Quantum Physics

1805 Submissions

[59] viXra:1805.0442 [pdf] submitted on 2018-05-23 05:35:20

Spin Current

Authors: George Rajna
Comments: 27 Pages.

Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[58] viXra:1805.0441 [pdf] submitted on 2018-05-23 06:06:19

Quantum Effects in Photosynthesis

Authors: George Rajna
Comments: 42 Pages.

Molecules that are involved in photosynthesis exhibit the same quantum effects as non-living matter, concludes an international team of scientists including University of Groningen theoretical physicist Thomas la Cour Jansen. [29] Nanoparticles derived from tea leaves inhibit the growth of lung cancer cells, destroying up to 80% of them, new research by a joint Swansea University and Indian team has shown. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25]
Category: Quantum Physics

[57] viXra:1805.0439 [pdf] submitted on 2018-05-23 08:46:21

Really Quantum Memory

Authors: George Rajna
Comments: 20 Pages.

Quantum memories are devices that can store quantum information for a later time, which are usually implemented by storing and re-emitting photons with certain quantum states. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[56] viXra:1805.0438 [pdf] submitted on 2018-05-23 09:10:37

About the EPR Paradox. Resolution Features. (English Version)

Authors: V.A.Kasimov
Comments: 6 Pages. English

In interpreting the results of experiments A. Aspect faced two concepts of quantum mechanics and relativity theory, which requires a thorough consideration of the causes of contradictions. The analysis of these issues devoted many works of different authors, and the points raised here also have been exhibited for analysis. However, we feel that contact again to the key moments of the contradiction and possibly in compressed form is a must.
Category: Quantum Physics

[55] viXra:1805.0434 [pdf] submitted on 2018-05-23 13:58:46

Refutation of the Quantum Probability Rule © Copyright 2018 by Colin James III All Rights Reserved.

Authors: Colin James III
Comments: 1 Page. © Copyright 2018 by Colin James III All rights reserved. info@cec-services dot com

The equation evaluated is not tautologous and hence is not established to be linear, and continuity (or homogeneity) of f cannot be proved therefrom. Remark: In 1935 von Neumann stopped "believing" in Hilbert space. Rosinger, E.E. (2004). What is wrong with von Neumann's theorem on "no hidden variables". arxiv.org/abs/quant-ph/0408191, quoting: Birkhoff, G.D. (1961). Proceedings of Symposia in Pure Mathematics. 2:158, American Mathematical Society, with the respective letter dated 13 November 1935.
Category: Quantum Physics

[54] viXra:1805.0424 [pdf] submitted on 2018-05-24 01:08:48

Refutation of the Quantum Qutrit Ternary Probability © Copyright 2018 by Colin James III All Rights Reserved.

Authors: Colin James III
Comments: 1 Page. © Copyright 2018 by Colin James III All rights reserved. info@cec-services dot com

From the arguments, two equations as rendered are not tautologous. To weaken the argument, we test the sum of the propositions of the outcomes to be greater than one as tautologous, because after all that is the state supposedly observed by experiment. Remarks: The cited paper was paid for by the governments of China, Hungry, Spain, Sweden. The footnoted data set link at personal.us.es/adan/binary.htm is a table of 16 columns and 4500 rows. We could not replicate the χ2-values in Table II. Consequently, we applied the N-by-M contingency test (superset of Chi-squared test with expected values derived from observed values) on the first 1000 rows. We found Fisher P <= 01, χ2 = 0.0000001; df = 14,985. In other words, the data set as published is random data. We conclude this impugns the data collection, data set, results, and entire experiment.
Category: Quantum Physics

[53] viXra:1805.0417 [pdf] submitted on 2018-05-24 08:26:21

Avogadro Constant in Combat with Atomic Mass Unit

Authors: Sjaak Uitterdijk
Comments: 2 Pages.

In May 2019 a new value for the Avogadro constant will be introduced. However its proposed value is in contradiction with the value of the atomic mass unit, whichever amu is taken: the one based on normal mass values, or the one based on mass values influenced by binding energies in atomic nuclei, via E(nergy) = mc2. This article presents an alternative approach.
Category: Quantum Physics

[52] viXra:1805.0415 [pdf] submitted on 2018-05-24 09:41:39

Erase a Quantum Bit

Authors: George Rajna
Comments: 59 Pages.

The minimum amount energy needed to erase a quantum bit (qubit) of information has been measured for the first time. [36] It may sound like the stuff of fairy tales, but in the 1950s two numerical models initially developed as a pet project by physicists led to the birth of an entirely new field of physics: computational statistical mechanics. [35] New research gives insight into a recent experiment that was able to manipulate an unprecedented number of atoms through a quantum simulator. This new theory could provide another step on the path to creating the elusive quantum computers. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28]
Category: Quantum Physics

[51] viXra:1805.0414 [pdf] submitted on 2018-05-24 12:26:01

Exploring the Origin of Gravity

Authors: J.A.J. van Leunen
Comments: 5 Pages. This is part of the Hilbert Book Model Project

Physicists assume that the origin of gravity is still obscure. However, since more than two centuries the essence of the origin of gravity occurs in scientific papers. The interpretation of this root is not straightforward and telling the whole story requires a solid mathematical model.
Category: Quantum Physics

[50] viXra:1805.0407 [pdf] submitted on 2018-05-21 09:33:54

Ternary Quantum Entanglement

Authors: George Rajna
Comments: 40 Pages.

For the first time, physicists have experimentally demonstrated ternary—rather than binary—quantum correlations between entangled objects. [26] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [25] Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16]
Category: Quantum Physics

[49] viXra:1805.0405 [pdf] submitted on 2018-05-21 12:49:30

Quantum Entanglement Upside Down

Authors: George Rajna
Comments: 41 Pages.

A team of physicists from ICTP-Trieste and IQOQI-Innsbruck has come up with a surprisingly simple idea to investigate quantum entanglement of many particles. [27] For the first time, physicists have experimentally demonstrated ternary—rather than binary—quantum correlations between entangled objects. [26] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [25] Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17]
Category: Quantum Physics

[48] viXra:1805.0396 [pdf] submitted on 2018-05-22 05:52:35

High-Speed Optical Communication

Authors: George Rajna
Comments: 20 Pages.

Graphene Flagship researchers have shown for the first time gate tunable third harmonic generation in graphene. [35] One can also imagine making a superconducting transistor out of graphene, which you can switch on and off, from superconducting to insulating. That opens many possibilities for quantum devices." [34] A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). [33] Now in a new study, researchers have discovered the existence of a positive feedback loop that gratly enhances the superconductivity of cuprates and may shed light on the origins of high-temperature cuprate superconductivity— considered one of the most important open questions in physics. [33] Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. [32] Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29]
Category: Quantum Physics

[47] viXra:1805.0393 [pdf] submitted on 2018-05-22 06:45:18

Pendulum Represents Binary Quantum State of Oscillations

Authors: Masataka Ohta
Comments: 2 Pages.

There is a straightforward correspondence between superposition of polarization modes of photons and that of classical radio waves. While classical particles cannot be superpositioned, classical waves can be, which is within classical intuition. Even more intuitively, two dimensional oscillations of a pendulum represent oscillating binary quantum states such as polarization states of photons.
Category: Quantum Physics

[46] viXra:1805.0392 [pdf] submitted on 2018-05-22 06:49:21

Qubit as a Polarization Division Multiplexed Quadrature Amplitude Modulated Symbol of Light

Authors: Masataka Ohta
Comments: 5 Pages.

With optical communication technology today, it is practical to communicate with polarization division multiplexed (PDM) quadrature amplitude modulated (QAM) symbols, which are quantum superposition of horizontally and vertically polarized photons, which are, so called, qubits. As the number of bits encoded by a PDM QAM symbol is limited, according to Shannon-Hartley theorem, by signal to noise ratio, the degree of parallelism of quantum computers is limited. The result is consistent with quantum threshold theorem. Quantum entanglement between qubits only makes the number of bits encoded by the qubits smaller, because entanglement means correlation between the qubits. Thus, quantum computers are not more powerful than classical ones. Finally, it is shown that purely classical computers can be arbitrarily fast and ideal, that is, noiseless, quantum computers are classical.
Category: Quantum Physics

[45] viXra:1805.0383 [pdf] submitted on 2018-05-22 10:31:27

Refutation of the Born Rule in Eqm as the Probability of the Wave Function Squared © Copyright 2018 by Colin James III All Rights Reserved.

Authors: Colin James III
Comments: 1 Page. © Copyright 2018 by Colin James III All rights reserved. info@cec-services dot com

The equation as rendered is not tautologous, and differs from contradictory by two values.
Category: Quantum Physics

[44] viXra:1805.0376 [pdf] submitted on 2018-05-23 01:58:19

Quantum Repeater

Authors: George Rajna
Comments: 42 Pages.

Physicists at Saarland University in Saarbrücken, Germany, have succeeded in entangling a single atom with a single photon in the telecom wavelength range. [28] A team of physicists from ICTP-Trieste and IQOQI-Innsbruck has come up with a surprisingly simple idea to investigate quantum entanglement of many particles. [27] For the first time, physicists have experimentally demonstrated ternary—rather than binary—quantum correlations between entangled objects. [26] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [25] Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20]
Category: Quantum Physics

[43] viXra:1805.0375 [pdf] submitted on 2018-05-20 09:03:40

Some Topological Paradoxes of Relativity (Epr). (English Version)/

Authors: V.A.Kasimov
Comments: 18 Pages. In English

In the footsteps of the article by A. Aspect "BELL'S THEOREM: the naive view of an experimentalist". As in equation (23) has detected an error (or typo), I took the trouble to verify calculations from 1 to 5 sections of the article. Are some clarifying points that are important for understanding the essence. Given an elementary conclusion of formulas (3), which is omitted in the article. The Bell's inequality, derived on the basis of the general model for a dichotomous variable, disturbed the quantum mechanical model for a pair of "entangled" photons. In Bell's article it is clearly (though not very detailed) shown. No " artificial gadgets" is not able to resolve this contradiction. The only thing that causes confusion is the procedure of creating a mixed state of two photons and the essence conceptual view of mathematics experiment. Theoretically, this procedure can be represented as a symmetrization of the wave function of the pair. However, how does the transfer of this idea to the technical essence of the experiment is unclear.
Category: Quantum Physics

[42] viXra:1805.0366 [pdf] submitted on 2018-05-21 04:40:29

Quantum Dots from Tea

Authors: George Rajna
Comments: 40 Pages.

Nanoparticles derived from tea leaves inhibit the growth of lung cancer cells, destroying up to 80% of them, new research by a joint Swansea University and Indian team has shown. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17]
Category: Quantum Physics

[41] viXra:1805.0356 [pdf] submitted on 2018-05-20 04:11:21

Quantum Probability Rule

Authors: George Rajna
Comments: 38 Pages.

The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [25] Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20]
Category: Quantum Physics

[40] viXra:1805.0348 [pdf] submitted on 2018-05-18 04:25:56

The Shape of Laser Pulses

Authors: George Rajna
Comments: 27 Pages.

A team of researchers at the Center for Relativistic Laser Science, within the Institute for Basic Science (IBS) have developed a method to measure the shape of laser pulses in ambient air. [16] Studying the fleeting actions of electrons in organic materials will now be much easier, thanks to a new method for generating fast X-rays. [15] In a laboratory at the University of Rochester, researchers are using lasers to change the surface of metals in incredible ways, such as making them super water-repellent without the use of special coatings, paints, or solvents. [14]
Category: Quantum Physics

[39] viXra:1805.0340 [pdf] submitted on 2018-05-18 12:18:13

PMC-Topology (English Version)

Authors: V.A.Kasimov
Comments: 2 Pages. English

In the mathematical description of physical phenomena is used mainly Point-Metric Classical topology (PMC-topology), embodied in the methods of mathematical analysis. It is necessary to note the important features of the application of PMC-topology to the solution of the problems of space-time relations, which will give us an unambiguous hint at the limitations of its applicability. To understand the reason for this limitation, it is necessary to return to the origins of the continuity concept of point-metric classical topology.
Category: Quantum Physics

[38] viXra:1805.0328 [pdf] submitted on 2018-05-17 05:22:42

Quantum Entangled Atomic Clouds

Authors: George Rajna
Comments: 62 Pages.

Unlike previous methods of quantum entanglement involving incoherent and thermal clouds of particles, in this experiment, the researchers used a cloud of atoms in the Bose-Einstein condensate state. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[37] viXra:1805.0323 [pdf] submitted on 2018-05-18 04:08:03

Quantum Drum Vibrate and Stand

Authors: George Rajna
Comments: 36 Pages.

Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15] Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in the journal Angewandte Chemie. [14]
Category: Quantum Physics

[36] viXra:1805.0320 [pdf] submitted on 2018-05-16 08:19:34

Quantum Entangled Atoms

Authors: George Rajna
Comments: 62 Pages.

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[35] viXra:1805.0314 [pdf] submitted on 2018-05-15 08:21:17

FWT-Theorem, the One-Particle Contextuality, Two-Particle Nonlocality, Entanglement, Wheeler's Experiments with Delayed Choice, and All that ...

Authors: V.A. Kasimov.
Comments: 4 Pages. English

In continuation of the discussion of the results of the Aspect's experiments. An overview of the new results.
Category: Quantum Physics

[34] viXra:1805.0309 [pdf] submitted on 2018-05-15 11:47:02

Quantum Phases for Moving Charges and Dipoles in an Electromagnetic Field and Fundamental Equations of Quantum Mechanics

Authors: A.L. Kholmetskii, O.V. Missevitch, T. Yarman, M. Arik
Comments: 12 Pages.

We analyze the quantum phase effects for point-like charges and electric (magnetic) dipoles under a natural assumption that the observed phase for a dipole represents the sum of corresponding phases for charges composing this dipole. This way we disclose two novel quantum phases for charged particles, which we named as complementary electric Aharonov-Bohm (A-B) phase and complementary magnetic A-B phase, respectively. We reveal that these phases are derived from the Schrödinger equation only in the case, where the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system of charged particles. The related alteration should be made in Klein-Gordon and Dirac equations, too, and implications of this modification are discussed.
Category: Quantum Physics

[33] viXra:1805.0308 [pdf] submitted on 2018-05-15 11:53:22

Quantum-Enhanced Sensors

Authors: George Rajna
Comments: 34 Pages.

A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15] Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in the journal Angewandte Chemie. [14] Machine learning algorithms are designed to improve as they encounter more data, making them a versatile technology for understanding large sets of photos such as those accessible from Google Images.
Category: Quantum Physics

[32] viXra:1805.0301 [pdf] submitted on 2018-05-16 05:08:56

Atomic Microcosmos

Authors: George Rajna
Comments: 35 Pages.

Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15] Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in the journal Angewandte Chemie. [14]
Category: Quantum Physics

[31] viXra:1805.0300 [pdf] submitted on 2018-05-14 12:36:10

Analog Quantum Computing

Authors: George Rajna
Comments: 54 Pages.

Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28]
Category: Quantum Physics

[30] viXra:1805.0292 [pdf] replaced on 2018-05-17 15:15:00

Revisiting the Derivation of Heisenberg’s Uncertainty Principle: The Collapse of Uncertainty at the Planck Scale

Authors: Espen Gaarder Haug
Comments: 15 Pages.

In this paper, we will revisit the derivation of Heisenberg’s uncertainty principle. We will see how the Heisenberg principle collapses at the Planck scale by introducing a minor modification. The beauty of our suggested modification is that it does not change the main equations in quantum mechanics; it only gives them a Planck scale limit where uncertainty collapses. We suspect that Einstein could have been right after all, when he stated, “God does not throw dice.” His now-famous saying was an expression of his skepticism towards the concept that quantum randomness could be the ruling force, even at the deepest levels of reality. Here we will explore the quantum realm with a fresh perspective, by re-deriving the Heisenberg principle in relation to the Planck scale. Our modified theory indicates that renormalization is no longer needed. Further, Bell’s Inequality no longer holds, as the breakdown of Heisenberg’s uncertainty principle at the Planck scale opens up the possibility for hidden variable theories. The theory also suggests that the superposition principle collapses at the Planck scale. Further, we show how this idea leads to an upper boundary on uncertainty, in addition to the lower boundary. These upper and lower boundaries are identical for the Planck mass particle; in fact, they are zero, and this highlights the truly unique nature of the Planck mass particle.
Category: Quantum Physics

[29] viXra:1805.0281 [pdf] submitted on 2018-05-13 08:09:43

What is a Wave Function?

Authors: Christina Munns
Comments: 14 Pages. Non-commercial licence. All rights reserved. Copyright 2018 Christina Munns

ABSTRACT This paper addresses the historical inconsistencies that arise from the lack of definition of the wave function by Edwin Schrödinger in his wave equations, along with the associated misperception of the exact description of the superposition state and whether or not this state is random or deterministic in character. A redefinition of the wave function is proposed as being the hidden variables existing within the quantum superposition state. This definition is in coherence with actual quantum research. The hidden variables existing within the superposition state are defined. The inconsistencies of the concept of the wave-particle duality are also explained and reasons given why the wave and particle states are discrete.
Category: Quantum Physics

[28] viXra:1805.0257 [pdf] submitted on 2018-05-14 08:57:55

Emergence of Spatio-Temporal Certainty (1+2+3)-English

Authors: V.A. Kasimov
Comments: 24 Pages. English

The well - known philosophical formula: "Space and time are universal forms of existence of matter" forces us to introduce several levels of representation of our knowledge about space-time relations, which we will conditionally call "levels of ontologization" of our understanding of these relations. These levels can be considered as ontological sections in the process of cognition of the essence of spatiotemporal relations and the formation of their conceptual certainty. A simple example is used to model the process of formation of spatiotemporal certainty in the Leibniz aspect: the transition from the quantum level (micro-) to the level of classical mechanics (macro-). In this regard, we can talk about the two-phase existence of matter. In addition, an attempt was made to outline the solution of space-time problems after work: "Contextuality of one particle, nonlocality of two particles, entanglement, Wheeler's experiments with delay of choice, FWT and so on ..."[12]. The current situation of the search for the essence of space-time relations resembles the early history of the search for the essence of "phlogiston", which was resolved by the statistical theory of Gibbs ensembles, the definition of thermodynamic concepts and, in particular, the concept of temperature as the average kinetic energy of the ensemble. It is quite possible that the spatiotemporal relations are also some averages from the eigenvalues of the quantum object operators.
Category: Quantum Physics

[27] viXra:1805.0256 [pdf] submitted on 2018-05-14 09:23:01

Quantum Process Rule

Authors: George Rajna
Comments: 33 Pages.

The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15]
Category: Quantum Physics

[26] viXra:1805.0255 [pdf] submitted on 2018-05-14 09:51:57

Two-Dimensional Quantum Walks

Authors: George Rajna
Comments: 34 Pages.

A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15] Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in the journal Angewandte Chemie. [14] Machine learning algorithms are designed to improve as they encounter more data, making them a versatile technology for understanding large sets of photos such as those accessible from Google Images. Elizabeth Holm, professor of materials science and engineering at Carnegie Mellon University, is leveraging this technology to better understand the enormous number of research images accumulated in the field of materials science. [13]
Category: Quantum Physics

[25] viXra:1805.0254 [pdf] submitted on 2018-05-14 10:28:53

Cyclic Molecule with a Twist

Authors: George Rajna
Comments: 41 Pages.

As suggested by their name, Möbius molecules have a twisted loop structure, a special characteristic with many potential applications. [27] Fullerenes are composed of 60 carbon atoms joined together in hexagonal rings to form a sphere that resembles a soccer ball. [26] Researchers at the University of Tokyo used an efficient method to create chiral materials using circularly polarized light. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17]
Category: Quantum Physics

[24] viXra:1805.0252 [pdf] submitted on 2018-05-14 11:00:15

Quantum Chaos Computing

Authors: George Rajna
Comments: 56 Pages.

New research gives insight into a recent experiment that was able to manipulate an unprecedented number of atoms through a quantum simulator. This new theory could provide another step on the path to creating the elusive quantum computers. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30]
Category: Quantum Physics

[23] viXra:1805.0238 [pdf] submitted on 2018-05-11 09:42:35

Ultrafast Emergence of Superconductivity

Authors: George Rajna
Comments: 30 Pages.

UBC researchers have captured an unprecedented glimpse into the birth of high-temperature superconductivity in cuprates, settling a scientific debate and uncovering new avenues to explore the potential of other unconventional superconductors. [19] A 2017 theory proposed by Rice University physicists to explain the contradictory behavior of an iron-based high-temperature superconductor is helping solve a puzzle in a different type of unconventional superconductor, the "heavy fermion" compound known as CeCu2Si2. [18] Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[22] viXra:1805.0232 [pdf] submitted on 2018-05-11 13:43:35

X-Rays Laser Through Water Window

Authors: George Rajna
Comments: 27 Pages.

Studying the fleeting actions of electrons in organic materials will now be much easier, thanks to a new method for generating fast X-rays. [15] In a laboratory at the University of Rochester, researchers are using lasers to change the surface of metals in incredible ways, such as making them super water-repellent without the use of special coatings, paints, or solvents. [14]
Category: Quantum Physics

[21] viXra:1805.0211 [pdf] submitted on 2018-05-10 05:31:41

Multifunctional Photonic Devices

Authors: George Rajna
Comments: 55 Pages.

The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Quantum Physics

[20] viXra:1805.0209 [pdf] submitted on 2018-05-10 07:24:41

Light Make Computers Quantum

Authors: George Rajna
Comments: 57 Pages.

A technique to manipulate electrons with light could bring quantum computing up to room temperature. [34] The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26]
Category: Quantum Physics

[19] viXra:1805.0198 [pdf] submitted on 2018-05-09 05:27:08

Heavy Fermion Superconductor

Authors: George Rajna
Comments: 29 Pages.

A 2017 theory proposed by Rice University physicists to explain the contradictory behavior of an iron-based high-temperature superconductor is helping solve a puzzle in a different type of unconventional superconductor, the "heavy fermion" compound known as CeCu2Si2. [18] Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[18] viXra:1805.0174 [pdf] submitted on 2018-05-08 06:53:37

Inner Calm of Quantum Materials

Authors: George Rajna
Comments: 23 Pages.

Researchers from the University of Geneva (UNIGE) and multi-institutional collaborators have been studying BACOVO—a one-dimensional quantum material. [12] While defects in a diamond are mostly undesirable, certain defects are a quantum physicist's best friend, having the potential to store bits of information that could one day be used in a quantum computing system. [11] Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Quantum Physics

[17] viXra:1805.0171 [pdf] submitted on 2018-05-08 07:57:57

Atom Clouds Challenges Theories

Authors: George Rajna
Comments: 64 Pages.

Experiments with ultra-cold atoms at the TU Wien have shown surprising results: coupled atom clouds synchronize within milliseconds. This effect cannot be explained by standard theories. [38] Scientists forged quantum connections between separate regions within clouds of ultracold atoms, demonstrating entanglement between thousands of particles in two different locations. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[16] viXra:1805.0156 [pdf] submitted on 2018-05-06 23:05:21

Quantum Local Causality in Non-Metric Space

Authors: fosco Ruzzene
Comments: 32 Pages.

Previous analysis of Bell inequalities identified the assumption of metric variables for physical quantities. Because of the nexus between variable-type and underlying geometry, and by implication space structure, inequalities violation can be attributed to space being non-metric. Analysis of Heisenberg gedanken experiments leads to the same possibility. The consensus view however, is that local causality is the sole assumption. An alternative analysis of the extended EPR perfect anti-correlation configuration finds that this is not correct. There is also the additional assumption of orientation independence.
Category: Quantum Physics

[15] viXra:1805.0154 [pdf] submitted on 2018-05-07 01:19:12

Smart Microchip

Authors: George Rajna
Comments: 54 Pages.

To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24]
Category: Quantum Physics

[14] viXra:1805.0148 [pdf] submitted on 2018-05-07 09:27:43

Magnetized Plasmas

Authors: George Rajna
Comments: 50 Pages.

The new approach, known as a plasma q-plate, will revolutionize sources for generating optical vortices. The work will impact a broad range of applications. [30] A new material created by Oregon State University researchers is a key step toward the next generation of supercomputers. [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23] A new technique developed by MIT researchers reveals the inner details of photonic crystals, synthetic materials whose exotic optical properties are the subject of widespread research. [22] In experiments at SLAC, intense laser light (red) shining through a magnesium oxide crystal excited the outermost " valence " electrons of oxygen atoms deep inside it. [21]
Category: Quantum Physics

[13] viXra:1805.0114 [pdf] submitted on 2018-05-05 03:47:51

Laser-Driven Electron Recollision

Authors: George Rajna
Comments: 65 Pages.

Scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin combined state-of-the-art experiments and numerical simulations to test a fundamental assumption underlying strong-field physics. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29]
Category: Quantum Physics

[12] viXra:1805.0093 [pdf] submitted on 2018-05-04 06:20:10

Subtract a Single Quantum of Light

Authors: George Rajna
Comments: 40 Pages.

In a collaboration between Aarhus University and the University of Southern Denmark, researchers have discovered a way to subtract a single quantum of light from a laser beam. [29] Researchers at the University of Washington, working with researchers from the ETH-Zurich, Purdue University and Virginia Commonwealth University, have achieved an optical communications breakthrough that could revolutionize information technology. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19]
Category: Quantum Physics

[11] viXra:1805.0092 [pdf] submitted on 2018-05-04 06:54:18

High Entropy Superconductors

Authors: George Rajna
Comments: 25 Pages.

The new material retains superconducting properties over a wider range of lattice parameters than materials without high-entropy alloy states. [34] Manipulating the flow of energy through superconductors could radically transform technology, perhaps leading to applications such as ultra-fast, highly efficient quantum computers. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[10] viXra:1805.0091 [pdf] submitted on 2018-05-04 07:46:38

Magnet-Free Optical Circulator

Authors: George Rajna
Comments: 50 Pages.

Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23] A new technique developed by MIT researchers reveals the inner details of photonic crystals, synthetic materials whose exotic optical properties are the subject of widespread research. [22]
Category: Quantum Physics

[9] viXra:1805.0083 [pdf] submitted on 2018-05-02 13:00:59

Quantum Engineering Revolution

Authors: George Rajna
Comments: 41 Pages.

Already, the researchers have several experiments planned for the magnetic quantum Newton's cradle and they anticipate many more opportunities for building upon this work as the quantum revolution evolves. [29] Researchers at the University of Washington, working with researchers from the ETH-Zurich, Purdue University and Virginia Commonwealth University, have achieved an optical communications breakthrough that could revolutionize information technology. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19]
Category: Quantum Physics

[8] viXra:1805.0072 [pdf] replaced on 2018-05-14 12:27:00

Photons: Explained and Derived by Energy Wave Equations

Authors: Jeff Yee
Comments: 22 pages

The photon is demystified in energy wave theory as a transverse wave packet of energy, resulting from the vibration of particles that are responding to waves that naturally travel the universe. In earlier works in the theory, the photon was accurately modeled mathematically with the same wave properties that govern the creation of particles and their forces. In this paper, the photon’s behavior is further explained to match various photon experiments, describing the mechanism for the creation and absorption of transverse waves.
Category: Quantum Physics

[7] viXra:1805.0069 [pdf] submitted on 2018-05-03 01:26:54

Quantum Spin Ice

Authors: George Rajna
Comments: 44 Pages.

Their goal is to create an observable case of quantum spin ice, a bizarre magnetic state found in a special class of materials that could lead to advances in quantum computing technologies. [31] Now, for the first time ever, researchers from Aalto University, Brazilian Center for Research in Physics (CBPF), Technical University of Braunschweig and Nagoya University have produced the superconductor-like quantum spin liquid predicted by Anderson. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20]
Category: Quantum Physics

[6] viXra:1805.0068 [pdf] submitted on 2018-05-03 04:23:28

Space-Time as an Emergent Phenomena a Possible Way to Explain Entanglement and the Tunnel Effect

Authors: P. Castro, M. Gatta, J.R. Croca, R. Moreira
Comments: 11 Pages.

Entanglement and the tunnel effect phenomena have been repeatedly observed and are generically accepted under orthodox quantum mechanics formalism. However, they remain rather inexplicable, in the context of space-time usual conceptualization. In the present work, we suggest an alternative quantum mechanics formalism, refining the pilot-wave theory initially proposed by de Broglie. We suggest that space-time is an emergent phenomenon from a prior subquantum medium and that entanglement and the tunnel effect can be explained in terms of a nonlinear relation valid for subquantum waves.
Category: Quantum Physics

[5] viXra:1805.0057 [pdf] submitted on 2018-05-03 08:36:29

Reality from its Basics

Authors: J.A.J. van Leunen
Comments: 2 Pages. This is part of the Hilbert Book Model Project

Building a physics theory from the basics of physical reality is not a costly enterprise and can be realized with some determination. Finding the basic structure is essential. Quite peculiar enough, the discovery of that structure occurred long ago. Current physics does not yet exploit this knowledge.
Category: Quantum Physics

[4] viXra:1805.0055 [pdf] submitted on 2018-05-01 03:33:58

Laser the Future of Wi-Fi

Authors: George Rajna
Comments: 23 Pages.

Wi-Fi and cellular data traffic are increasing exponentially but, unless the capacity of wireless links can be increased, all that traffic is bound to lead to unacceptable bottlenecks. [12] While defects in a diamond are mostly undesirable, certain defects are a quantum physicist's best friend, having the potential to store bits of information that could one day be used in a quantum computing system. [11] Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Quantum Physics

[3] viXra:1805.0054 [pdf] submitted on 2018-05-01 04:06:07

Beyond Moore's Law

Authors: George Rajna
Comments: 24 Pages.

Research appearing today in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate "valleytronics" transistor material that might one day enable chipmakers to pack more computing power onto microchips. [13] Wi-Fi and cellular data traffic are increasing exponentially but, unless the capacity of wireless links can be increased, all that traffic is bound to lead to unacceptable bottlenecks. [12] While defects in a diamond are mostly undesirable, certain defects are a quantum physicist's best friend, having the potential to store bits of information that could one day be used in a quantum computing system. [11] Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Quantum Physics

[2] viXra:1805.0052 [pdf] submitted on 2018-05-01 05:24:02

Split Atom Clouds get Entangled

Authors: George Rajna
Comments: 61 Pages.

Scientists forged quantum connections between separate regions within clouds of ultracold atoms, demonstrating entanglement between thousands of particles in two different locations. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[1] viXra:1805.0037 [pdf] submitted on 2018-05-02 04:37:14

Metamaterial Electromagnetic Effects

Authors: George Rajna
Comments: 48 Pages.

Researchers at Duke University have built the first metal-free, dynamically tunable metamaterial for controlling electromagnetic waves. [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23] A new technique developed by MIT researchers reveals the inner details of photonic crystals, synthetic materials whose exotic optical properties are the subject of widespread research. [22] In experiments at SLAC, intense laser light (red) shining through a magnesium oxide crystal excited the outermost " valence " electrons of oxygen atoms deep inside it. [21]
Category: Quantum Physics