] submitted on 2018-10-21 07:13:19

Toward Quantum Internet

Authors: George Rajna
Comments: 64 Pages.

Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31]
Category: Quantum Physics

[42] viXra:1810.0349 [pdf] replaced on 2018-10-23 06:00:17

A Generalized Klein Gordon Equation with a Closed System Condition for the Dirac-Current Probability Tensor

Authors: E. P. J. de Haas
Comments: 42 Pages. Improved Lorentz transformation of the Dirac spinors.

By taking spin away from particles and putting it in the metric, thus following Dirac's vision, I start my attempt to formulate an alternative math-phys language, biquaternion based and incorporating Clifford algebra. At the Pauli level of two by two matrix representation of biquaternion space, a dual base is applied, a space-time and a spin-norm base. The chosen space-time base comprises what Synge called the minquats and in the same spirit I call their spin-norm dual the pauliquats. Relativistic mechanics, electrodynamics and quantum mechanics are analyzed using this approach, with a generalized Poynting theorem as the most interesting result. Then moving onward to the Dirac level, the M{\"o}bius doubling of the minquat/pauliquat basis allows me to formulate a generalization of the Dirac current into a Dirac probability/field tensor with connected closed system condition. This closed system condition includes the Dirac current continuity equation as its time-like part. A generalized Klein Gordon equation that includes this Dirac current probability tensor is formulated and analyzed. The usual Dirac current based Lagrangians of relativistic quantum mechanics are generalized using this Dirac probability/field tensor. The Lorentz transformation properties the generalized equation and Lagrangian is analyzed.
Category: Quantum Physics

[41] viXra:1810.0339 [pdf] replaced on 2018-10-30 17:30:36

Euler’s Wavefunction: the Double Life of 1

Authors: Jean Louis Van Belle
Comments: 13 Pages.

This paper is the 5th in a series of explorations to see if a simple physical interpretation of the quantum-mechanical wavefunction could possibly make sense. It challenges two of the usual objections to such interpretation: 1. The superposition of wavefunctions is done in the complex space and, hence, the assumption of a real-valued envelope for the wavefunction is, therefore, not acceptable. 2. The wavefunction for spin-1/2 particles cannot represent any real object because of its 720-degree symmetry in space. Real objects have the same spatial symmetry as space itself, which is 360 degrees. Hence, physical interpretations of the wavefunction are nonsensical. The heuristic arguments in this paper will, hopefully, convince the reader these objections are subject to interpretation themselves. If anything, the ideas presented in this paper might contribute to a better didactic model for teaching quantum mechanics.
Category: Quantum Physics

[40] viXra:1810.0337 [pdf] submitted on 2018-10-20 07:15:12

Optical Centrifuge Superrotors

Authors: George Rajna
Comments: 42 Pages.

Using corkscrew-shaped laser pulses, scientists at DESY have devised a sophisticated optical centrifuge that can make molecules rotate rapidly about a desired molecular axis. [30] Neutron diffraction strain scanning measurements at ANSTO have validated a new theoretical model that successfully predicts the residual stresses and critical deposition heights for laser additive manufacturing. [29] Tensorial neutron tomography promises new insights into superconductors, battery electrodes and other energy-related materials. [28] CERN's nuclear physics facility, ISOLDE, has minted a new coin in its impressive collection of isotopes. [27] In the case of several light nuclei, experimental confirmation of the individualism or family nature of nucleons will now be simpler, thanks to predictions presented by Polish physicists from Cracow and Kielce. [26] The identification of the magic number of six provides an avenue to investigate the origin of spin–orbit splittings in atomic nuclei. [25] Now, physicists are working toward getting their first CT scans of the inner workings of the nucleus. [24] The process of the sticking together of quarks, called hadronisation, is still poorly understood. [23] In experimental campaigns using the OMEGA EP laser at (MIT) researchers took radiographs of the shock front, similar to the X-ray radiology in hospitals with protons instead of X-rays. [22] Researchers generate proton beams using a combination of nanoparticles and laser light. [21] Devices based on light, rather than electrons, could revolutionize the speed and security of our future computers. However, one of the major challenges in today's physics is the design of photonic devices, able to transport and switch light through circuits in a stable way. [20] Researchers characterize the rotational jiggling of an optically levitated nanoparticle, showing how this motion could be cooled to its quantum ground state. [19]
Category: Quantum Physics

[39] viXra:1810.0301 [pdf] submitted on 2018-10-20 04:39:59

Ultracold Trapped Atoms

Authors: George Rajna
Comments: 53 Pages.

Now NIST scientists have designed a vacuum gauge that is small enough to deploy in commonly used vacuum chambers. [35] A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman's vision of building tiny machines from the atom up. [34] One of the most enduring "Holy Grail" experiments in science has been attempts to directly observe atomic motions during structural changes. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24]
Category: Quantum Physics

[38] viXra:1810.0294 [pdf] submitted on 2018-10-18 10:09:44

Limit on Electric Dipole Moment

Authors: George Rajna
Comments: 37 Pages.

The most precise measurement yet of the electron's electric dipole moment (EDM) casts doubt on " split supersymmetry " and some other theories of physics beyond the Standard Model of particle physics. [21] In a new study, researchers at Northwestern, Harvard and Yale universities examined the shape of an electron's charge with unprecedented precision to confirm that it is perfectly spherical. [20] Recently, extensive study shows that the parity-time symmetry breaking in open systems leads to exceptional points, promising for novel applications leasers and sensing. [19] A recent discovery by William & Mary and University of Michigan researchers transforms our understanding of one of the most important laws of modern physics. [18] Now, a team of physicists from The University of Queensland and the NÉEL Institute has shown that, as far as quantum physics is concerned, the chicken and the egg can both come first. [17] In 1993, physicist Lucien Hardy proposed an experiment showing that there is a small probability (around 6-9%) of observing a particle and its antiparticle interacting with each other without annihilating—something that is impossible in classical physics. [16] Scientists at the University of Geneva (UNIGE), Switzerland, recently reengineered their data processing, demonstrating that 16 million atoms were entangled in a one-centimetre crystal. [15] The fact that it is possible to retrieve this lost information reveals new insight into the fundamental nature of quantum measurements, mainly by supporting the idea that quantum measurements contain both quantum and classical components. [14] Researchers blur the line between classical and quantum physics by connecting chaos and entanglement. [13] Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information. [12]
Category: Quantum Physics

[37] viXra:1810.0287 [pdf] submitted on 2018-10-19 03:56:04

High-Temperature Single-Molecule Magnet

Authors: George Rajna
Comments: 51 Pages.

A team of scientists led by Professor Richard Layfield at the University of Sussex has published breakthrough research in molecule-based magnetic information storage materials. [34] Just like their biological counterparts, hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse, with some connections strengthening at the expense of others. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24]
Category: Quantum Physics

[36] viXra:1810.0286 [pdf] submitted on 2018-10-19 04:14:42

Tiny Magnet Within a Single Atom

Authors: George Rajna
Comments: 52 Pages.

In an international collaboration with IBM Research, the University of Oxford and the International Iberian Nanotechnology Laboratory, QNS scientists used advanced and novel techniques to measure the nuclear spin of individual atoms on surfaces for the first time. [35] A team of scientists led by Professor Richard Layfield at the University of Sussex has published breakthrough research in molecule-based magnetic information storage materials. [34] Just like their biological counterparts, hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse, with some connections strengthening at the expense of others. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25]
Category: Quantum Physics

[35] viXra:1810.0285 [pdf] submitted on 2018-10-19 05:07:44

Extra Cold Superconducting

Authors: George Rajna
Comments: 23 Pages.

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. [35] Scientists from Russia, China and the United States predicted and have now experimentally identified new uranium hydrides, predicting superconductivity for some of them. [34] Russian physicists from MIPT teamed up with foreign colleagues for a groundbreaking experimental study of a material that possesses both superconducting and ferromagnetic properties. [33] An international group of scientists, including a researcher from Skoltech, has completed an experimental and theoretical study into the properties displayed by strongly disordered superconductors at very low temperatures. [32] The researchers found that via quick-freeze technique, the metal changed into a superconducting state for over a week. [31] Scientists of the University of Twente and the University of Amsterdam now demonstrate a new property: the non-superconducting material bismuth shows lossless current conduction. [30] A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[34] viXra:1810.0264 [pdf] submitted on 2018-10-16 07:26:33

Elliptically Polarized Light

Authors: George Rajna
Comments: 51 Pages.

Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects. [34] One of the most enduring "Holy Grail" experiments in science has been attempts to directly observe atomic motions during structural changes. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24] What is the relationship of consciousness to the neurological activity of the brain? Does the brain behave differently when a person is fully conscious, when they are asleep, or when they are undergoing an epileptic seizure? [23]
Category: Quantum Physics

[33] viXra:1810.0262 [pdf] submitted on 2018-10-16 08:00:20

Complete Micro-physics Unifying Copenhagen QM and EPR: Non-connected Space Embedding

Authors: Bowen Liu
Comments: 14 Pages.

We unexpectedly show that complete micro-physics unifying Copenhagen QM and EPR (that restores to micro-matter causality and locality) is possible. There are two ways to unify physics: the Standard Model approach is that mathematics first and experimental foundation second, the priority of matter evolution over anything; our approach is that experimental foundation first and mathematics second, the priority of space evolution over matter evolution. Our work gives a brand new approach in the field of unified physics. First, similar to Turing’s modeling of computation, we model the spatial process of quantum experiments; give the barest essentials of the space process (as a necessary condition for unified physics): the micro-to-current space process does not have the exchangeability of observers. Second, the revolutionary concepts produced by space process modeling forces us to introduce a new geometry model: non-connected space embedding. Namely, 3-dimensional micro-space is embedded in the 3-dimensional current space in a non-connected way, and the embedding produces a mapping from microscopic space to current space and makes the complete microscopic form into an incomplete quantum form described in terms of state space. In this way, the unification of Copenhagen QM and EPR can be achieved. Space embedding, which has a more reliable experimental basis than the Standard Model, overturns the traditional space theory.
Category: Quantum Physics

[32] viXra:1810.0259 [pdf] submitted on 2018-10-16 12:33:12

Memristor on Atomic Scale

Authors: George Rajna
Comments: 49 Pages.

Just like their biological counterparts, hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse, with some connections strengthening at the expense of others. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24]
Category: Quantum Physics

[31] viXra:1810.0258 [pdf] submitted on 2018-10-16 13:06:58

Reservoir Neural Network Application

Authors: George Rajna
Comments: 51 Pages.

As artificial intelligence has become increasingly sophisticated, it has inspired renewed efforts to develop computers whose physical architecture mimics the human brain. [34] Just like their biological counterparts, hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse, with some connections strengthening at the expense of others. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24] What is the relationship of consciousness to the neurological activity of the brain? Does the brain behave differently when a person is fully conscious, when they are asleep, or when they are undergoing an epileptic seizure? [23]
Category: Quantum Physics

[30] viXra:1810.0257 [pdf] submitted on 2018-10-16 13:16:25

CMBR as Brownian Motion

Authors: David E. Fuller
Comments: 2 Pages.

Brownian Motion = Kinematic Planck Viscosity The Brownian Motion Relation is D= (R*T/(NA6πηa)) = (Kb*T) /(6πηa) Brownian Motion Related to Planck Density & Friedmann Density
Category: Quantum Physics

[29] viXra:1810.0252 [pdf] submitted on 2018-10-17 03:10:27

Dark Matter Quantum Technology

Authors: George Rajna
Comments: 21 Pages.

Fermilab scientists are harnessing quantum technology in the search for dark matter. [19] According to a new study, they could also potentially detect dark matter, if dark matter is composed of a particular kind of particle called a "dark photon." [18] A global team of scientists, including two University of Mississippi physicists, has found that the same instruments used in the historic discovery of gravitational waves caused by colliding black holes could help unlock the secrets of dark matter, a mysterious and as-yet-unobserved component of the universe. [17] The lack of so-called " dark photons " in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon's magnetic moment. [16] By reproducing the complexity of the cosmos through unprecedented simulations, a new study highlights the importance of the possible behaviour of very high-energy photons. In their journey through intergalactic magnetic fields, such photons could be transformed into axions and thus avoid being absorbed. [15] Scientists have detected a mysterious X-ray signal that could be caused by dark matter streaming out of our Sun's core. Hidden photons are predicted in some extensions of the Standard Model of particle physics, and unlike WIMPs they would interact electromagnetically with normal matter. In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the leading hypothetical particle physics candidates for dark matter. The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[28] viXra:1810.0251 [pdf] replaced on 2018-10-19 10:04:08

An Introduction to Generally Covariant Quantum Theory.

Authors: Johan Noldus
Comments: 11 Pages.

An eleven page introduction to some of my results over the last three years in an original jacket.
Category: Quantum Physics

[27] viXra:1810.0249 [pdf] submitted on 2018-10-17 04:19:11

Uranium Hydride Superconductors

Authors: George Rajna
Comments: 22 Pages.

Scientists from Russia, China and the United States predicted and have now experimentally identified new uranium hydrides, predicting superconductivity for some of them. [34] Russian physicists from MIPT teamed up with foreign colleagues for a groundbreaking experimental study of a material that possesses both superconducting and ferromagnetic properties. [33] An international group of scientists, including a researcher from Skoltech, has completed an experimental and theoretical study into the properties displayed by strongly disordered superconductors at very low temperatures. [32] The researchers found that via quick-freeze technique, the metal changed into a superconducting state for over a week. [31] Scientists of the University of Twente and the University of Amsterdam now demonstrate a new property: the non-superconducting material bismuth shows lossless current conduction. [30] A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[26] viXra:1810.0218 [pdf] replaced on 2018-11-07 14:41:32

Null-Cone Integral Formulation of Qed

Authors: Julian Brown
Comments: 2 Pages.

In these preliminary notes it is shown that the positive(negative) energy solutions of the Dirac equation also solve a specific integral equation over the past(future) null cone. It is shown that this integral equation yields the same scattering amplitudes as in the Feynman propagator picture, except for an intrinsic energy cutoff for emitted photons at $\omega_{max} = m_e$ due to the positive (negative) energy constraint imposed by the past(future) cone geometry. Fermionic self-energy is therefore finite and calculable.
Category: Quantum Physics

[25] viXra:1810.0206 [pdf] submitted on 2018-10-12 06:59:07

Physics Fudge Factors

Authors: George Rajna
Comments: 53 Pages.

Science is poised to take a "quantum leap" as more mysteries of how atoms behave and interact with each other are unlocked. [35] A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman's vision of building tiny machines from the atom up. [34] One of the most enduring "Holy Grail" experiments in science has been attempts to directly observe atomic motions during structural changes. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30]
Category: Quantum Physics

[24] viXra:1810.0203 [pdf] submitted on 2018-10-12 10:27:45

Ferromagnetic Superconductors

Authors: George Rajna
Comments: 21 Pages.

Russian physicists from MIPT teamed up with foreign colleagues for a groundbreaking experimental study of a material that possesses both superconducting and ferromagnetic properties. [33] An international group of scientists, including a researcher from Skoltech, has completed an experimental and theoretical study into the properties displayed by strongly disordered superconductors at very low temperatures. [32] The researchers found that via quick-freeze technique, the metal changed into a superconducting state for over a week. [31] Scientists of the University of Twente and the University of Amsterdam now demonstrate a new property: the non-superconducting material bismuth shows lossless current conduction. [30] A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[23] viXra:1810.0199 [pdf] submitted on 2018-10-12 15:23:41

A Generalized Klein Gordon Equation with a Closed System Condition for the Dirac-Current Probability/field Tensor

Authors: E.P.J. de Haas
Comments: 70 Pages.

I begin with a short historical analysis of the problem of the electron from Lorentz to Dirac. It is my opinion that this problem has been quasi frozen in time because it has always been formulated within the paradigm of the Minkowski-Laue consensus, the relativistic version of the Maxwell-Lorentz theory. By taking spin away from particles and putting it in the metric, thus following Dirac's vision, I start my attempt to formulate an alternative math-phys language. In the created non-commutative math-phys environment, biquaternion and Clifford algebra related, I formulate an alternative for the Minkowski-Laue consensus. This math-phys environment allows me to formulate a generalization of the Dirac current into a Dirac probability/field tensor with connected closed system condition. This closed system condition includes the Dirac current continuity equation as its time-like part. A generalized Klein Gordon equation that includes this Dirac current probability tensor is formulated and analyzed. The Standard Model's Dirac current based Lagrangians are generalized using this Dirac probability/field tensor. The Lorentz invariance or covariance of the generalized equations and Lagrangians is proven. It is indicated that the Dirac probability/field tensor and its closed system condition closes the gap with General Relativity quite a bit.
Category: Quantum Physics

[22] viXra:1810.0187 [pdf] submitted on 2018-10-11 07:19:13

Quantum Communication Without Encryption

Authors: George Rajna
Comments: 63 Pages.

Quantum secure direct communication transmits secret information directly without encryption. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31]
Category: Quantum Physics

[21] viXra:1810.0173 [pdf] submitted on 2018-10-12 04:51:39

Topological Anderson Insulator

Authors: George Rajna
Comments: 45 Pages.

Topological insulators (TIs) host exotic physics that could shed new light on the fundamental laws of nature. [25] A new study by scientists from the University of Bristol brings us a significant step closer to unleashing the revolutionary potential of quantum computing by harnessing silicon fabrication technology to build complex on-chip quantum optical circuits. [24] Two teams of scientists from the Technion-Israel Institute of Technology have collaborated to conduct groundbreaking research leading to the development of a new and innovative scientific field: Quantum Metamaterials. [23] An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have created the world's first quantum metamaterial that can be used as a control element in superconducting electrical circuits. [22] ETH physicists have developed a silicon wafer that behaves like a topological insulator when stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical concept into a macroscopic product. [21] Cheng Chin, professor in the Department of Physics, and his team looked at an experimental setup of tens of thousands of atoms cooled down to near absolute zero. As the system crossed a quantum phase transition, they measured its behavior with an extremely sensitive imaging system. [20] Scientists from three UK universities are to test one of the fundamental laws of physics as part of a major Europe-wide project awarded more than £3m in funding. ]19] A team of researchers has devised a simple way to tune a hallmark quantum effect in graphene—the material formed from a single layer of carbon atoms—by bathing it in light. [18] Researchers from the University of Cambridge have taken a peek into the secretive domain of quantum mechanics. [17]
Category: Quantum Physics

[20] viXra:1810.0158 [pdf] submitted on 2018-10-10 07:25:16

Quantum Optical Circuits

Authors: George Rajna
Comments: 41 Pages.

A new study by scientists from the University of Bristol brings us a significant step closer to unleashing the revolutionary potential of quantum computing by harnessing silicon fabrication technology to build complex on-chip quantum optical circuits. [24] Two teams of scientists from the Technion-Israel Institute of Technology have collaborated to conduct groundbreaking research leading to the development of a new and innovative scientific field: Quantum Metamaterials. [23] An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have created the world's first quantum metamaterial that can be used as a control element in superconducting electrical circuits. [22] ETH physicists have developed a silicon wafer that behaves like a topological insulator when stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical concept into a macroscopic product. [21] Cheng Chin, professor in the Department of Physics, and his team looked at an experimental setup of tens of thousands of atoms cooled down to near absolute zero. As the system crossed a quantum phase transition, they measured its behavior with an extremely sensitive imaging system. [20] Scientists from three UK universities are to test one of the fundamental laws of physics as part of a major Europe-wide project awarded more than £3m in funding. ]19] A team of researchers has devised a simple way to tune a hallmark quantum effect in graphene—the material formed from a single layer of carbon atoms—by bathing it in light. [18] Researchers from the University of Cambridge have taken a peek into the secretive domain of quantum mechanics. [17] Scientists at the University of Geneva (UNIGE), Switzerland, recently reengineered their data processing, demonstrating that 16 million atoms were entangled in a one-centimetre crystal. [15]
Category: Quantum Physics

[19] viXra:1810.0148 [pdf] submitted on 2018-10-09 08:51:26

Anomaly in Superconductors

Authors: George Rajna
Comments: 18 Pages.

An international group of scientists, including a researcher from Skoltech, has completed an experimental and theoretical study into the properties displayed by strongly disordered superconductors at very low temperatures. [32] The researchers found that via quick-freeze technique, the metal changed into a superconducting state for over a week. [31] Scientists of the University of Twente and the University of Amsterdam now demonstrate a new property: the non-superconducting material bismuth shows lossless current conduction. [30] A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[18] viXra:1810.0145 [pdf] submitted on 2018-10-09 11:27:35

Superconducting Quantum Circuits

Authors: George Rajna
Comments: 15 Pages.

Superconducting quantum microwave circuits can function as qubits, the building blocks of a future quantum computer. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[17] viXra:1810.0142 [pdf] submitted on 2018-10-09 13:21:31

Electron Spin Memory Storage

Authors: George Rajna
Comments: 48 Pages.

Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24]
Category: Quantum Physics

[16] viXra:1810.0134 [pdf] submitted on 2018-10-10 03:51:45

Quantum Materials Atom by Atom

Authors: George Rajna
Comments: 50 Pages.

A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman's vision of building tiny machines from the atom up. [34] One of the most enduring "Holy Grail" experiments in science has been attempts to directly observe atomic motions during structural changes. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24] What is the relationship of consciousness to the neurological activity of the brain? Does the brain behave differently when a person is fully conscious, when they are asleep, or when they are undergoing an epileptic seizure? [23]
Category: Quantum Physics

[15] viXra:1810.0131 [pdf] submitted on 2018-10-08 07:19:02

Optimized Laser Material Deposition

Authors: George Rajna
Comments: 42 Pages.

Neutron diffraction strain scanning measurements at ANSTO have validated a new theoretical model that successfully predicts the residual stresses and critical deposition heights for laser additive manufacturing. [29] Tensorial neutron tomography promises new insights into superconductors, battery electrodes and other energy-related materials. [28] CERN's nuclear physics facility, ISOLDE, has minted a new coin in its impressive collection of isotopes. [27] In the case of several light nuclei, experimental confirmation of the individualism or family nature of nucleons will now be simpler, thanks to predictions presented by Polish physicists from Cracow and Kielce. [26] The identification of the magic number of six provides an avenue to investigate the origin of spin–orbit splittings in atomic nuclei. [25] Now, physicists are working toward getting their first CT scans of the inner workings of the nucleus. [24] The process of the sticking together of quarks, called hadronisation, is still poorly understood. [23] In experimental campaigns using the OMEGA EP laser at (MIT) researchers took radiographs of the shock front, similar to the X-ray radiology in hospitals with protons instead of X-rays. [22] Researchers generate proton beams using a combination of nanoparticles and laser light. [21] Devices based on light, rather than electrons, could revolutionize the speed and security of our future computers. However, one of the major challenges in today's physics is the design of photonic devices, able to transport and switch light through circuits in a stable way. [20] Researchers characterize the rotational jiggling of an optically levitated nanoparticle, showing how this motion could be cooled to its quantum ground state. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18]
Category: Quantum Physics

[14] viXra:1810.0115 [pdf] submitted on 2018-10-07 09:21:12

Chemical Impact Parameter

Authors: George Rajna
Comments: 44 Pages.

Scientists at the University of Toronto have found a way to select the outcome of chemical reaction by employing an elusive and long-sought factor known as the 'impact parameter'. [31] Tailor-made protein drugs in the fight against cancer and other diseases are a step close, with the Centre for NanoScale Science and Technology at Flinders playing a part in one of the latest chemistry discoveries in effectively modifying therapeutic proteins. [30] New research published in Nature Methods will dramatically improve how scientists "see inside" molecular structures in solution, allowing for much more precise ways to image data in various fields, from astronomy to drug discovery. [29] Prof WANG Zhisong and his research team from the Department of Physics, NUS have developed two sets of conceptually new mechanisms that enable artificial nanowalkers to move in a self-guided direction using their internal mechanics. [28] Gene editing is one of the hottest topics in cancer research. A Chinese research team has now developed a gold-nanoparticle-based multifunctional vehicle to transport the "gene scissors" to the tumor cell genome. [27] Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions – thanks to a breakthrough in synthetic biology by the University of Warwick. [26] This "robot," made of a single strand of DNA, can autonomously "walk" around a surface, pick up certain molecules and drop them off in designated locations. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21]
Category: Quantum Physics

[13] viXra:1810.0114 [pdf] submitted on 2018-10-07 11:09:53

Dirac Theory's Breaches of Quantum Correspondence and Relativity; Nonrelativistic Pauli Theory's Unique Relativistic Extension

Authors: Steven Kenneth Kauffmann
Comments: 12 Pages.

A single-particle Hamiltonian independent of the particle's coordinate ensures the particle conserves momentum, i.e., is free. This free-particle Hamiltonian is completely determined by Lorentz covariance of its energy-momentum and the particle's rest-energy value; such a free particle has velocity which vanishes when its momentum vanishes. Dirac required his free-particle Hamiltonian to be inhomogeneously linear in momentum, which contrariwise produces velocity that is independent of momentum; he also required his Hamiltonian's square to equal the above relativistic Hamiltonian's square, forcing many observables to anticommute and breach the quantum correspondence principle, as well as forcing the speed of any Dirac "free particle" to be c times the square root of three, which remains true when the particle interacts electromagnetically. The quantum correspondence principle breach causes a Dirac "free particle" to exhibit spontaneous acceleration that becomes unbounded in the classical limit; an artificial "spin" is also made available. Unlike the Dirac Hamiltonian, the nonrelativistic Pauli Hamiltonian is free of unphysical anomalies. Its relativistic extension is worked out via Lorentz-invariant upgrade of its associated action functional at zero particle velocity, and is obtained in closed form when there is no applied magnetic field; when there is, a successive approximation scheme must be used.
Category: Quantum Physics

[12] viXra:1810.0059 [pdf] submitted on 2018-10-04 07:24:11

Ultra-Fast Laser Research

Authors: George Rajna
Comments: 62 Pages.

The technique for generating high-intensity, ultra-short optical pulses developed by the 2018 Nobel Prize for Physics winners, Professor Gérard Mourou and Dr. Donna Strickland, provides the basis for important scientific approaches used in Swinburne's research. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[11] viXra:1810.0058 [pdf] submitted on 2018-10-04 08:56:25

Quantum Cryptography Network

Authors: George Rajna
Comments: 60 Pages.

Spanish researchers have developed a quantum cryptography network integrated in a commercial optical network through technologies based on software defined networking (SDN), allowing for the implementation of quantum and classical network services in a flexible, dynamic and scalable manner. [37] Physicists at the University of Sydney have found a 'quantum hack' that should allow for enormous efficiency gains in quantum computing technologies. [36] An international team of scientists has proven, for the first time, the security of so-called device-independent quantum cryptography in a regime that is attainable with state-of-the-art quantum technology, thus paving the way to practical realization of such schemes in which users don't have to worry whether their devices can be trusted or not. [35] Experiments based on atoms in a shaken artificial crystal made of light offer novel insight into the physics of quantum many-body systems, which might help in the development of future data-storage technologies. [34] A new scheme from researchers in Singapore and Japan could help customers establish trust in buying time on such machines—and protect companies from dishonest customers. [33] A joint China-Austria team has performed quantum key distribution between the quantum-science satellite Micius and multiple ground stations located in Xinglong (near Beijing), Nanshan (near Urumqi), and Graz (near Vienna). [32] In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. [31] Engineers worldwide have been developing alternative ways to provide greater memory storage capacity on even smaller computer chips. Previous research into two-dimensional atomic sheets for memory storage has failed to uncover their potential— until now. [30]
Category: Quantum Physics

[10] viXra:1810.0054 [pdf] submitted on 2018-10-04 11:35:10

Gravitational Coupling Constant is 1/(modified Boltzmann’s Constant/2pi)^2 = 1.7517516e-45

Authors: David E. Fuller
Comments: 1 Page.

(Electron parameters) are dictated by the Geometry of the Aether Medium (Matter & Energy) are (Relativistic Ballast) maintaining the (Fluid Dynamic Balance Of Space Time) relative to (Bulk Modulus Period and Bjerknes Forces) Gravitational coupling constant is 1/(Modified Boltzmann’s Constant/2pi)^2 = 1.7517516e-45 KronosPrime@outlook.com
Category: Quantum Physics

[9] viXra:1810.0041 [pdf] submitted on 2018-10-03 08:42:58

Laser for Satellite Navigation

Authors: George Rajna
Comments: 70 Pages.

Scientists from ITMO University developed a laser for precise measurement of the distance between the moon and Earth. [41] Physicists at the National Institute of Standards and Technology (NIST) have used common electronics to build a laser that pulses 100 times more often than conventional ultrafast lasers. [40] Scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin combined state-of-the-art experiments and numerical simulations to test a fundamental assumption underlying strong-field physics. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32]
Category: Quantum Physics

[8] viXra:1810.0038 [pdf] submitted on 2018-10-03 11:31:01

Topological Superconductivity

Authors: George Rajna
Comments: 16 Pages.

Scientists of the University of Twente and the University of Amsterdam now demonstrate a new property: the non-superconducting material bismuth shows lossless current conduction. [30] A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[7] viXra:1810.0037 [pdf] submitted on 2018-10-03 13:25:57

Full-Color Imaging

Authors: George Rajna
Comments: 33 Pages.

Columbia Engineering researchers have created the first flat lens capable of correctly focusing a large range of colors of any polarization to the same focal spot without the need for any additional elements. [19] Discovered by Professor John Nye in Bristol over 35 years ago, polarisation singularities occur at points where the polarisation ellipse is circular, with other polarisations wrapping around them. In 3 dimensions, these singularities occur along lines, in this case creating knots. [18] The detectors created by ATI researchers are able to achieve high sensitivity levels that strongly compete with current technologies, while still operating at low voltages, as well as over the whole X-ray energy range spectrum. [17] There's nothing quite like an ice cream on a hot day, and eating it before it melts too much is part of the fun. [16] Studying the fleeting actions of electrons in organic materials will now be much easier, thanks to a new method for generating fast X-rays. [15] In a laboratory at the University of Rochester, researchers are using lasers to change the surface of metals in incredible ways, such as making them super water-repellent without the use of special coatings, paints, or solvents. [14] The interaction of high-power laser light sources with matter has given rise to numerous applications including; fast ion acceleration; intense X-ray, gamma-ray, positron and neutron generation; and fast-ignition-based laser fusion. [13] Conventional electron accelerators have become an indispensable tool in modern research. [12] An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde. [11] Researchers at Lund University and Louisiana State University have developed a tool that makes it possible to control extreme UV light-light with much shorter wavelengths than visible light. [10] Tiny micro-and nanoscale structures within a material's surface are invisible to the naked eye, but play a big role in determining a material's physical, chemical, and biomedical properties. [9]
Category: Quantum Physics

[6] viXra:1810.0028 [pdf] replaced on 2018-10-07 12:26:02

Two Ways to Distinguish One Inertial Frame from Another (No General Causality Without Superluminal Velocities)

Authors: Tamas Lajtner
Comments: 42 Pages.

According to physicists, the laws of physics don’t allow us to discern one inertial frame from another. It does allow. This study shows two ways to distinguish one inertial frame from another. Physics hasn’t defined what is space, what is matter, what is time. In this study (in Space-Matter Theory), space is what matter uses as space, regardless of its texture. Matter is what can exist as matter in the given space. Both matter and space have three spatial dimensions. When action and reaction occurs between matter and space, the result is time. Time appears as a given wave of space. No particle, no frame of reference can exist without generating space waves. A and B inertial frames of reference are not identical if e.g. two identical electrons (electronA and electronB) create different wavelengths of space waves. One way to distinguish one inertial frame from another is to calculate or measure the length of the wavelength of the space wave. Via tunneling, a particle (with or without mass) travels through the barrier with superluminal velocity. In this case the barrier is a “special” space made out of matter (matter-space), where the particle travels with c velocity. This velocity appears in our space as superluminal velocity. Saying this, there are more spaces and more times instead of one spacetime. The different spaces make changes in the particle, too. The particle builds its action out of Planck constants h, where h has two parts which depend on the velocity of the particle in the given space. So there is also a phenomenon in the matter that makes it possible to distinguish one inertial frame from another.
Category: Quantum Physics

[5] viXra:1810.0026 [pdf] submitted on 2018-10-02 10:55:12

Contradictions and Fallacies

Authors: Peter V. Raktoe
Comments: 3 Pages.

Certain theories/conclusions in (modern) theoretical physics contain a contradiction and/or a fallacy, those theories/conclusions are incorrect and/or unrealistic.
Category: Quantum Physics

[4] viXra:1810.0015 [pdf] submitted on 2018-10-03 03:00:44

A Minimum Rindler Horizon When Accelerating?

Authors: Espen Gaarder Haug
Comments: 2 Pages.

When a particle is in constant acceleration, it has been suggested it has a Rindler horizon given by c^2/ a, where a is the proper acceleration. The Rindler event horizon tells us that we cannot receive information outside the horizon during the time period in which we are accelerating at this uniform rate. If we accelerate uniformly, sooner or later we will reach the speed of light, or at least very close to it. In this paper, we will look more closely at the Rindler horizon in relation to Haug’s newly-suggested maximum velocity for matter and see that there likely is a minimum Rindler horizon for a particle with mass that is accelerating; this minimum Rindler horizon may, in fact, be the Planck length.
Category: Quantum Physics

[3] viXra:1810.0011 [pdf] submitted on 2018-10-01 08:06:15

Space-Borne Quantum Secure Communication

Authors: George Rajna
Comments: 34 Pages.

Entangled photons generated by a spaceborne quantum source could enable hack-proof key exchange for ultra high security applications. [24] These qubits are based on silicon carbide in which molybdenum impurities create color centers. [23] Scientists at Radboud University discovered a new mechanism for magnetic storage of information in the smallest unit of matter: a single atom. [22] One of these are single-atom magnets: storage devices consisting of individual atoms stuck ("adsorbed") on a surface, each atom able to store a single bit of data that can be written and read using quantum mechanics. [21] Physicists have experimentally demonstrated 18-qubit entanglement, which is the largest entangled state achieved so far with individual control of each qubit. [20] University of Adelaide-led research has moved the world one step closer to reliable, high-performance quantum computing. [19] A team of researchers with members from IBM Research-Zurich and RWTH Aachen University has announced the development of a new PCM (phase change memory) design that offers miniaturized memory cell volume down to three nanometers. [18] Monatomic glassy antimony might be used as a new type of single-element phase change memory. [17] Physicists have designed a 3-D quantum memory that addresses the tradeoff between achieving long storage times and fast readout times, while at the same time maintaining a compact form. [16] Quantum memories are devices that can store quantum information for a later time, which are usually implemented by storing and re-emitting photons with certain quantum states. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14]
Category: Quantum Physics

[2] viXra:1810.0008 [pdf] submitted on 2018-10-01 09:37:09

Atomic Quantum Information Carrier

Authors: George Rajna
Comments: 32 Pages.

For the first time, Kaiserslautern researchers were able to implant individual impurities formed by caesium atoms into an ultracold quantum gas of rubidium atoms in a controlled manner. [23] Scientists at Radboud University discovered a new mechanism for magnetic storage of information in the smallest unit of matter: a single atom. [22] One of these are single-atom magnets: storage devices consisting of individual atoms stuck ("adsorbed") on a surface, each atom able to store a single bit of data that can be written and read using quantum mechanics. [21] Physicists have experimentally demonstrated 18-qubit entanglement, which is the largest entangled state achieved so far with individual control of each qubit. [20] University of Adelaide-led research has moved the world one step closer to reliable, high-performance quantum computing. [19] A team of researchers with members from IBM Research-Zurich and RWTH Aachen University has announced the development of a new PCM (phase change memory) design that offers miniaturized memory cell volume down to three nanometers. [18] Monatomic glassy antimony might be used as a new type of single-element phase change memory. [17] Physicists have designed a 3-D quantum memory that addresses the tradeoff between achieving long storage times and fast readout times, while at the same time maintaining a compact form. [16] Quantum memories are devices that can store quantum information for a later time, which are usually implemented by storing and re-emitting photons with certain quantum states. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas.
Category: Quantum Physics

[1] viXra:1810.0007 [pdf] submitted on 2018-10-01 15:00:23

Friedmann Kinematic Viscosity V 3.0

Authors: David E. Fuller, Dahl Winters
Comments: 11 Pages.

Transitions from (Classical Friedmann Kinematic Viscosity) to (electron Compton Kinematic Viscosity) to (Planck Kinematic Viscosity)in a Ideal Fluid Under Pressure KronosPrime@outlook.com
Category: Quantum Physics