Quantum Physics

1812 Submissions

[33] viXra:1812.0244 [pdf] submitted on 2018-12-13 07:34:37

Quantum Networking Future

Authors: George Rajna
Comments: 53 Pages.

A scientist involved in expanding quantum communication to a network of users, is continuing his work at the University of Bristol. [33] In recent years, nanofabricated mechanical oscillators have emerged as a promising platform for quantum information applications. [32] Quantum communication, which ensures absolute data security, is one of the most advanced branches of the "second quantum revolution". [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23]
Category: Quantum Physics

[32] viXra:1812.0233 [pdf] submitted on 2018-12-14 01:59:30

What is Anomalous about the Anomalous Magnetic Moment?

Authors: Jean Louis Van Belle
Comments: 5 Pages.

This paper explores the geometry of the experiments measuring the anomalous magnetic moment. It is argued that there is nothing anomalous about it. The Larmor precession invalidates the usual substitution that is made for the gyromagnetic ratio of the precessional motion. In fact, if the substitution is made, one gets a value of 1/2 instead of zero. We should, therefore, not wonder why the anomalous magnetic moment is not equal to zero, but why it is so nearly zero.
Category: Quantum Physics

[31] viXra:1812.0232 [pdf] submitted on 2018-12-14 02:46:32

God Does not Play Dice.

Authors: Durgadas Datta.
Comments: 2 Pages. For further research.

Age old debate on whether God play dice or not can be resolved by re structuring Quantum Physics.
Category: Quantum Physics

[30] viXra:1812.0231 [pdf] submitted on 2018-12-14 03:35:24

Stretched Quantum Magnetism

Authors: George Rajna
Comments: 93 Pages.

By studying ultracold atoms trapped in artificial crystals of light, Guillaume Salomon, a postdoc at the Max-Planck-Institute of Quantum Optics and a team of scientists have been able to directly observe a fundamental effect of one-dimensional quantum systems. [54] Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity. [53] Researchers have discovered a 'blind spot' in atomic force microscopy-a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits-utilising the spin-orbit coupling of atom qubits-adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46]
Category: Quantum Physics

[29] viXra:1812.0229 [pdf] submitted on 2018-12-12 06:10:22

Copper Quantum Computing

Authors: George Rajna
Comments: 90 Pages.

Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer. [53] The research team developed the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is essential for quantum computation. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45]
Category: Quantum Physics

[28] viXra:1812.0223 [pdf] submitted on 2018-12-12 08:40:36

Quantum Computing a Decade Away

Authors: George Rajna
Comments: 92 Pages.

Significant technical and financial issues remain towards building a large, fault-tolerant quantum computer and one is unlikely to be built within the coming decade. [54] Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer. [53] The research team developed the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is essential for HYPERLINK "https://phys.org/tags/quantum/" quantum computation. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46]
Category: Quantum Physics

[27] viXra:1812.0222 [pdf] submitted on 2018-12-12 09:48:46

Advanced Photon Source Upgrade

Authors: George Rajna
Comments: 38 Pages.

A longstanding problem in optics holds that an improved resolution in imaging is offset by a loss in the depth of focus. Now, scientists are joining computation with X-ray imaging as they develop a new and exciting technique to bypass this limitation. [25] Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. [24] A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. [23] A team of researchers from Shanghai Jiao Tong University and the University of Science and Technology of China has developed a chip that allows for two-dimensional quantum walks of single photons on a physical device. [22] The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new quantum probability rule in the New Journal of Physics. [21] Probabilistic computing will allow future systems to comprehend and compute with uncertainties inherent in natural data, which will enable us to build computers capable of understanding, predicting and decision-making. [20] For years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and it has enjoyed a lot of success as a result. Now, AI is starting to return the favor. [19] Scientists at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign, have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. [18] Researchers from Queen Mary University of London have developed a mathematical model for the emergence of innovations. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15]
Category: Quantum Physics

[26] viXra:1812.0213 [pdf] submitted on 2018-12-13 03:04:57

New Device Questions Quantum Physics

Authors: George Rajna
Comments: 91 Pages.

Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity. [53] Researchers have discovered a 'blind spot' in atomic force microscopy—a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45]
Category: Quantum Physics

[25] viXra:1812.0202 [pdf] submitted on 2018-12-12 01:39:33

A Geometric Interpretation of Schrödinger’s Wave Equation

Authors: Jean Louis Van Belle
Comments: No. of pages excludes title page and references

Following a series of papers on a geometric interpretation of the wavefunction, this paper offers a geometric interpretation of the wave equation itself. It interprets Schrödinger’s equation as a differential equation for elliptical orbitals. As such, it complements a revised Rutherford-Bohr model which is also based on the assumption that – if electron orbitals would be actual orbitals – they would be elliptical rather than circular. Keywords: Bohr model, Schrödinger’s equation, rest matter oscillation, electron orbitals, wavefunction interpretations.
Category: Quantum Physics

[24] viXra:1812.0186 [pdf] submitted on 2018-12-10 09:04:59

First Optical Microchip

Authors: George Rajna
Comments: 89 Pages.

The research team developed the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is essential for quantum computation. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44]
Category: Quantum Physics

[23] viXra:1812.0183 [pdf] submitted on 2018-12-10 10:44:07

Relation Between Mass & Time and Electromagnetic Wave & Distance

Authors: Adham Ahmed Mohamed Ahmed
Comments: 1 Page. ty

If distance and time are related somehow then they encompass the relation between electromagnetic waves and masses that being the mass is related to time and electromagnetic waves are related to distance
Category: Quantum Physics

[22] viXra:1812.0181 [pdf] submitted on 2018-12-10 11:08:39

Gravity Effect on Electromagnetic Waves

Authors: Adham Ahmed Mohamed Ahmed
Comments: 1 Page. ty

The electromagnetic waves get less oscillations and more wavelength when they undergo the effect of gravitation thus losing energy
Category: Quantum Physics

[21] viXra:1812.0158 [pdf] submitted on 2018-12-08 05:50:45

光速极限的秘密

Authors: Liu Ran
Comments: 4 Pages.

光速唯一定理:宇宙空间由离散的普朗克空间组成,粒子只能在一个普朗克时间从一个普朗克空间跳到另一个普朗克空间,速度就是光速。光速是宇宙中唯一的运动速度,其它亚光速是光速和普朗克时间组合而生成的,没有超光速的组合。所有粒子要么以光速运动,要么以零速静止。
Category: Quantum Physics

[20] viXra:1812.0142 [pdf] submitted on 2018-12-07 07:29:14

Atoms Stand for High-Temperature Superconductors

Authors: George Rajna
Comments: 30 Pages.

The Fermi-Hubbard model, which is believed to explain the basis for high-temperature superconductivity, is extremely simple to describe, and yet has so far proven impossible to solve, according to Zwierlein. [38] Researchers at Karlsruhe Institute of Technology (KIT) have carried out high-resolution inelastic X-ray scattering and have found that high uniaxial pressure induces a long-range charge order competing with superconductivity. [37] Scientists mapping out the quantum characteristics of superconductors—materials that conduct electricity with no energy loss—have entered a new regime. [36] Now, in independent studies reported in Science and Nature, scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity. [35] At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34] The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors.
Category: Quantum Physics

[19] viXra:1812.0140 [pdf] submitted on 2018-12-07 08:24:17

Spin-Based Memory Device

Authors: George Rajna
Comments: 87 Pages.

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44] There's little doubt the information technology revolution has improved our lives. But unless we find a new form of electronic technology that uses less energy, computing will become limited by an "energy crunch" within decades. [43]
Category: Quantum Physics

[18] viXra:1812.0139 [pdf] submitted on 2018-12-07 08:51:21

Nonlinearity for Wireless Communication

Authors: George Rajna
Comments: 88 Pages.

The nonlinear characteristics of metamaterials have displayed emerging potentials for frequency conversions owing to the induced local fields around the resonators. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44]
Category: Quantum Physics

[17] viXra:1812.0127 [pdf] submitted on 2018-12-08 03:49:03

Molecules with Extreme X-Rays

Authors: George Rajna
Comments: 55 Pages.

Physicist Artem Rudenko from Kansas State University and his colleagues pondered how to improve the images of viruses and microparticles that scientists get from X-rays. [34] A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3-D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date. [33] Hydrogen-powered electronics, travel, and more may be a step closer thanks to the work of a collaborative team of scientists in Japan. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality—a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27] A new experiment that tests the limit of how large an object can be before it ceases to behave quantum mechanically has been proposed by physicists in the UK and India. [26] Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. [25]
Category: Quantum Physics

[16] viXra:1812.0126 [pdf] submitted on 2018-12-08 04:11:16

Spin Orbit Coupling in Silicon

Authors: George Rajna
Comments: 88 Pages.

Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44] There's little doubt the information technology revolution has improved our lives. But unless we find a new form of electronic technology that uses less energy, computing will become limited by an "energy crunch" within decades. [43]
Category: Quantum Physics

[15] viXra:1812.0123 [pdf] submitted on 2018-12-08 04:47:46

Blind Spot in Atomic Force

Authors: George Rajna
Comments: 90 Pages.

Researchers have discovered a 'blind spot' in atomic force microscopy—a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44]
Category: Quantum Physics

[14] viXra:1812.0120 [pdf] submitted on 2018-12-08 05:15:25

Holographic Display and Encryption

Authors: George Rajna
Comments: 51 Pages.

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. [35] Physicist Artem Rudenko from Kansas State University and his colleagues pondered how to improve the images of viruses and microparticles that scientists get from X-rays. [34] A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3-D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date. [33] Hydrogen-powered electronics, travel, and more may be a step closer thanks to the work of a collaborative team of scientists in Japan. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality—a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27]
Category: Quantum Physics

[13] viXra:1812.0119 [pdf] submitted on 2018-12-06 07:25:54

Unexplored Territory in Superconductivity

Authors: George Rajna
Comments: 30 Pages.

Scientists mapping out the quantum characteristics of superconductors—materials that conduct electricity with no energy loss—have entered a new regime. [36] Now, in independent studies reported in Science and Nature, scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity. [35] At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34] The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[12] viXra:1812.0118 [pdf] submitted on 2018-12-06 07:47:56

Competing States in High-Temperature Superconductors

Authors: George Rajna
Comments: 31 Pages.

Researchers at Karlsruhe Institute of Technology (KIT) have carried out high-resolution inelastic X-ray scattering and have found that high uniaxial pressure induces a long-range charge order competing with superconductivity. [37] Scientists mapping out the quantum characteristics of superconductors—materials that conduct electricity with no energy loss—have entered a new regime. [36] Now, in independent studies reported in Science and Nature, scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity. [35] At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34] The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[11] viXra:1812.0113 [pdf] submitted on 2018-12-06 08:27:36

Interaction Between Two Qubits Using Photons

Authors: George Rajna
Comments: 85 Pages.

Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46]
Category: Quantum Physics

[10] viXra:1812.0106 [pdf] submitted on 2018-12-06 19:14:46

A Hybrid Model of Matter and Antimatter

Authors: Salvatore Gerard Micheal
Comments: 4 Pages.

an attempt to reconcile two seemingly incompatible concepts: General Relativity and the Standard Model via temporal elasticity
Category: Quantum Physics

[9] viXra:1812.0104 [pdf] submitted on 2018-12-07 04:07:13

Ferent Equation of the Universe

Authors: Adrian Ferent
Comments: 263 Pages. © 2014 Adrian Ferent

“Ferent equation of the Universe:” Adrian Ferent Today ordinary Matter, which includes atoms, stars, galaxies… accounts for only 15% of the contents of the Universe and 85% is Dark Matter. This means Dark Matter accounts for most of the matter in the Universe. Dark Matter neither emits nor absorbs electromagnetic radiation. Ordinary Matter is composed of elementary particles. “The elementary particles contain Dark Matter” Adrian Ferent “Ferent equation for N elementary particles:” Adrian Ferent I consider M, the number of Dark Matter elementary particles, in the Universe. M is the number of Dark Matter elementary particles in Dark Matter and Matter in the Universe. The Universe as a quantum system! The time-dependent Ferent equation of the Universe, which gives a description of the Universe as a quantum system, made of Matter, N elementary particles, and Dark Matter, M elementary particles, evolving in time. 157. I am the first who discovered the Ferent equation of the Universe:
Category: Quantum Physics

[8] viXra:1812.0087 [pdf] submitted on 2018-12-06 03:00:05

Ferent Equation for N Elementary Particles

Authors: Adrian Ferent
Comments: 261 Pages. © 2014 Adrian Ferent

“Ferent equation for N elementary particles:” Adrian Ferent A quantum system involves the wave function. The wave function is the most complete description that can be given of a quantum system. The evolution of N elementary particles quantum system is governed through the Ferent equation for N elementary particles. “The elementary particles contain Dark Matter” Adrian Ferent “The elementary particles contain Dark Matter with the mass much smaller than particles mass, but with much higher energy” Adrian Ferent “In Ferent Quantum Gravity, Gravitation gives mass to the elementary particles” Adrian Ferent That is why: The Higgs mechanism doesn't explains the source of any masses, the Higgs mechanism is not a mechanism for generating mass. “The Ferent mechanism: the interaction energy of gravitons emitted by Dark Matter gives mass to the elementary particles” Adrian Ferent “Ferent equation for elementary particles:” Adrian Ferent “Ferent equation for elementary particle, made of 2 particles, a Matter particle and a Dark Matter particle, is the Unification between Matter and Dark Matter!” Adrian Ferent “Ferent equation for N elementary particles:” Adrian Ferent 156. I am the first who discovered the Ferent equation for N elementary particles
Category: Quantum Physics

[7] viXra:1812.0086 [pdf] submitted on 2018-12-06 03:29:36

Who Needs Wave Equations?

Authors: Jean Louis Van Belle
Comments: No. of pages excludes title page and references

This paper further explores a dual interpretation of the Uncertainty Principle as applied to the classical Rutherford-Bohr calculations of the geometry of the hydrogen electron orbitals. It shows the Rutherford-Bohr model has some advantages over the quantum-mechanical model (Schrödinger’s equation for the hydrogen atom). As such, it basically continues a development started in my previous paper (http://vixra.org/abs/1812.0028). What is novel in this paper is the exploration of the mathematical equivalence between both models.
Category: Quantum Physics

[6] viXra:1812.0084 [pdf] submitted on 2018-12-04 07:29:36

Quantum Materials as Computing Devices

Authors: George Rajna
Comments: 81 Pages.

Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44] There's little doubt the information technology revolution has improved our lives. But unless we find a new form of electronic technology that uses less energy, computing will become limited by an "energy crunch" within decades. [43] Researchers at the Niels Bohr Institute, University of Copenhagen, have recently succeeded in boosting the storage time of quantum information, using a small glass container filled with room temperature atoms, taking an important step towards a secure quantum encoded distribution network. [42] New work by a team at the University of Bristol's Centre for Quantum Photonics has uncovered fundamental limits on the quantum operations which can be carried out with postselection. [41] The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40]
Category: Quantum Physics

[5] viXra:1812.0078 [pdf] submitted on 2018-12-04 10:43:20

Building Block in Quantum Computing

Authors: George Rajna
Comments: 83 Pages.

Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45]
Category: Quantum Physics

[4] viXra:1812.0058 [pdf] submitted on 2018-12-03 09:23:09

Force of the Vacuum

Authors: George Rajna
Comments: 81 Pages.

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. [48] A research group led by Yasuhiro Kuramitsu at Osaka University has revealed a magnetic reconnection driven by electron dynamics for the first time ever in laser-produced plasmas using the Gekko XII laser facility at the Institute of Laser Engineering, Osaka University. [47] By using this method for microscopic failure analysis, researchers and manufacturers could improve the reliability of the MEMS components that they are developing, ranging from miniature robots and drones to tiny forceps for eye surgery and sensors to detect trace amounts of toxic chemicals. [46] A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45]
Category: Quantum Physics

[3] viXra:1812.0055 [pdf] submitted on 2018-12-03 10:26:08

Infrared Image Encoding

Authors: George Rajna
Comments: 84 Pages.

Plasmonic materials can uniquely control the electromagnetic spectrum due to nano-scale surface architecture. [48] A research group led by Yasuhiro Kuramitsu at Osaka University has revealed a magnetic reconnection driven by electron dynamics for the first time ever in laser-produced plasmas using the Gekko XII laser facility at the Institute of Laser Engineering, Osaka University. [47] By using this method for microscopic failure analysis, researchers and manufacturers could improve the reliability of the MEMS components that they are developing, ranging from miniature robots and drones to tiny forceps for eye surgery and sensors to detect trace amounts of toxic chemicals. [46] A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45]
Category: Quantum Physics

[2] viXra:1812.0028 [pdf] submitted on 2018-12-03 03:34:21

Bohr’s Atom, the Photon and the [un]certainty Principle

Authors: Jean Louis Van Belle
Comments: No. of pages include title page and references

This is a didactic exploration of a possible dual interpretation of the Uncertainty Principle as applied to the classical Rutherford-Bohr calculations of the geometry of the hydrogen electron orbitals. It highlights, in particular, a classical mistake in regard to the interpretation of atoms as atomic oscillators – and the calculation of their Q. It also offers a substantial correction to the model of a photon that was presented in a previous paper (The Metaphysics of Physics).
Category: Quantum Physics

[1] viXra:1812.0024 [pdf] replaced on 2018-12-02 08:37:38

Stochastic Space-Time and Quantum Theory:part B: Granular Space-Time

Authors: Carlton Frederick
Comments: 8 Pages.

A previous publication in Phys. Rev. D, (Part A of this paper) pointed out that vacuum energy fluctuations implied mass fluctuations which implied curvature fluctuations which then implied fluctuations of the metric tensor. The metric fluctuations were then taken as fundamental and a stochastic space-time was theorized. A number of results from quantum mechanics were derived. This paper (Part B), in addressing some of the difficulties of Part A, required an extension of the model: In so far as the fluctuations are not in space-time but of space-time, a granular model was deemed necessary. For Lorentz invariance, the grains have constant 4-volume. Further, as we wish to treat time and space similarly, we propose fluctuations in time. In order that a particle not appear at different points in space at the same time, we find it necessary to introduce a new model for time where time as we know it is emergent from an analogous coordinate, tau-time, τ, where ' τ -Time Leaves No Tracks' (that is to say, in the sub-quantum domain, there is no 'history'). The model provides a 'meaning' of curvature as well as a (loose) derivation of the Schwartzschild metric without need for the General Relativity field equations. The purpose is to fold the seemingly incomprehensible behaviors of quantum mechanics into the (one hopes) less incomprehensible properties of space-time.
Category: Quantum Physics