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This paper conducts a security analysis of the generalized k-out-of-m spacetime-constrained obliv-
ious transfer protocol in the context of relativistic quantum cryptography. The introduction of this
paper provides an overview of relativistic quantum cryptography and delves into the details of the
spacetime-constrained oblivious transfer protocol. The subsequent sections of the paper focus on
determining the successful probability of various cloning and measurement attacks. The majority
of the analysis will be based on the simplest case when m = 3 and k = 2.

I. INTRODUCTION

A. Quantum Cryptography

Quantum cryptography is the application of quantum
mechanics to transmit and secure messages. The concept
was initially introduced by physicist Stephen Wiesener
in the 1970s through the utilization of quantum coding.
Wiesener’s innovative ideas were formally documented in
his groundbreaking paper titled ”Conjugate Coding” [1]
which was published in 1983. In this paper, Wiesener
argued for the use of quantum money, a unique form of
currency that would self-destruct upon being accessed.

Since then, various quantum cryptography protocols
have been developed, all of which incorporate some vari-
ation of quantum key distribution (QKD). QKD serves
as the quantum mechanical counterpart to classical key
distribution, facilitating secure communication between
two parties. The significance of a key distribution can be
demonstrated through the following example:

1. Alice and Bob privately share a key, call it x0, with
one another (this step is the key distribution). This
key is n bits long.

2. At some later time, Alice wishes to communicate
with Bob. Alice creates and sends publicly a n bit
message, calling it xm. This message can be read
by anyone including Bob. This n bit message is
designed in a way such that Alice’s true message is
m = x0+xm.

3. Bob upon receiving xm adds to the x0 to reveal the
real message

4. Alice and Bob can continue to communicate
through the key they exchanged.

It is in Alice’s and Bob’s best interest that the key dis-
tribution (classical or quantum) is as secure as possible
from an eavesdropper. Quantum key distribution sepa-
rates itself from the classical key distribution with the
use of the no-cloning theorem, first written by Wooters
and Zurek in 1982 [2]. The no-cloning theorem states
that it is impossible to perfectly clone a non-orthogonal
quantum state.
The importance of the no-cloning theorem can be shown
as follows: [3]

1. Alice wishes to send this qubit to Bob, and has
agreed on a basis X to prepare the qubit.

2. Alice creates this qubit and sends it to Bob

3. If an eavesdropper gets a hold of this qubit, the
only way they can get any information about this
qubit is through its measurement since they cannot
clone or duplicate the qubit.

4. Since the measurement collapses the quantum state
and the eavesdropper has no way of knowing Alice’s
original state, the original message is safe from an
eavesdropper.

These ideas culminated in Charles H. Bennet and
Gilles Brassard’s 1984 paper on the famous BB84 quan-
tum key distribution protocol. [4] This paper outlined
a viable quantum key distribution method that thanks
to the no-cloning theorem allows for the key to be sent
between two parties in secret.

B. Oblivious transfer

This paper will analyze security attacks against the
quantum cryptography approach to oblivious transfer.
The general oblivious transfer is a communication
protocol that takes place between two parties that do
not trust each other. The first oblivious transfer protocol
was introduced in 1981 by Michael O. Rabin[5] and
used the Rivest, Shamir, Adleman (RSA) cryptosystem.
Later oblivious transfer protocols improved on Rabin’s
work and are called 1− 2 oblivious transfer.
The generalized oblivious transfer case works when a
sender Alice, sends n messages to the receiver, Bob.
Bob then picks one message to read. Bob cannot read
any of the other messages, while Alice is oblivious to
which message Bob picked. This protocol is officially
called: ”1-out-of-n oblivious transfer.” [6] This paper
will analyze a generalized quantum relativistic analog
known as k-out-of-m spacetime-constrained oblivious
transfer.
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C. Special relativity

We now briefly turn our attention to special relativity.
The principles of special relativity dictate no superlumi-
nal or faster-than-light communication. It can be shown
that without the consideration of special relativity, quan-
tum oblivious transfer is impossible. [7]

This paper will outline possible attacks and conduct a
security analysis of this protocol. The next section will
provide an introduction to this protocol, first outlined
by Damián Pitalúa-Garćıa in this paper. [8]The paper
will then go through various attacks on this protocol and
analyze the optimum one.

II. k OUT OF m SPACETIME CONSTRAINT
OBLIVIOUS TRANSFER

FIG. 1. 2 in 3 SCOT diagram.
1) Alice sends the 2 blocks each consisting of three messages
to Bob. The messages are prepared in three distinct bases
and the order is random (known to Alice).
2) Bob reads each of the two blocks in one of the three bases
Alice used to prepare the message. The choice of bases is
secret to Bob. Bob sends the results to all of his labs.
3) Alice sends S to Bob. S contains the order of the bases
(so Bob knows which message he got).
4) At this point Bob has two of the three messages since the
third message was prepared on a basis different from the one
Bob read his messages.

Consider two parties: Alice and Bob, who wish to com-
municate with each other. Alice sends out m distinct
messages to Bob, with an honest Bob desiring to read
only k of these messages. Conversely, a dishonest Alice
seeks to identify precisely which messages Bob has se-
lected, while a dishonest Bob aims to access every single
message. This corresponds to the classical k-out-of-m
oblivious transfer.

In the quantum cryptography analog, the objectives
for a dishonest Bob are slightly adjusted.
Consider m spacetime regions labeled as R =

{R0, R1, . . . , Rm}. Each spacetime region is space-like
separated. Each Ri contains a Bob’s agent, as indicated
by the blue rectangles in Figure 1. The goal of an honest
Bob is to obtain the ith message at the ith spacetime
region for k messages and spacetime regions.
However, the goal for a dishonest Bob has been mod-

ified in such a way that Bob seeks the ith message from
Alice at the ith spacetime region for all m messages and
regions. This implies that even if Bob manages to ac-
quire all m messages at a particular spacetime region, if
the condition above is not satisfied, dishonest Bob has
not achieved his goal. The protocol proceeds as follows:

1. Alice creates m distinct messages. Call the set of
messages M = {M1,M2 . . .Mm}. Each message is
n bits long. Each message cannot be considered
indistinguishable from one another since the order
of the messages is important to Bob.

2. Alice creates k blocks consisting of the m mes-
sages. Each block contains identical messages, how-
ever, the messages are randomly shuffled and pre-
pared on a set basis that corresponds to the or-
der of the message. We denote the set of basis B
= {B1, B2...Bm}. B1 corresponds to the basis of
M1, B2 corresponds toM2, and so on. Bob is aware
of the relationship between the basis and message
order. However, Bob is made unaware of the order
in which Alice shuffles the messages in the k blocks.
We denote the correct order and basis in each block
by the set S.

3. At this point Alice sends all k blocks to Bob. At
this point, Bob measures each block in a way that
matches the message he wants. For example, if Bob
wants to know the ith message, he measures one of
the blocks in Bi. After doing this for all k blocks,
Bob sends the results of the measurements to the
relevant spacetime region, and the measurement of
the block in Bi goes to the ith spacetime region,
Ri. During this measurement process, Alice has no
way of knowing which basis Bob uses to measure
his qubits.

4. When Bob’s agents receive the message from Bob
at the spacetime regions, Alice sends S directly to
each spacetime region. In Figure 1, this is done
with Alice’s agents ai next to each spacetime region
Ri. It is integral to the security of the protocol
that S is not revealed to Bob when he receives the
messages from Alice.

5. Bob’s agents use S to determine the exact message
from his measurements of the block. Note thatm−
1 messages will likely be incorrect, while only the
message measured with the correct basis will be
correct.
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6. The spacetime regions end just before the regions
stop being spacelike separated, this is to ensure
Bob’s agents cannot communicate with one an-
other.

1. Protocol example (2-out-of-3 SCOT)

When encrypting her blocks, Alice uses m different
basis. For simplicity, let us denote our basis B as the
computational, Hadamard, and the Y-basis:

B = {C,H, Y }

FIG. 2. Bloch sphere with the C,H, Y basis.

1. Computational = C = {|0⟩ , |1⟩}

2. Hadamard = H = { |0⟩+|1⟩
2 , |0⟩−|1⟩

2 }

3. Y basis = Y = { |0⟩+|i⟩
2 , |0⟩−|i⟩

2 }

Alice’s encryption key is the order in which she applies
the basis to her messages. Say Alice has 2 blocks of 3
messages (2 in 3). This means her encryption key which
denotes S may look like this:

S = {H,C, Y }, {Y,H,C}

WLOG, let’s say the computational basis represents
the first message, the Hadamard basis represents the sec-
ond message, and the Y-basis represents the third mes-
sage. Note that all the bases here are orthonormal.

Alice sends these encrypted blocks to Bob. Bob then
measures each block in a way such that he gets the mes-
sage he wants in the future. For example, he measures
one of the blocks in the computational basis to acquire
the first message, while he measures the other block in
the Hadamard basis to acquire the second message. Bob
now sends the results of the measurements to each of his
agents in the spacetime regions.

Alice now sends S to each of Bob’s agents through her
adjacent labs (or some other mechanism, it is important

FIG. 3. These are Alice’s two blocks, each square consists of
a message prepared with a particular basis

that Bob does not gain access to S before he sends the
readings to each of his labs.)
Bob now compares S with his messages. For example,

if Bob measured the first block with the computational
basis, Bob knows (by way of S) that the second message
in the block was measured correctly.

2. Introduction to attacks

The steps mentioned prior are with an honest Bob.
In reality, Bob wishes for all his m labs to access all m
of the messages; Bob wants to cheat the protocol. This
paper focuses on the various cheating strategies Bob can
use to reach this objective, giving a measurement of the
probability of success.

3. Probability of success and fidelity of attack

The fidelity of a cloning protocol is defined as:

F (ρ, σ) =

(
Tr

(√√
ρσ

√
ρ

))2

,

where ρ is the density matrix of the original state, and
σ is the density matrix of the cloned state. The fidelity
gives the closeness of two quantum states.
The fidelity in pure states is much simpler with:

F (ρ, σ) = | ⟨ψρ|ψσ⟩ |2.

A fidelity of 1 means the two states are identical while
the fidelity of 0 means the two states are orthogonal.
Note that by the no-cloning theorem, perfect cloning of
fidelity 1 is impossible when the states do not belong to
the same orthogonal basis. We say the fidelity is equal to
the probability that the measurement of the cloned state
will equal the measurement of the original state.
The goal is to find a success probability or the like-

lihood that Bob can get Alice’s ith message at the ith
spacetime region for all m. Considering the fidelity, we
equate Bob’s likelihood of acquiring Alice’s message with
the likelihood of the cloned state being similar to the orig-
inal state. This is ordinarily not true since we may still
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measure the correct output if the cloning process fails
by random chance. This is one of the assumptions this
paper makes.

4. Assumptions

In addition to the Fidelity equals success probability
assumption just mentioned, this paper assumes there is
no noise or errors in the transportation of messages.

III. TYPES OF ATTACKS

A. Base probability

This is the base probability, the probability Bob has
to beat for a cheating strategy to be considered viable.
If Bob were to conduct his protocol honestly and guess
a single message, he would have a probability of success
of:

P1 = 2−n,

If he has to perfectly guess all m messages, if he knows
k messages (following protocol honestly), he has a prob-
ability of

P = 2−(m−k)n.

This is because there are m−k labs without the blocks
and there are n bits in each message, and each bit can
equally be a 0 or a 1.
Since we are doing 2-out-of-3 SCOT, the probability is:

Psuccess = 2−n. (1)

B. Improperly following protocol

Here Bob doesn’t properly follow the honest protocol.

1. Bob sends each block to a lab of his choice.

This leaves m − k labs without a block or a message.
The probability for success is exactly the base probability
or 2−(m−k)n.

2. Bob splits up the blocks

In this strategy, Bob takes a block and splits it into
the m parts. Bob then sends each part to a lab. This
happens k times. As a result, each lab has k messages.
Each of Bob’s labs collects S from Alice and hopes that
he has split up the messages correctly. Since the order
messages and the order of basis are the same, the success

probability is the same as if Bob had guessed S as soon
as he received the k blocks from Alice.
Here is a GitHub program finding the probabil-
ity of success for an arbitrary m and k. Link:
https://github.com/n-diwan/mkSCOTattacks/tree/
main/attacks/guesss
The program is written in Java, with a Sequence class
for the design of the blocks and a test class for guessing
S. For 2 out of 3 the probability is 11

36 . The simulation
runs through thousands of trials to approximate the
success probability.

3. Bob tries to optimize his chances

Here Bob sends one block to one lab, thus achieving
the first message in the first lab. Bob then guesses the
exact order of the messages in the second block. Bob
needs the exact order of all three messages in the block
to gain access to the second and third messages. The
probability of this is in 2 out of 3 SCOT is:

Psuccess =
1

m!
=

1

6
. (2)

4. Guessing arbitrary angle

This technique involves Bob guessing an arbitrary basis
vector on the Bloch sphere to conduct measurements.
Essentially Bob uses a separate basis Bi+1 to perform the
measurements. To start we consider a point on the Bloch
sphere with the following spherical coordinate notation,
(θ, ϕ)

FIG. 4. Caption

We assume our basis is the H,C, Y . The components
in the x, y, z axis are:

https://github.com/n-diwan/mkSCOTattacks/tree/main/attacks/guesss
https://github.com/n-diwan/mkSCOTattacks/tree/main/attacks/guesss
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• X → sin(ϕ)cos(θ))

• Y → sin(ϕ)sin(θ))

• Z → cos(ϕ).

The probability of success of an arbitrary unit vector ⃗̂v
measured is

Pi = (⃗̂v ·Bi)
2

such that ∑
i

Pi = 1

for Bi = {H,C, Y }.
Now, there’s an equal probability that each basis is cho-
sen so:

Pi =
1

3
.

We then find the components of our optimum basis by
taking the square root of the probability of each Pi for
all i ∈ {x, y, z}. The value is the component in the ith
basis.

⃗̂voptimum = (
1√
3
,
1√
3
,
1√
3
).

Now if we measure each message using this basis, the
probability that it is correctly measured is ( 13 )

n per n
bit message. This is worse than just guessing, so this
probability will be omitted from the final result.

C. Cloning attacks

If the no-cloning theorem was untrue, then Bob would
duplicate the blocks and send each block to his labs.
Upon Alice sending S, Bob would be able to simulta-
neously access all m messages at all m labs.
However, because of the no-cloning theorem, Bob can-
not perfectly clone the quantum states that he is given.
Hence a viable cheating strategy is to clone as accurately
as possible.

1. Universal cloning machine

Bob clones one of his blocks and honestly sends one
of the blocks to his labs. We use the fidelity formula
in d dimensions for a universal cloning machine (Scarani
2005):

FN→M =
N

M
+

(M −N)(N + 1)

M(N + d)
,

where d is the dimension of quantum state, N is the
original copies of the state, M is the final number of
copies. If we clone one block into 2 blocks, N = 1,M = 2,

d = 23n. The formula for d exists because there are 3n
qubits in each block. This results in a fidelity per each
block of:

F =
1

2
+

1

(1 + 23n)

Since there are two blocks, the probability of success for
each is independent hence:

Psuccess = F 2 = (
1

2
+

1

(1 + 23n)
)2.

However, it is important to note that Bob cares about
only one of the three bases in each block. This means
the actual probability of success is much greater (if the
cloning goes incorrectly, there is a sizeable chance the
desired message is still intact). Also, we cannot do a
2 → 3 clone because the two blocks are not identical.

2. State dependent cloning machine

This kind of cloning machine is optimized for particular
states. The most popular type of state-dependent cloning
is phase covariant cloning, which maximizes fidelity for
BB84 states.
The issue with phase covariant cloning is that it only
clones states on the equatorial plane. With 2 in 3 SCOT,
only two of our bases lie in a single plane. Consider the
following scheme for 2 in 3 SCOT.

1. Send one block to one lab and conduct the protocol
honestly. WLOG, say this is the first lab and that
it successfully acquires the first message.

2. Do phase covariant cloning on the second block.
The only way this phase covariant method can work
is if the two bases used on the two remaining mes-
sages in the blocks are in the same plane as our
phase covariant cloning machine. In other words,
this cloning machine can only work in this second
block; the first message has a basis that’s not on the
phase covariant cloning machine equatorial plane.

The 1 → 2 phase covariant cloning machine fidelity
[9]is:

Foptimal =
1

d
+

1

4d
(αβ

√
2(d− 1)

d
+ β2 d− 2

2d

with

α = (
1

2
− d− 2

2
√
d2 + 4d− 4

)
1
2 , β = (

1

2
+

d− 2

2
√
d2 + 4d− 4

)
1
2

Now d = 23n. The probability that we get the correct
order of basis is 1

3 . Since there are two blocks, and the
probability of success is independent we square it. The
final probability is:

Psuccess = (
1

3
)(Fd=23n)

2 (3)

There is also a generalized phase covariant method,
but such an analysis has not been done yet.
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IV. CONCLUSION

Here’s a graph with all the attacks mentioned in this
paper: Guessing the value of S for 2 out of 3 is the best

FIG. 5. The x-axis is the number of bits in a message. The
y-axis is the probability of success. This is 2 out of 3 SCOT.

approach. However, guessing S quickly falls as m and k
increase. Also, it is important to note that the success
probability of universal quantum cloning stated on the
graph is the bare minimum as we are not interested in a
completely perfect clone (see section above). Universal
quantum cloning also has a minimum probability of 1

k−1
if m and k increase. Despite this, there may exist other
attacks that may surpass the current success probabili-
ties. Further research on setting an upper bound for k
out of m attacks is needed.
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