Quantum Physics

   

Revisiting the Derivation of Heisenberg’s Uncertainty Principle: The Collapse of Uncertainty at the Planck Scale

Authors: Espen Gaarder Haug

In this paper, we will revisit the derivation of Heisenberg’s uncertainty principle. We will see how the Heisenberg principle collapses at the Planck scale by introducing a minor modification. The beauty of our suggested modification is that it does not change the main equations in quantum mechanics; it only gives them a Planck scale limit where uncertainty collapses. We suspect that Einstein could have been right after all, when he stated, “God does not throw dice.” His now-famous saying was an expression of his skepticism towards the concept that quantum randomness could be the ruling force, even at the deepest levels of reality. Here we will explore the quantum realm with a fresh perspective, by re-deriving the Heisenberg principle in relation to the Planck scale. Our modified theory indicates that renormalization is no longer needed. Further, Bell’s Inequality no longer holds, as the breakdown of Heisenberg’s uncertainty principle at the Planck scale opens up the possibility for hidden variable theories. The theory also suggests that the superposition principle collapses at the Planck scale. Further, we show how this idea leads to an upper boundary on uncertainty, in addition to the lower boundary. These upper and lower boundaries are identical for the Planck mass particle; in fact, they are zero, and this highlights the truly unique nature of the Planck mass particle.

Comments: 15 Pages.

Download: PDF

Submission history

[v1] 2018-05-15 01:57:06
[v2] 2018-05-17 15:15:00

Unique-IP document downloads: 39 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus