Quantum Physics

   

Erase a Quantum Bit

Authors: George Rajna

The minimum amount energy needed to erase a quantum bit (qubit) of information has been measured for the first time. [36] It may sound like the stuff of fairy tales, but in the 1950s two numerical models initially developed as a pet project by physicists led to the birth of an entirely new field of physics: computational statistical mechanics. [35] New research gives insight into a recent experiment that was able to manipulate an unprecedented number of atoms through a quantum simulator. This new theory could provide another step on the path to creating the elusive quantum computers. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28]

Comments: 59 Pages.

Download: PDF

Submission history

[v1] 2018-05-24 09:41:39

Unique-IP document downloads: 16 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus