**Previous months:**

2010 - 1003(11) - 1004(4) - 1005(2) - 1006(7) - 1007(2) - 1008(5) - 1009(7) - 1010(5) - 1011(1)

2011 - 1101(4) - 1102(3) - 1103(7) - 1104(18) - 1106(3) - 1107(4) - 1108(2) - 1109(1) - 1110(2) - 1111(3) - 1112(1)

2012 - 1201(3) - 1202(1) - 1203(3) - 1204(3) - 1205(6) - 1208(1) - 1209(1) - 1210(2) - 1211(4)

2013 - 1301(1) - 1303(4) - 1304(2) - 1305(2) - 1306(9) - 1307(2) - 1308(2) - 1309(2) - 1310(2) - 1311(3) - 1312(6)

2014 - 1401(4) - 1402(1) - 1404(4) - 1405(5) - 1406(2) - 1407(3) - 1408(4) - 1409(3) - 1410(2) - 1411(3)

2015 - 1502(5) - 1504(2) - 1507(2) - 1508(8) - 1510(1) - 1511(4) - 1512(4)

2016 - 1601(1) - 1602(6) - 1604(1) - 1605(4) - 1606(2) - 1607(27)

Any replacements are listed further down

[239] **viXra:1607.0369 [pdf]**
*submitted on 2016-07-19 15:02:18*

**Authors:** Jeffrey Joseph Wolynski

**Comments:** 2 Pages. 3 illustrations

It is shown that simple geometry could have been used to make the discovery that planet formation is stellar evolution.

**Category:** Geometry

[238] **viXra:1607.0356 [pdf]**
*submitted on 2016-07-18 07:10:10*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 11 Pages.

In this article, we define the Lucas’s inner
circles and we highlight some of their properties.

**Category:** Geometry

[237] **viXra:1607.0355 [pdf]**
*submitted on 2016-07-18 07:11:14*

**Authors:** Florentin Smarandache

**Comments:** 3 Pages.

We present here the magic square of order n.

**Category:** Geometry

[236] **viXra:1607.0349 [pdf]**
*submitted on 2016-07-18 07:18:12*

**Authors:** Florentin Smarandache

**Comments:** 5 Pages.

Postulatul V al lui Euclid se enunta sub forma: daca o dreapta, care intersecteaza doua drepte, formeaza unghiuri interioare de aceeasi parte
mai mici decat doua unghiuri drepte, aceste drepte, prelungite la infinit, se intalnesc in parte a unde unghiurile interioare sunt mai mici decal doua unghiuri drepte.

**Category:** Geometry

[235] **viXra:1607.0348 [pdf]**
*submitted on 2016-07-18 07:18:58*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 Pages.

In this article, we highlight some metric
properties in connection with Neuberg's circles and triangle. We recall some results that are necessary.

**Category:** Geometry

[234] **viXra:1607.0346 [pdf]**
*submitted on 2016-07-18 07:21:25*

**Authors:** Florentin Smarandache

**Comments:** 3 Pages.

It is a lot easier to deny the Euclid`s five postulates, than Hilbert`s twenty thorough axiom.

**Category:** Geometry

[233] **viXra:1607.0341 [pdf]**
*submitted on 2016-07-18 07:27:33*

**Authors:** Florentin Smarandache

**Comments:** 2 Pages.

In 1969, fascinat de geometrie, am construit un spatiu partial eueliadian si partial neeuclidian
in acelasi timp, inlocuind postulatul V al lui Euclid (axioma paralelelor) prin urmatoarea
propozitie stranie continand cinci asertiuni.

**Category:** Geometry

[232] **viXra:1607.0331 [pdf]**
*submitted on 2016-07-18 07:38:11*

**Authors:** Florentin Smarandache

**Comments:** 2 Pages.

Les axes radicals de n cercles d'un même plan, pris deux à deux, dont les centres ne sont pas alignes, sont concourants.

**Category:** Geometry

[231] **viXra:1607.0330 [pdf]**
*submitted on 2016-07-18 07:40:58*

**Authors:** Florentin Smarandache

**Comments:** 2 Pages.

In 1969, intrigued by geometry I constructed a partially euclidean and partially non-Euclidean space.

**Category:** Geometry

[230] **viXra:1607.0325 [pdf]**
*submitted on 2016-07-18 07:53:17*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 11 Pages.

In this article, we emphasize the radical axis of the Lemoine’s circles.

**Category:** Geometry

[229] **viXra:1607.0323 [pdf]**
*submitted on 2016-07-18 07:55:17*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 Pages.

In this article, we define the first Droz-Farny’s circle, we establish a connection between it and a concyclicity theorem, then we generalize this theorem, leading to the generalization of Droz-Farny’s circle.

**Category:** Geometry

[228] **viXra:1607.0322 [pdf]**
*submitted on 2016-07-18 07:56:54*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 Pages.

In this article, we prove the theorem
relative to the second Droz-Farny’s circle, and a sentence that generalizes it.

**Category:** Geometry

[227] **viXra:1607.0304 [pdf]**
*submitted on 2016-07-18 08:23:01*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 25 Pages.

In this article, we solve problems of geometric constructions only with the ruler, using known theorems.

**Category:** Geometry

[226] **viXra:1607.0303 [pdf]**
*submitted on 2016-07-18 08:23:58*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 6 Pages.

The late mathematician Cezar Cosnita, using the barycenter coordinates, proves two theorems which are the subject of this article.

**Category:** Geometry

[225] **viXra:1607.0302 [pdf]**
*submitted on 2016-07-18 08:24:44*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 Pages.

In this article, we prove several theorems about the radical center and the radical circle of ex-inscribed circles of a triangle and calculate the radius of the circle from vectorial considerations.

**Category:** Geometry

[224] **viXra:1607.0260 [pdf]**
*submitted on 2016-07-18 05:32:50*

**Authors:** Florentin Smarandache

**Comments:** 14 Pages.

It is possible to de-formatize entirely Hilbert`s group of axioms of the Euclidean Geometry, and to construct a model such that none of this fixed axiom holds.

**Category:** Geometry

[223] **viXra:1607.0258 [pdf]**
*submitted on 2016-07-18 05:34:44*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 Pages.

This article highlights some properties of
Apollonius’s circle of second rank in connection with the adjoint circles and the second Brocard’s triangle.

**Category:** Geometry

[222] **viXra:1607.0253 [pdf]**
*submitted on 2016-07-18 05:40:32*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 Pages.

In this article, we prove the theorem relative to the circle of the 6 points and, requiring on this circle to have three other remarkable triangle’s points, we obtain the circle of 9 points (the Euler’s Circle).

**Category:** Geometry

[221] **viXra:1607.0240 [pdf]**
*submitted on 2016-07-18 06:07:02*

**Authors:** Florentin Smarandache

**Comments:** 5 Pages.

Let P, L be two sets, and r a relation included in PxL.

**Category:** Geometry

[220] **viXra:1607.0229 [pdf]**
*submitted on 2016-07-18 06:36:40*

**Authors:** Florentin Smarandache

**Comments:** 4 Pages.

Dans ces paragraphss on présente "trois généralisations du célèbre théorème de Ceva.

**Category:** Geometry

[219] **viXra:1607.0227 [pdf]**
*submitted on 2016-07-18 06:39:23*

**Authors:** Florentin Smarandache

**Comments:** 2 Pages.

Let’s consider the points A1,...,An situated on the same plane, and B1,...,Bn situated on another plane, such that the lines A1B1 are concurrent. Let’s prove that if the lines AiAj and BiBj are concurrent, then their intersecting points are collinear.

**Category:** Geometry

[218] **viXra:1607.0225 [pdf]**
*submitted on 2016-07-18 06:41:46*

**Authors:** Florentin Smarandache

**Comments:** 2 Pages.

What happens in 3-space when the poiygon is replaced by a polyhedron?

**Category:** Geometry

[217] **viXra:1607.0209 [pdf]**
*submitted on 2016-07-18 07:05:18*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 7 Pages.

In this article, we get to Lemoine's circles
in a different manner than the known one.

**Category:** Geometry

[216] **viXra:1607.0208 [pdf]**
*submitted on 2016-07-18 07:06:38*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 8 Pages.

For the calculus of the first Lemoine’s circle, we will first prove.

**Category:** Geometry

[215] **viXra:1607.0166 [pdf]**
*submitted on 2016-07-13 22:10:37*

**Authors:** James A. Smith

**Comments:** 11 Pages.

This document adds to the collection of solved problems presented in [1]-[4]. After reviewing, briefly, how reflections and rotations can be expressed and manipulated via GA, it solves the LLP limiting case of the Problem of Apollonius in two ways.

**Category:** Geometry

[214] **viXra:1607.0086 [pdf]**
*submitted on 2016-07-07 07:28:29*

**Authors:** Kermit Ohlrabi

**Comments:** 14 pages

Let ${j_{\mathscr{{Y}}}}$ be a M\"obius homomorphism. Every student is aware that there exists a freely Gaussian meager, globally tangential polytope. We show that every continuous triangle is finitely Desargues. The work in \cite{cite:0} did not consider the almost Torricelli, co-locally $\varphi$-standard case. Now this leaves open the question of convergence.

**Category:** Geometry

[213] **viXra:1607.0015 [pdf]**
*submitted on 2016-07-02 02:33:06*

**Authors:** Philip Gibbs

**Comments:** 17 Pages.

Sixty years ago Richard Bellman issued a difficult challenge to his fellow mathematicians. If a rambler is lost in a forest of known shape and size, how can she find the best path to follow in order to escape as quickly as possible? So far solutions are only known for a handful of simple cases and the general problem has therefore been described as “unapproachable.” In this work a computational “random paths” method to search for optimal escape paths inside convex polygonal forests is described. In particular likely solutions covering all cases of isosceles triangles are given. Each conjectured solution provides a potentisl upper-bound for Moser’s worm problem. Surprisingly there are two cases of triangles which would provide improvements on the best known proven upper bounds.

**Category:** Geometry

[212] **viXra:1606.0253 [pdf]**
*submitted on 2016-06-24 06:43:12*

**Authors:** James A. Smith

**Comments:** 8 Pages.

This document is intended to be a convenient collection of explanations and techniques given elsewhere in the course of solving tangency problems via Geometric Algebra.

**Category:** Geometry

[211] **viXra:1606.0050 [pdf]**
*submitted on 2016-06-05 13:16:17*

**Authors:** Philip Gibbs

**Comments:** 8 Pages.

Bellman’s challenge to find the shortest path to escape
from a forest of known shape is notoriously difficult. Apart from a
few of the simplest cases, there are not even many conjectures for
likely solutions let alone proofs. In this work it is shown that when
the forest is a convex polygon then at least one shortest escape path
is a piecewise curve made from segments taking the form of either
straight lines or circular arcs. The circular arcs are formed from the
envelope of three sides of the polygon touching the escape path at
three points. It is hoped that in future work these results could lead
to a practical computational algorithm for finding the shortest escape
path for any convex polygon.

**Category:** Geometry

[210] **viXra:1605.0314 [pdf]**
*submitted on 2016-05-31 21:49:03*

**Authors:** James A. Smith

**Comments:** 19 Pages.

The famous "Problem of Apollonius", in plane geometry, is to construct all of the circles that are tangent, simultaneously, to three given circles. In one variant of that problem, one of the circles has innite radius (i.e., it's a line). The Wikipedia article that's current as of this writing has an extensive description of the problem's history, and of methods that have been used to solve it. As described in that article, one of the methods reduces the "two circles and a line" variant to the so-called "Circle-Line-Point" (CLP) special case: Given a circle C, a line L, and a point P, construct the circles that are tangent to C and L, and pass through P. This document has been prepared for two very different audiences: for my fellow students of GA, and for experts who are preparing materials for us, and need to know which GA concepts we understand and apply readily, and which ones we do not.

**Category:** Geometry

[209] **viXra:1605.0233 [pdf]**
*submitted on 2016-05-22 20:06:09*

**Authors:** James A. Smith

**Comments:** 6 Pages.

The beautiful Problem of Apollonius from classical geometry (``\textit{Construct all of the circles that are tangent, simultaneously, to three given coplanar circles}") does not appear to have been solved previously by vector methods. It is solved here via GA to show students how they can make use of GA's capabilities for expressing and manipulating rotations and reflections. As Viète did when deriving his ruler-and-compass solution, we first transform the problem by shrinking one of the given circles to a point. In the course of solving the transformed problem, guidance is provided to help students ``see" geometric content in GA terms. Examples of the guidance that is given include (1) recognizing and formulating useful reflections and rotations that are present in diagrams; (2) using postulates on the equality of multivectors to obtain solvable equations; and (3) recognizing complex algebraic expressions that reduce to simple rotations of multivectors.

**Category:** Geometry

[208] **viXra:1605.0232 [pdf]**
*submitted on 2016-05-22 20:17:30*

**Authors:** James A. Smith

**Comments:** 76 Pages.

Written as somewhat of a "Schaums Outline" on the subject, which is especially useful in robotics and mechatronics. Geometric Algebra (GA) was invented in the 1800s, but was largely ignored until it was revived and expanded beginning in the 1960s. It promises to become a "universal mathematical language" for many scientific and mathematical disciplines. This document begins with a review of the geometry of angles and circles, then treats rotations in plane geometry before showing how to formulate problems in GA terms, then solve the resulting equations. The six problems treated in the document, most of which are solved in more than one way, include the special cases that Viete used to solve the general Problem of Apollonius.

**Category:** Geometry

[207] **viXra:1605.0024 [pdf]**
*submitted on 2016-05-03 01:13:07*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 180 Pages.

We approach several themes of classical geometry of the circle and complete them with some original results, showing that not everything in traditional math is revealed, and that it still has an open character. The topics were chosen according to authors aspiration and attraction, as a poet writes lyrics about spring according to his emotions.

**Category:** Geometry

[206] **viXra:1604.0148 [pdf]**
*submitted on 2016-04-09 00:13:17*

**Authors:** Christopher Goddard

**Comments:** Presentation / Slidedeck, 41 pages

This slide-deck was used as a vehicle for delivery of a talk received at the Mathematics of Planet Earth conference 2013 in Melbourne. In the contents provided herein, I sketch an approach to understand and control dynamical systems that may be subject to tipping points, vis a vis catastrophe theory.

**Category:** Geometry

[205] **viXra:1602.0270 [pdf]**
*submitted on 2016-02-21 13:29:33*

**Authors:** Bogdan Szenkaryk "Pinopa"

**Comments:** 1 Page. Contact the Author - ratunek.nauki(at)onet.pl

The article comprises equation even more beautiful than Euler's identity, which is considered the most beautiful math equation. The equation is even more beautiful, because from it is derived Euler's identity. Besides, there can be derived from it many other no less beautiful mathematical identities as Euler's.

**Category:** Geometry

[204] **viXra:1602.0269 [pdf]**
*submitted on 2016-02-21 13:31:46*

**Authors:** Bogdan Szenkaryk "Pinopa"

**Comments:** 1 Page. Contact the Author - ratunek.nauki(at)onet.pl

Novelty which earlier - before it appears - no one saw; the beautiful equation.

**Category:** Geometry

[203] **viXra:1602.0252 [pdf]**
*submitted on 2016-02-20 11:33:33*

**Authors:** Robert B. Easter

**Comments:** 12 Pages.

This paper gives an overview of two different, but closely related, double conformal geometric algebras. The first is the G(8,2) Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), and the second is the G(4,8) Double Conformal Space-Time Algebra (DCSTA). DCSTA is a straightforward extension of DCGA. The double conformal geometric algebras that are presented in this paper have a large set of operations that are valid on general quadric surface entities. These operations include rotation, translation, isotropic dilation, spacetime boost, anisotropic dilation, differentiation, reflection in standard entities, projection onto standard entities, and intersection with standard entities. However, the quadric surface entities and other "non-standard entities" cannot be intersected with each other.

**Category:** Geometry

[202] **viXra:1602.0249 [pdf]**
*submitted on 2016-02-20 04:32:07*

**Authors:** Orgest ZAKA, Kristaq FILIPI

**Comments:** 9 Pages.

In this paper, based on several meanings and statements discussed in the literature, we intend
constuction a affine plane about a of whatsoever corps (K,+,*). His points conceive as
ordered pairs (α,β), where α and β are elements of corps (K,+,*). Whereas straight-line in
corps, the conceptualize by equations of the type x*a+y*b=c, where a≠0K or b≠0K the
variables and coefficients are elements of that body. To achieve this construction we prove
some theorems which show that the incidence structure A=(P, L, I) connected to the corps
K satisfies axioms A1, A2, A3 definition of affine plane. In all proofs rely on the sense of the
corps as his ring and properties derived from that definition.

**Category:** Geometry

[201] **viXra:1602.0234 [pdf]**
*submitted on 2016-02-19 06:49:44*

**Authors:** Espen Gaarder Haug

**Comments:** 14 Pages.

Squaring the Circle is a famous geometry problem going all the way back to the ancient Greeks. It is the great quest of constructing a square with the same area as a circle using a compass and straightedge in a finite number of steps. Since it was proved that ⇡ was a transcendental number in 1882, the task of Squaring the Circle has been considered impossible. Here, we will show it is possible to Square the Circle in Euclidean space-time. It is not possible to Square the Circle in Euclidean space alone, but it is fully possible in Euclidean space-time, and after all we live in a world with not only space, but also time. By drawing the circle from one reference frame and drawing the square from another reference frame, we can indeed Square the Circle. By taking into account space-time rather than just space the Impossible is possible! However, it is not enough simply to understand math in order to Square the Circle, one must understand some “basic” space-time physics as well.

**Category:** Geometry

[200] **viXra:1602.0074 [pdf]**
*submitted on 2016-02-06 11:14:56*

**Authors:** editor Florentin Smarandache

**Comments:** 156 Pages.

In the new Techno-Art of Selariu SuperMathematics Functions ALBUM (the second book of Selariu SuperMathematics Functions), one contemplates a unique COMPOSITION, INTER-, INTRA- and TRANS-DISCIPLINARY. A comprehensive and savant INTRODUCTION explains the genesis of the inserted "figures", the addressees being, without discriminating criteria, equally engineers, mathematicians, artists, graphic designers, architects, and all lovers of beauty – as the love of beauty is the supreme form of love. If I should put a label on the "content" of this ALBUM, I would concoct the word NEO-BEAUTY!
The new complements of mathematics, reunited under the name of ex-centric mathematics (EM), extend (theoretically, endless) their scope; in this respect, Selariu SuperMathematics Functions are undeniable arguments! The author has labored (especially in the last three decades) extensively and fruitfully in the elitist field of the domain.
To mention some 'milestones' in this ALBUM, I choose specific mathematical elements, supermatematically hybridated: quadrilobic cubes, sphericubes, conopyramids, ex-centric spirals, severed toroids. There are also those that would qualify as "utilitarian": clepsydras, vases, baskets, lampions, or those suggestively “baptized” (by the author): butterflies, octopuses, flying saucers, jellies, roundabouts, ribands, and so on – all superlatively designed in shapes and colors! Striking phrases, such as “staggering multiplication of the dimensions of the Universe”, “integration through differential division” etc., become plausible (and explained) by replacing the time (of Einstein's four-dimensional space) with ex-centricity. Consequently, classical geometrical bodies (for e=0): the sphere, the cylinder, the cone, undergo metamorphosis (for e = +/-1), respectively into a cube, a prism, a pyramid. Inevitably and invariably, it is confirmed again that science is a finite space that grows in the infinite space; each new "expansion" does include a new area of unknown, but the unknown is inexhaustible...
Just browsing the ALBUM pages, you feel induced by the sensation of pleasure, of love at first sight; the variety of "exhibits", most of them unusual, the elegance, the symmetry of the layout, the chromatic, and so one, delight the eye, but equally incites to catchy intellectual exploration.

**Category:** Geometry

[199] **viXra:1601.0127 [pdf]**
*submitted on 2016-01-12 09:19:21*

**Authors:** Kang Yang, Kevin yang, Shuang-ren Ren Zhao

**Comments:** 13 Pages. This is one of best method to create a polygon or to solve the problem "inside the polygon"

There are many method for nding whether a point is inside a polygon or not. The congregation
of all points inside a polygon can be referred point congregation of polygon. Assume on a plane
there are N points. Assume the polygon have M vertexes. There are O(NM) calculations to create
the point congregation of polygon. Assume N>>M, we oer a parallel calculation method which
is suitable for GPU programming. Our method consider a polygon is consist of many fan regions.
The fan region can be positive and negative.
We wold like to extended this method to 3 D problem where a polyhedron instead of polygon should be drawn using cones.

**Category:** Geometry

[198] **viXra:1512.0414 [pdf]**
*submitted on 2015-12-23 16:24:57*

**Authors:** Jose Carlos Tiago de Oliveira

**Comments:** 6 Pages.

ABSTRACT
Mario Markus, a Chilean scientist and artist from Dortmund Max Planck Institute, has exposed a large set of
images of Lyapunoff exponents for the logistic equation modulated through rhythmic oscillation of parameters. The
pictures display features like foreground/background contrast, visualizing superstability, structural instability and, above
all, multistability, in a way visually analogous to three-dimensional representation.
See, for instance, http://www.mariomarkus.com/hp4.html.
The present papers aims to classify, through codification of numbers in the unit interval, the ensemble of images
thus generated. The above is intended as a part of a still unfulfilled work in progress, the classification of style in visual
fractal images-a common endeavour to Art and Science.

**Category:** Geometry

[197] **viXra:1512.0403 [pdf]**
*submitted on 2015-12-23 03:32:54*

**Authors:** Martin Erik Horn

**Comments:** 1 Page. The complete paper can be found at http://www.phydid.de (Wuppertal 2015)

An overview over all possible elementary reflections is given. It shows that a quarter of all reflections are negative.

**Category:** Geometry

[196] **viXra:1512.0303 [pdf]**
*submitted on 2015-12-13 02:52:45*

**Authors:** Robert B. Easter

**Comments:** 25 Pages.

This paper introduces the differential operators in the G(8,2) Geometric Algebra, called the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA). The differential operators are three x, y, and z-direction bivector-valued differential elements and either the commutator product or the anti-commutator product for multiplication into a geometric entity that represents the function to be differentiated. The general form of a function is limited to a Darboux cyclide implicit surface function. Using the commutator product, entities representing 1st, 2nd, or 3rd order partial derivatives in x, y, and z can be produced. Using the anti-commutator product, entities representing the anti-derivation can be produced from 2-vector quadric surface and 4-vector conic section entities. An operator called the pseudo-integral is defined and has the property of raising the x, y, or z degree of a function represented by an entity, but it does not produce a true integral. The paper concludes by offering some basic relations to limited forms of vector calculus and differential equations that are limited to using Darboux cyclide implicit surface functions. An example is given of entity analysis for extracting the parameters of an ellipsoid entity using the differential operators.

**Category:** Geometry

[195] **viXra:1512.0233 [pdf]**
*submitted on 2015-12-06 05:52:26*

**Authors:** Abdelmajid Ben Hadj Salem

**Comments:** 6 Pages. In French.

In this paper, we give the equations of the geodesics of the tori and the integration of it.

**Category:** Geometry

[194] **viXra:1511.0245 [pdf]**
*submitted on 2015-11-24 16:21:26*

**Authors:** Rodolfo A. Frino

**Comments:** 7 Pages.

This paper solves the problem of the right scalene triangle through a general sequential solution. A simplified solution is also presented.

**Category:** Geometry

[193] **viXra:1511.0212 [pdf]**
*submitted on 2015-11-22 07:13:44*

**Authors:** Abdelmajid Ben Hadj Salem

**Comments:** 9 Pages. In French.

This note of differential geometry concerns the formulas of Elie Cartan about the differntial forms on a surface. We calculate these formulas for an ellipsoïd of revolution used in geodesy.

**Category:** Geometry

[192] **viXra:1511.0202 [pdf]**
*submitted on 2015-11-21 05:45:24*

**Authors:** Abdelmajid Ben Hadj Salem

**Comments:** 9 Pages. In French.

The paper concerns the Peterson operator in differentail geometry. The case of the sphere is presented as an example.

**Category:** Geometry

[191] **viXra:1511.0182 [pdf]**
*submitted on 2015-11-19 20:01:11*

**Authors:** Robert B. Easter

**Comments:** 16 Pages.

The G(8,2) Geometric Algebra, also called the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), has entities that represent conic sections. DCGA also has entities that represent planar sections of Darboux cyclides, which are called cyclidic sections in this paper. This paper presents these entities and many operations on them. Operations include reflection, projection, rejection, and intersection with respect to spheres and planes. Other operations include rotation, translation, and dilation. Possible applications are introduced that include orthographic and perspective projections of conic sections onto view planes, which may be of interest in computer graphics or other computational geometry subjects.

**Category:** Geometry

[190] **viXra:1510.0328 [pdf]**
*submitted on 2015-10-19 12:12:59*

**Authors:** Markos Georgallides

**Comments:** 67 Pages.

The Special Problems of E-geometry consist the Quantization Moulds of Euclidean Geometry in it , to become → The Basic monad , through mould of Space –Anti-space in itself , which is the material dipole in inner monad Structure as it is Electromagnetic cycloidal field → Linearly , through mould of Parallel Theorem , which are the equal distances between the points of parallel and line → In Plane , through mould of Squaring the circle , where the two equal and perpendicular monads consist a Plane acquiring the common Plane-meter → and in Space (volume) , through mould of the Duplication of the Cube , where any two Un-equal and perpendicular monads acquire the common Space-meter to be twice each other , as this in the analytical methods explained . The article consist also a provocation to all scarce today Geometers and to mathematicians in order to give an answer to this article and its content . All Geometrical solutions of the Old-age standing Unsolved Problems are now solved and are clearly Exposed , and reveal the pass-over-faults of Relativity .

**Category:** Geometry

[189] **viXra:1508.0264 [pdf]**
*submitted on 2015-08-27 02:36:17*

**Authors:** Ion Pătrașcu, Florentin Smarandache

**Comments:** 4 Pages.

În acest articol scoatem în evidență axa radicală a cercurilor Lemoine.

**Category:** Geometry

[188] **viXra:1508.0262 [pdf]**
*submitted on 2015-08-27 02:39:07*

**Authors:** Ion Pătrașcu, Florentin Smarandache

**Comments:** 5 Pages.

Laturile unui triunghi sunt împărțite de primul cerc Lemoine în segmente proporționale cu pătratele laturilor triunghiului.

**Category:** Geometry

[187] **viXra:1508.0260 [pdf]**
*submitted on 2015-08-27 02:43:09*

**Authors:** Florentin Smarandache

**Comments:** 221 Pages.

The degree of difficulties of the problems is from easy and medium to hard. The solutions of the problems are at the end of each chapter. One can navigate back and forth from the text of the problem to its solution using bookmarks. The book is especially a didactical material for the mathematical students and instructors.

**Category:** Geometry

[186] **viXra:1508.0245 [pdf]**
*submitted on 2015-08-27 03:08:22*

**Authors:** Ion Pătrașcu, Florentin Smarandache

**Comments:** 5 Pages.

The first Lemoine circle divides the sides of a triangle in segments proportional to the squares of the triangle’s sides.

**Category:** Geometry

[185] **viXra:1508.0222 [pdf]**
*submitted on 2015-08-27 03:47:56*

**Authors:** Kalyan Mondal, Surapati Pramanik

**Comments:** 10 Pages.

This paper presents rough netrosophic multiattribute decision making based on grey relational analysis. While the concept of neutrosophic sets is a powerful logic to deal with indeterminate and inconsistent data, the theory of rough neutrosophic sets is also a powerful mathematical tool to deal with incompleteness.

**Category:** Geometry

[184] **viXra:1508.0188 [pdf]**
*submitted on 2015-08-22 21:37:45*

**Authors:** Joseph I. Thomas

**Comments:** 70 Pages.

This paper consolidates all the salient geometrical aspects of the principle of Polychronous Wavefront Computation. A novel set of simple and closed planar curves are constructed based on this principle, using MATLAB. The algebraic and geometric properties of these curves are then elucidated as theorems, propositions and conjectures.

**Category:** Geometry

[183] **viXra:1508.0154 [pdf]**
*submitted on 2015-08-19 20:44:14*

**Authors:** Ben Steber

**Comments:** 4 Pages.

The author will demonstrate that the sums of odd numbers to an nth value equals that nth value squared. A geometric proof will be provided to demonstrate the principle of sum odds equaling squares.

**Category:** Geometry

[182] **viXra:1508.0086 [pdf]**
*submitted on 2015-08-11 10:39:32*

**Authors:** Robert B. Easter

**Comments:** 43 Pages.

This paper introduces the Double Conformal Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and adds geometrical entities for all 3D quadric surfaces and a toroid entity. All entities, representing various geometric surfaces and points, can be transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. Versors provide an algebra of spatial transformations that are different than linear algebra transformations. Entities representing the intersections of geometric surfaces can also be created by wedge products. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying homogeneous polynomial equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[181] **viXra:1507.0218 [pdf]**
*submitted on 2015-07-29 23:15:12*

**Authors:** Dao Thanh Oai

**Comments:** 3 Pages.

In this note, I introduce three conjectures of generalization of the Lester circle theorem, the Parry circle theorem, the Zeeman-Gossard perspector theorem respectively

**Category:** Geometry

[180] **viXra:1507.0216 [pdf]**
*submitted on 2015-07-29 05:10:57*

**Authors:** Dao Thanh Oai

**Comments:** 1 Page.

In Euclidean geometry, Feuerbach-Luchterhand theorem is a generalization of Pythagorean
theorem, Stewart theorem and the British Flag theorem.....In this note, I propose two
conjectures of generalization of Feuerbach-Luchterhand theorem.

**Category:** Geometry

[179] **viXra:1504.0189 [pdf]**
*submitted on 2015-04-24 03:39:05*

**Authors:** S.Kalimuthu

**Comments:** 4 Pages. If there is a flaw in the proof, I welcome it.Thank you.

Reputed Austrian American mathematician Kurt Gödel formulated two extraordinary propositions in mathematical lo0gic.Accepted by all mathematicians they have revolutionized mathematics, showing that mathematical truth is more than logic and computation. These two ground breaking theorems changed mathematics, logic, and even the way we look at our Universe. The cognitive scientist Douglas Hofstadter described Gödel’s first incompleteness theorem as that in a formal axiomatic mathematical system there are propositions that can neither be proven nor disproven. The logician and mathematician Jean van Heijenoort summarizes that there are formulas that are neither provable nor disprovable. According to Peter Suber, inn a formal mathematical system, there are un decidable statements. S. M. Srivatsava formulates that formulations of number theory include undecidable propositions. And Miles Mathis describes Gödel’s first incompleteness theorem as that in a formal axiomatic mathematical system we can construct a statement which is neither true nor false. [Mathematical variance of liar’s paradox]In this short work, the author attempts to show these equivalent propositions to Gödel’s incompleteness theorems by applying elementary arithmetic operations, algebra and hyperbolic geometry. [1 – 6 ]

**Category:** Geometry

[178] **viXra:1504.0085 [pdf]**
*submitted on 2015-04-10 10:51:29*

**Authors:** Wenceslao Segura González

**Comments:** 126 Pages. Book. Spanish

Este es un libro de Matemática para físicos. Con ello queremos decir que los conceptos y desarrollos matemáticos que exponemos se hacen con la finalidad de aplicarlos a la Física; o sea, aquí entendemos la Matemática como una herramienta, y como tal herramienta no es importante el grado de rigor con la que se aplique, sino la utilidad que se consiga en el desarrollo de las teorías físicas.
Por esta razón hemos huido de un excesivo rigor, lo que tal vez sea del desagrado del matemático, pero que tenemos la seguridad de que agradará al físico.
Hemos titulado el libro «La conexión afín» para recalcar que este es el concepto básico de la geometría diferencial en cuanto a su aplicación a la teoría clásica de campo.
Los resultados matemáticos que recopilamos en el primer capítulo son aplicados a la formulación de las ecuaciones de la Relatividad General y a teorías unitarias de campo, siempre dentro de la visión clásica.
La generalización de la Relatividad General, ya sea en orden a su unificación con el electromagnetismo o a la búsqueda de nuevas teorías gravitatorias, ha recuperado interés recientemente y esta es la razón principal de que publiquemos este opúsculo.
ISBN: 978-84-606-7167-1

**Category:** Geometry

[177] **viXra:1502.0244 [pdf]**
*submitted on 2015-02-28 02:10:48*

**Authors:** Gerasimos T. Soldatos

**Comments:** 16 Pages.

The problems of squaring the circle or “quadrature” and trisection of an acute angle are supposed to be impossible to solve because the geometric constructibility, i.e. compass-and-straightedge construction, of irrational numbers like π is involved, and such numbers are not constructible. So, if these two problems were actually solved, it would imply that irrational numbers are geometrically constructible and this, in turn, that the infinite of the decimal digits of such numbers has an end, because it is this infinite which inhibits constructibility. A finitely infinite number of decimal digits would be the case if the infinity was the actual rather than the potential one. Euclid's theorem rules out the presence of actual infinity in favor of the infinite infinity of the potential infinity. But, space per se is finite even if it is expanding all the time, casting consequently doubt about the empirical relevance of this theorem in so far as the nexus space-actual infinity is concerned. Assuming that the quadrature and the trisection are space only problems, they should subsequently be possible to solve, prompting, in turn, a consideration of the real-world relevance of Euclid's theorem and of irrationality in connection with time and spacetime and hence, motion rather than space alone. The number-computability constraint suggests that only logically, i.e. through Euclidean geometry, this issue can be dealt with. So long as any number is expressible as a polynomial root the issue at hand boils down to the geometric constructibility of any root. This article is an attempt towards this direction after having tackled the problems of quadrature and trisection first by themselves through reductio ad impossibile in the form of proof by contradiction, and then as two only examples of the general problem of polynomial root construction. The general conclusion is that an irrational numbers is irrational on the real plane, but in the three-dimensional world, it is as a vector the image of one at least constructible position vector, and through the angle formed between them, constructible becomes the “irrational vector” too, as a right-triangle side. So, the physical, the real-world reflection of the impossibility of quadrature and trisection should be sought in connection with spacetime, motion, and potential infinity.

**Category:** Geometry

[176] **viXra:1502.0093 [pdf]**
*submitted on 2015-02-12 15:14:04*

**Authors:** Sidharth Ghoshal

**Comments:** 5 Pages.

Derivation of a technique of determining distances from spherical cameras. Can be generalized to more complex surfaces

**Category:** Geometry

[175] **viXra:1502.0061 [pdf]**
*submitted on 2015-02-08 14:38:03*

**Authors:** Florentin Smarandache

**Comments:** 177 Pages.

Acest volum este o versiune nouă, revizuită și adăugită, a "Problemelor Compilate şi Rezolvate de Geometrie şi Trigonometrie" (Universitatea din Moldova, Chișinău, 169 p., 1998), și include
probleme de geometrie și trigonometrie, compilate și soluționate în perioada 1981-1988, când profesam matematica la Colegiul Național "Petrache Poenaru" din Bălcești, Vâlcea (Romania), la Lycée Sidi El Hassan Lyoussi din Sefrou (Maroc), apoi la Colegiul Național "Nicolae Balcescu" din Craiova. Gradul de dificultate al problemelor este de la usor si mediu spre greu. Cartea se dorește material didactic pentru elevi, studenți și profesori.

**Category:** Geometry

[174] **viXra:1502.0026 [pdf]**
*submitted on 2015-02-03 22:21:45*

**Authors:** Florentin Smarandache

**Comments:** 219 Pages.

This book is a translation from Romanian of "Probleme Compilate şi Rezolvate de Geometrie şi Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and includes 255 problems of 2D and 3D Euclidean geometry plus trigonometry, compiled and solved from the Romanian Textbooks for 9th and 10th grade students, in the period 1981-1988, when I was a professor of mathematics at the "Petrache Poenaru" National College in Balcesti, Valcea (Romania), Lycée Sidi El Hassan Lyoussi in Sefrou (Morocco), then at the "Nicolae Balcescu" National College in Craiova and Dragotesti General School (Romania), but also I did intensive private tutoring for students preparing their university entrance examination. After that, I have escaped in Turkey in September 1988 and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I immigrated to United States. The degree of difficulties of the problems is from easy and medium to hard. The solutions of the problems are at the end of each chapter. One can navigate back and forth from the text of the problem to its solution using bookmarks. The book is especially a didactic material for the mathematical students and instructors.

**Category:** Geometry

[173] **viXra:1502.0006 [pdf]**
*submitted on 2015-02-01 07:51:15*

**Authors:** Joseph I. Thomas

**Comments:** 10 Pages.

Two circles C(O,r) and C(O',r'), expanding at an equal and uniform rate in a plane, come to intersect each other in a branch of a hyperbola, referred to here as a dynamic hyperbola.
In this paper, the analytical equation of the dynamic hyperbola is derived in a step by step fashion. Also, three of its immediate applications, into neuroscience, engineering and physics, respectively is summarized at the end.

**Category:** Geometry

[172] **viXra:1411.0362 [pdf]**
*submitted on 2014-11-19 03:58:28*

**Authors:** Eckhard Hitzer

**Comments:** 10 Pages. Submitted to Proceedings of the 30th International Colloquium on Group Theoretical Methods in Physics (troup30), 14-18 July 2014, Ghent, Belgium, to be published by IOP in the Journal of Physics: Conference Series (JPCS), 2014.

Recently the general orthogonal planes split with respect to any two pure unit quaternions $f,g \in \mathbb{H}$, $f^2=g^2=-1$, including the case $f=g$, has proved extremely useful for the construction and geometric interpretation of general classes of double-kernel quaternion Fourier transformations (QFT) [E.Hitzer, S.J. Sangwine, The orthogonal 2D planes split of quaternions and steerable quaternion Fourier Transforms, in E. Hitzer, S.J. Sangwine (eds.), "Quaternion and Clifford Fourier Transforms and Wavelets", TIM \textbf{27}, Birkhauser, Basel, 2013, 15--39.].
Applications include color image processing, where the orthogonal planes split with $f=g=$ the grayline, naturally splits a pure quaternionic three-dimensional color signal into luminance and chrominance components. Yet it is found independently in the quaternion geometry of rotations [L. Meister, H. Schaeben, A concise quaternon geometry of rotations, MMAS 2005; \textbf{28}: 101--126],
that the pure quaternion units $f,g$ and the analysis planes, which they define, play a key role in the spherical geometry of rotations, and the geometrical interpretation of integrals related to the spherical Radon transform of probability density functions of unit quaternions, as relevant for texture analysis in crystallography. In our contribution we further investigate these connections.

**Category:** Geometry

[171] **viXra:1411.0143 [pdf]**
*submitted on 2014-11-14 17:04:01*

**Authors:** J Gregory Moxness

**Comments:** 10 Pages.

This paper will present various techniques for visualizing a split real even $E_8$ representation in 2 and 3 dimensions using an $E_8$ to $H_4$ folding matrix. This matrix is shown to be useful in providing direct relationships between $E_8$ and the lower dimensional Dynkin and Coxeter-Dynkin geometries contained within it, geometries that are visualized in the form of real and virtual 3 dimensional objects.

**Category:** Geometry

[170] **viXra:1411.0038 [pdf]**
*submitted on 2014-11-05 08:23:18*

**Authors:** Philip Gibbs

**Comments:** 5 Pages.

The moving sofa problem seeks the shape of largest area that can be moved round an L-shaped corner in a corridor of width one. A geometric computation is performed giving a result which is indistinguishable by eye from Gerver's proposed solution of 1992. The computed area also agrees to nearly eight significant figures.

**Category:** Geometry

[169] **viXra:1410.0160 [pdf]**
*submitted on 2014-10-26 07:08:02*

**Authors:** Wenceslao Segura González

**Comments:** 35 Pages. Spanish

The affine connection is the primary geometric element from which derive all other quantities that characterize a given geometry. In this article the concept of affine connection, its properties and the quantities derived from it are studied, we also present some of the connections that have been used in physical theories. We introduce the metric tensor and we study its relation with the affine connection. This study is intended for application in alternative theories of gravity to the General Theory of Relativity and to the unified field theories.

**Category:** Geometry

[168] **viXra:1410.0139 [pdf]**
*submitted on 2014-10-22 19:49:20*

**Authors:** Linfan MAO

**Comments:** 25 Pages.

As we known, an objective thing not moves
with one's volition, which implies that all contradictions,
particularly, in these semiotic systems for things are artificial.
In classical view, a contradictory system is meaningless, contrast
to that of geometry on figures of things catched by eyes of human
beings. The main objective of sciences is holding the global
behavior of things, which needs one knowing both of compatible and
contradictory systems on things. Usually, a mathematical system
including contradictions is said to be a {\it Smarandache system}.
Beginning from a famous fable, i.e., the $6$ blind men with an
elephant, this report shows the geometry on contradictory systems,
including non-solvable algebraic linear or homogenous equations,
non-solvable ordinary differential equations and non-solvable
partial differential equations, classify such systems and
characterize their global behaviors by combinatorial geometry,
particularly, the global stability of non-solvable differential
equations. Applications of such systems to other sciences, such as
those of gravitational fields, ecologically industrial systems can
be also found in this report. All of these discussions show that a
non-solvable system is nothing else but a system underlying a
topological graph $G\not\simeq K_n$, or $\simeq K_n$ without common
intersection, contrast to those of solvable systems underlying $K_n$
being with common non-empty intersections, where $n$ is the number
of equations in this system. However, if we stand on a geometrical
viewpoint, they are compatible and both of them are meaningful for
human beings.

**Category:** Geometry

[167] **viXra:1409.0077 [pdf]**
*submitted on 2014-09-11 10:00:26*

**Authors:** Hanno Essén, Lars Hörnfeldt

**Comments:** 1 Page. Abstracts of contributed papers, 11th international conference on general relativity and gravitation, Stockholm, Sweden, abstract no 1:12 (supplementary volume), July 6-12 1986

The curvature tensor and scalar is computed for n up to 6 with the computer algebra system STENSOR. From that new empircal material, formulae for any n are deduced. For the special case of a sphere they coincide with wellknown results.

**Category:** Geometry

[166] **viXra:1409.0026 [pdf]**
*submitted on 2014-09-04 13:59:38*

**Authors:** Jan Hakenberg

**Comments:** 50 Pages.

Simple meshes such as the cube, tetrahedron, and tripod frequently appear in the literature to illustrate the concept of subdivision. The formulas for the volume, centroid, and inertia of the sets bounded by subdivision surfaces have only recently been derived. We specify simple meshes and state the moments of degree 0 and 1 defined by the corresponding limit surfaces. We consider the subdivision schemes Doo-Sabin, Loop, and Loop with sharp creases.

In case of Doo-Sabin, the moment of degree 2 is also available for certain simple meshes. The inertia is computed and visualized with respect to the centroid.

[165] **viXra:1409.0022 [pdf]**
*submitted on 2014-09-04 02:09:40*

**Authors:** Joseph I. Thomas

**Comments:** 10 Pages.

Trilateration is the name given to the Algorithm used in Global Positioning System (GPS) technology to localize the position of a Transmitter/Receiver station (also called a Blind Node) in a 2D plane, using the positional knowledge of three non-linearly placed Anchor Nodes. For instance, it may be desired to locate the whereabouts of a mobile phone (Blind Node) lying somewhere within the range of three radio signal transmitting towers (Anchor Nodes). There are various Trilateration Algorithms in the literature that achieve this end using among other methods, linear algebra.
This paper is a direct spin off from prior work by the same author, titled “A Mathematical Treatise on Polychronous Wavefront Computation and its Applications into Modeling Neurosensory Systems”. The Geometric Algorithm developed there was originally intended to localize the position of a special class of neurons called Coincidence Detectors in the Central Neural Field. A general outline of how the same methodology can be adapted for the purpose of Trilateration, is presented here.

**Category:** Geometry

[164] **viXra:1408.0200 [pdf]**
*submitted on 2014-08-28 16:04:49*

**Authors:** Tobías de Jesús Rosas Soto

**Comments:** 16 Pages. Artículo en español, con resumen en inglés. Contiene ecuaciones, y 8 figuras, a color para mejor comprensión.

Se presenta el estudio de propiedades geométricas de un cuadrilátero inscrito en una circunferencia, en un plano de Minkowski. Se estudian las relaciones entre los cuatro triángulos formados por los vértices del cuadrilátero, sus antitriángulos y puntos de simetría, sus baricentros y otros puntos asociados con dichos triángulos, respectivamente. Se introduce la noción de anticuadrilátero y se extiende la noción de circunferencia de Feuerbach de un cuadriláteros, inscritos en una circunferencia, a planos de Minkowski en general.
---
The study of geometric properties of a inscribed quadrangle in a circle, in a Minkowski plane is presented. We study the relations between the four triangles formed by the vertices of the quadrangle, its anti-triangles and points of symmetry, its barycenters and other points associated with such triangles, respectively. The notion of anti-quadrangle is introduced and extends the notion of Feuerbach circle for quadrangles, inscribed in a circle, to Minkowski planes in general.

**Category:** Geometry

[163] **viXra:1408.0191 [pdf]**
*submitted on 2014-08-27 22:59:49*

**Authors:** Tobías de Jesús Rosas Soto

**Comments:** 17 Pages. Artículo en español, con resumen en inglés. Contiene ecuaciones, y 13 figuras, a color para mejor comprensión.

Usando la noción de C-ortocentro se extienden, a planos de Minkowski en general, nociones de la geometría clásica relacionadas con un triángulo, como por ejemplo: puntos de Euler, triángulo de Euler, puntos de Poncelet. Se muestran propiedades de estas nociones y sus relaciones con la circunferencia de Feuerbach. Se estudian sistemas C-ortocéntricos formados por puntos presentes en dichas nociones y se establecen relaciones con la ortogonalidad isósceles y cordal. Además, se prueba que la imagen homotética de un sistema C-ortocéntrico es un sistema C-ortocéntrico.
--
Using the notion of C-orthocenter, notions of the classic euclidean geometry related with a triangle, as for example: Euler points; Euler’s triangle; and Poncelet’s points, are extended to Minkowski planes in general. Properties of these notions and their relations with the Feuerbach’s circle, are shown. C-orthocentric systems formed by points in the above notions are studied and relations with the isosceles and chordal orthogonality, are established. In addition, there is proved that the homothetic image of a C-orthocentric system is a C-orthocentric system.

**Category:** Geometry

[162] **viXra:1408.0143 [pdf]**
*submitted on 2014-08-22 00:31:22*

**Authors:** Tobías de Jesús Rosas Soto

**Comments:** 17 Pages. Artículo en español, con 4 figuras presentadas de a pares. Título y resumen en español e ingles.

Mediante el estudio de ciertas propiedades geométricas de los sistemas C-ortocéntricos, relacionadas co las nociones de ortogonalidad (Birkhoff, isósceles, cordal), bisectriz (Busemann, Glogovskij) y línea soporte a una circunferencia, se muestran nueve caracterizaciones de euclidianidad para planos de Minkowski arbitrarios. Tres de estas generalizan caracterizaciones dadas para planos de Minkowski estrictamente convexos en [8, 9], y las otras seis son nuevos aportes sobre el tema.
--
By studying certain geometric properties of C-orthocentric systems related to the notions of orthogonality (Birkhoff, isosceles, chordal), angular bisectors (Busemann, Glogovskij) and support line to a circumference, shows nine characterizations of the Euclidean plane for arbitrary Minkowski planes. Three of these generalized characterizations given for strictly convex Minkowski planes in [8, 9], and the other six are new contributions on subject.

**Category:** Geometry

[161] **viXra:1408.0070 [pdf]**
*submitted on 2014-08-11 13:11:29*

**Authors:** Jan Hakenberg, Ulrich Reif, Scott Schaefer, Joe Warren

**Comments:** 21 Pages.

The volume enclosed by subdivision surfaces, such as Doo-Sabin, Catmull-Clark, and Loop has recently been derived. Moments of higher degree d are more challenging because of the growing number of coefficients in the (d+3)-linear forms. We derive the intrinsic symmetries of the tensors, and thereby reduce the complexity of the problem.
Our framework allows to compute the 4-linear forms that determine the centroid defined by Doo-Sabin, and Loop surfaces, including Loop with sharp creases. For Doo-Sabin surfaces, we also establish the tensors of rank 5 that determine the inertia for valences 3, and 4. When the subdivision weights are rational, the centroid, and inertia are obtained in exact, symbolic form. In practice, the formulas are restricted to meshes with a certain maximum valence of a vertex.

**Category:** Geometry

[160] **viXra:1407.0198 [pdf]**
*submitted on 2014-07-25 22:09:36*

**Authors:** Nathan O. Schmidt, Reza Katebi, Christian Corda

**Comments:** 5 pages, 1 figure, accepted in the AIP Conference Proceedings of ICNAAM 2014

In this brief note, we introduce the new, emerging sub-discipline of iso-fractals by highlighting and discussing the preliminary results of recent works. First, we note the abundance of fractal, chaotic, non-linear, and self-similar structures in nature while emphasizing the importance of studying such systems because fractal geometry is the language of chaos. Second, we outline the iso-fractal generalization of the Mandelbrot set to exemplify the newly generated Mandelbrot iso-sets. Third, we present the cutting-edge notion of dynamic iso-spaces and explain how a mathematical space can be iso-topically lifted with iso-unit functions that (continuously or discretely) change; in the discrete case examples, we mention that iteratively generated sequences like Fibonacci's numbers and (the complex moduli of) Mandelbrot's numbers can supply a deterministic chain of iso-units to construct an ordered series of (magnified and/or de-magnified) iso-spaces that are locally iso-morphic. Fourth, we consider the initiation of iso-fractals with Inopin's holographic ring (IHR) topology and fractional statistics for 2D and 3D iso-spaces. In total, the reviewed iso-fractal results are a significant improvement over traditional fractals because the application of Santilli's iso-mathematics arms us an extra degree of freedom for attacking problems in chaos. Finally, we conclude by proposing some questions and ideas for future research work.

**Category:** Geometry

[159] **viXra:1407.0163 [pdf]**
*submitted on 2014-07-21 13:47:46*

**Authors:** Jan Hakenberg, Ulrich Reif, Scott Schaefer, Joe Warren

**Comments:** 19 Pages.

We derive the (d+2)-linear forms that compute the moment of degree d of the area enclosed by a subdivision curve in the plane. We circumvent the need to solve integrals involving the basis function by exploiting a recursive relation and calibration that establishes the coefficients of the form within the nullspace of a matrix.
For demonstration, we apply the technique to the dual three-point scheme, the interpolatory C1 four-point scheme, and the dual C2 four-point scheme.

**Category:** Geometry

[158] **viXra:1407.0027 [pdf]**
*submitted on 2014-07-03 12:14:35*

**Authors:** Jan Hakenberg

**Comments:** 23 Pages.

We list examples of subdivision curves together with their exact area, centroid, and inertia. We assume homogeneous mass-distribution within the space bounded by the curve, therefore the term 'area moments' is used. The subdivision curves that we consider are generated by 1) the low order B-spline schemes, 2) the generalized, interpolatory C^1 four-point scheme, as well as 3) the more recent, dual C^2 four-point scheme.
The derivation of the (d+1)-linear form that computes the area moment of degree p+q=d based on the initial control points for a given subdivision scheme is deferred to a publication in the near future.

**Category:** Geometry

[157] **viXra:1406.0165 [pdf]**
*submitted on 2014-06-27 02:44:50*

**Authors:** S.kalimuthu

**Comments:** 4 Pages. NA

According to Einstein and his followers space time geometry is gravity. Gravity is the manifestation of distortion of geometry of space due to presence of matter. The heart of these physical and cosmological phenomena is the line element or metric. This metric generated the field equation of Einstein general relative theory. Space time curvature, geodetic effect, frame tracking, gravitational lenses, gravitational red and blue shifts, block holes, dark matter, dark energy, big bang singularity, expansion of the universe and gravitational waves are the predictions of Einstein general relative theory. All these theoretical findings expect gravitational waves have been experimental test at to a very high degree of accuracy. In this work, the authors introduce an entirely new type of polar spherical triangle. The application of this triangle has been extended to Gabuzda- Wardle-Roberts superluminal motion equation and the consecution is noted

**Category:** Geometry

[156] **viXra:1406.0060 [pdf]**
*submitted on 2014-06-10 08:09:18*

**Authors:** Jan Hakenberg, Ulrich Reif, Scott Schaefer, Joe Warren

**Comments:** 14 Pages.

Subdivision surfaces with sharp creases are used in surface modeling and animation. The framework that derives the volume formula for classic surface subdivision also applies to the crease rules. After a general overview, we turn to the popular Catmull-Clark, and Loop algorithms with sharp creases. We enumerate common topology types of facets adjacent to a crease. We derive the trilinear forms that determine their contribution to the global volume. The mappings grow in complexity as the vertex valence increases. In practice, the explicit formulas are restricted to meshes with a certain maximum valence of a vertex.

**Category:** Geometry

[155] **viXra:1405.0324 [pdf]**
*submitted on 2014-05-26 14:33:21*

**Authors:** Jan Hakenberg

**Comments:** 31 Pages.

The formula for the volume enclosed by subdivision surfaces has been identified only recently. We present example meshes with cycles of edges defined as sharp creases, and state the volume enclosed by their limit surface defined by Catmull-Clark, and Loop subdivision. The article can serve as a reference for future implementations of the volume formula.

**Category:** Geometry

[154] **viXra:1405.0260 [pdf]**
*submitted on 2014-05-18 00:57:53*

**Authors:** S.Kalimuthu

**Comments:** 5 Pages. NA

Great circle triangles and its related trigonometry are wider applications in astronomy, astrophysics, cosmology, engineering fields, space travel, sea voyages, electronics, architecture etc. Maxwell’s electromagnetic theory showed that light is an electromagnetic wave, Dirac’s equation revealed the existence and generation of anti particles and Einstein’s filed equations predicted bending of light rays near a massive body, gravitational time dilation, gravitational waves , gravitational lenses, black holes, dark matter, dark energy and big bang singularity. All these findings have been experimentally established except gravitational waves. In this short work, the author finds a peculiar phenomenon in great circle triangles / Euler triangles

**Category:** Geometry

[153] **viXra:1405.0246 [pdf]**
*submitted on 2014-05-15 04:16:44*

**Authors:** Jan Hakenberg

**Comments:** 28 Pages.

Simple meshes such as the cube, tetrahedron, and tripod frequently appear in the literature to illustrate the concept of subdivision. The formula for the volume enclosed by subdivision surfaces has only recently been identified. We specify simple meshes and state the volume enclosed by the corresponding limit surfaces. We consider the subdivision schemes Doo-Sabin, Midedge, Catmull-Clark, and Loop.

**Category:** Geometry

[152] **viXra:1405.0215 [pdf]**
*submitted on 2014-05-11 19:02:40*

**Authors:** Ion Patrascu

**Comments:** 2 Pages.

O geometrie Smarandache este o geometrie în care cel puțin o axiomă este fie validată și invalidată, sau numai invalidată dar în multiple feluri (în cadrul aceluiași spațiu geometric).
Vom construi un model de geometrie Smarandache în care axioma paralelelor este validată pentru unele drepte și puncte, și invalidată pentru alte drepte și puncte.

**Category:** Geometry

[151] **viXra:1405.0012 [pdf]**
*submitted on 2014-05-02 10:39:37*

**Authors:** Jan Hakenberg, Ulrich Reif, Scott Schaefer, Joe Warren

**Comments:** 15 Pages.

We present a framework to derive the coefficients of trilinear forms that compute the exact volume enclosed by subdivision surfaces. The coefficients depend only on the local mesh topology, such as the valence of a vertex, and the subdivision rules. The input to the trilinear form are the initial control points of the mesh.

Our framework allows us to explicitly state volume formulas for surfaces generated by the popular subdivision algorithms Doo-Sabin, Catmull-Clark, and Loop. The trilinear forms grow in complexity as the vertex valence increases. In practice, the explicit formulas are restricted to meshes with a certain maximum valence of a vertex.

The approach extends to higher order momentums such as the center of gravity, and the inertia of the volume enclosed by subdivision surfaces.

**Category:** Geometry

[150] **viXra:1404.0409 [pdf]**
*submitted on 2014-04-18 01:04:07*

**Authors:** Temur Z. Kalanov

**Comments:** 22 Pages.

Analysis of@@ the foundations of standard trigonometry is proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is shown that the foundations of trigonometry contradict to the principles of system approach and contain formal-logical errors. The principal logical error is that the definitions of trigonometric functions represent quantitative relationships between the different qualities: between qualitative determinacy of angle and qualitative determinacy of rectilinear segments (legs) in rectangular triangle. These relationships do not satisfy the standard definition of mathematical function because there are no mathematical operations that should be carry out on qualitative determinacy of angle to obtain qualitative determinacy of legs. Therefore, the left-hand and right-hand sides of the standard mathematical definitions have no the identical sense. The logical errors determine the essence of trigonometry: standard trigonometry is a false theory.

**Category:** Geometry

[149] **viXra:1404.0205 [pdf]**
*submitted on 2014-04-16 06:20:33*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 6 Pages.

In [1] we introduced the mixt-linear circles adjointly inscribed associated to a triangle,
with emphasizes on some of their properties. Also, we’ve mentioned about mixt-linear circles
adjointly ex-inscribed associated to a triangle.
In this article we’ll show several basic properties of the mixt-linear circles adjointly exinscribed
associate to a triangle.

**Category:** Geometry

[148] **viXra:1404.0080 [pdf]**
*submitted on 2014-04-11 00:15:03*

**Authors:** Abel Cavaşi

**Comments:** 2 Pages.

A relationship between generalized helices and Mannheim pairs.

**Category:** Geometry

[147] **viXra:1404.0018 [pdf]**
*submitted on 2014-04-02 21:22:03*

**Authors:** Morio Kikuchi

**Comments:** 12 Pages.

We generalize inversion mathematically(4).

**Category:** Geometry

[146] **viXra:1402.0013 [pdf]**
*submitted on 2014-02-02 19:55:25*

**Authors:** Morio Kikuchi

**Comments:** 8 Pages.

We generalize inversion mathematically(3).

**Category:** Geometry

[145] **viXra:1401.0219 [pdf]**
*submitted on 2014-01-29 16:43:10*

**Authors:** Philip E Gibbs

**Comments:** 24 Pages.

Lebesgue’s universal covering problem is re-examined using computational methods. This leads to conjectures about the nature of the solution which if correct could provide a blueprint for a complete solution. Empirical lower bounds for the minimal area are computed using different hypothesis based on the conjectures. A new upper bound of 0.844112 for the area of the minimal cover is derived improving previous results. This method for determining the bound is suggested by the conjectures and computational observations but is proved independently of them. The key innovation is to modify previous best results by removing corners from a regular hexagon at a small slant angle to the edges of the dodecahedron used before. Simulations indicate that the minimum area for a convex universal cover is likely to be around 0.84408.

**Category:** Geometry

[144] **viXra:1401.0206 [pdf]**
*submitted on 2014-01-28 07:28:58*

**Authors:** Ren Shiquan

**Comments:** 16 Pages. this is a reading report which may include mistakes. Thanks

In this report, we study differential forms on a manifold M. We first give the definition of differential forms. Then the exterior derivative, Lie derivative, and integrations of differential forms are discussed. Finally we will look at a special family of differential forms, called harmonic forms. This report is a preparation for
de Rham cohomology and Hodge theorem that will be studied in the second report
on topology of manifolds.

**Category:** Geometry

[143] **viXra:1401.0131 [pdf]**
*submitted on 2014-01-17 19:37:45*

**Authors:** Zhang Tianshu

**Comments:** 16 Pages.

Heap together equivalent spheres into a cube up to most possible, then variant general volumes of equivalent spheres inside the cube depend on variant arrangements of equivalent spheres fundamentally. This π/√18 which the Kepler’s conjecture mentions is the ratio of the general volume of equivalent spheres under the maximum to the volume of the cube. We will do a closer arrangement of equivalent spheres inside a cube. Further let a general volume of equivalent spheres to getting greater and greater, up to tend upwards the super-limit, in pace with which each of equivalent spheres is getting smaller and smaller, and their amount is getting more and more. We will prove the Kepler’s conjecture by such a way in this article.

**Category:** Geometry

[142] **viXra:1401.0011 [pdf]**
*submitted on 2014-01-02 00:21:23*

**Authors:** Morio Kikuchi

**Comments:** 12 Pages.

We generalize inversion mathematically(2).

**Category:** Geometry

[141] **viXra:1312.0172 [pdf]**
*submitted on 2013-12-21 22:02:52*

**Authors:** Putenikhin P.V.

**Comments:** 18 Pages. rus (русский)

The understanding of Reality as a multidimensional space education has some logical difficulties. If Reality have four or more spatial coordinates, then would have to be observed phenomenon, that contrary to the known physical laws, logic and common sense.

Путенихин П.В. Представления о Реальности, как многомерном пространственном образовании, имеют некоторые логические сложности. Если бы Реальность имела четыре или более пространственных координат, то в ней должны были бы наблюдаться явления, противоречащие известным физическим законам, логике и обыденному здравому смыслу.

**Category:** Geometry

[140] **viXra:1312.0153 [pdf]**
*submitted on 2013-12-20 07:45:13*

**Authors:** Putenikhin P.V.

**Comments:** 4 Pages. rus (русский)

There are a large number of surfaces, on which are performed hyperbolic Lobachevsky's geometry. Here are investigated the surfaces, resembling torus with locally constant negative curvature.

Путенихин Петр Васильевич. Существует большое число поверхностей, на которых осуществляется гиперболическая геометрия Лобачевского. Рассмотрены тороподобные поверхности с локально постоянной отрицательной кривизной.

**Category:** Geometry

[139] **viXra:1312.0146 [pdf]**
*submitted on 2013-12-19 23:09:35*

**Authors:** Putenikhin P.V.

**Comments:** 9 Pages. rus (русский)

The empty curves space possesses the properties of lenses. It is possible snap the flat Euclidean space by the procedures of gluing, with the preservation of local Euclidean metric, without giving them the properties of lenses. Gluing of the extra dimensions in string theory can eliminate from it a Calabi-Yau manifold and to reduce landscape theory.

Путенихин Петр Васильевич. Кривые пустые пространства обладают свойствами линзы. Плоское пространство Евклида можно замкнуть процедурой отождествления с сохранением локальной евклидовой метрики, не наделяя его свойствами линзы. Отождествление дополнительных измерений в теории струн может устранить из неё многообразия Калаби-Яу и сократить ландшафт теории.

**Category:** Geometry

[138] **viXra:1312.0109 [pdf]**
*submitted on 2013-12-15 19:44:05*

**Authors:** Morio Kikuchi

**Comments:** 11 Pages.

We generalize inversion mathematically

**Category:** Geometry

[137] **viXra:1312.0105 [pdf]**
*submitted on 2013-12-16 03:48:13*

**Authors:** Putenikhin P.V.

**Comments:** 10 Pages. rus (русский)

The geometry of Euclid is the original, primary geometry of smooth недеформированного space. Only there is indeed a direct and really plane. The geometry of Euclid is possible to deform and get the geometry of Lobachevsky and the Riemann - the geometry on the twisted, deformed Euclidean planes. The third postulate is a necessary and sufficient condition for the justice of the fifth postulate. If there is a third postulate, only then the fifth postulate has the force strictly in the formulation of Euclid, is its consequence.

Путенихин Петр Васильевич. Геометрия Евклида – это исходная, первичная геометрия гладкого недеформированного пространства. Только в ней существует действительно прямая и действительно плоскость. Геометрию Евклида можно деформировать и получить геометрии Лобачевского и Римана – геометрии на искривлённых, деформированных евклидовых плоскостях. Третий постулат является необходимым и достаточным условием справедливости пятого постулата. Если существует третий постулат, то и пятый имеет силу строго в формулировке Евклида, то есть является его следствием.

**Category:** Geometry

[136] **viXra:1312.0075 [pdf]**
*submitted on 2013-12-10 18:37:49*

**Authors:** Igor Nikolaev

**Comments:** Pages.

The text is a trailer of an approximately 300 pages book comprising a foreword and the table of contents; part III is not written yet but remarks are welcome!

**Category:** Geometry

[135] **viXra:1311.0192 [pdf]**
*submitted on 2013-11-28 13:21:22*

**Authors:** Nathan O. Schmidt

**Comments:** 17 pages, 5 figures, submitted to the Gulf Journal of Mathematics

In this work, we introduce the "effective iso-radius" for dynamic iso-sphere Inopin holographic rings (IHR) as the iso-radius varies, which facilitates a heightened characterization of these emerging, cutting-edge iso-spheres as they vary in size and undergo "iso-transitions" between "iso-states". The initial results of this exploration fuel the construction of a new "effective iso-state" platform with a potential for future scientific application, but this emerging dynamic iso-architecture warrants further development, scrutiny, collaboration, and hard work in order to advance it as such.

**Category:** Geometry

[134] **viXra:1311.0141 [pdf]**
*submitted on 2013-11-19 18:27:21*

**Authors:** Morio Kikuchi

**Comments:** 11 Pages.

We generalize inversion.

**Category:** Geometry

[133] **viXra:1311.0038 [pdf]**
*submitted on 2013-11-06 00:56:16*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 112 Pages.

This book contains 21 papers of plane geometry.
It deals with various topics, such as: quasi-isogonal cevians,
nedians, polar of a point with respect to a circle, anti-bisector,
aalsonti-symmedian, anti-height and their isogonal.
A nedian is a line segment that has its origin in a triangle’s vertex
and divides the opposite side in n equal segments.
The papers also study distances between remarkable points in the
2D-geometry, the circumscribed octagon and the inscribable octagon,
the circles adjointly ex-inscribed associated to a triangle, and several
classical results such as: Carnot circles, Euler’s line, Desargues
theorem, Sondat’s theorem, Dergiades theorem, Stevanovic’s
theorem, Pantazi’s theorem, and Newton’s theorem.
Special attention is given in this book to orthological triangles, biorthological
triangles, ortho-homological triangles, and trihomological
triangles.
Each paper is independent of the others. Yet, papers on the same or similar
topics are listed together one after the other.
The book is intended for College and University students and instructors that
prepare for mathematical competitions such as National and International
Mathematical Olympiads, or for the AMATYC (American Mathematical
Association for Two Year Colleges) student competition, Putnam competition,
Gheorghe Ţiţeica Romanian competition, and so on.
The book is also useful for geometrical researchers.

**Category:** Geometry

[132] **viXra:1310.0049 [pdf]**
*submitted on 2013-10-07 10:11:42*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 11 Pages.

In [1] Dr. Florentin Smarandache generalized several properties of the nedians. Here, we
will continue the series of these results and will establish certain connections with the triangles
which have the same coefficient of deformation.

**Category:** Geometry

[131] **viXra:1310.0033 [pdf]**
*submitted on 2013-10-05 20:37:38*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 4 Pages.

In this article we establish a connection between the notion of the symmedian of a
triangle and the notion of polar of a point in rapport to a circle

**Category:** Geometry

[130] **viXra:1309.0155 [pdf]**
*submitted on 2013-09-23 08:23:22*

**Authors:** S.Kalimuthu

**Comments:** 3 Pages. No Comments

Once the famous French mathematician Lagrange remarked that as long as algebra and geometry are not inter linked,one can not expect good results. Keeping this in mind, the author has attempted to establish an interesting classical Euclidean theorem by applying the algebra of matrices.

**Category:** Geometry

[129] **viXra:1308.0126 [pdf]**
*submitted on 2013-08-23 07:00:35*

**Authors:** O. V. Vijimon

**Comments:** 40 Pages. 25 figures

This paper provides the proof of invalidity of the most fundamental constant known to mankind. Imagining a circle without "Pie" is simply unthinkable but it’s going to be a reality very soon. "Pie" is not a true circle constant. This paper explores this idea and proposes a new constant in the process which gives the correct measure of a circle. It is given by "Tau". As a result, it redefines the area of the circle. The circle area currently accounted is wrong and therefore needs correction. This has serious implications for science. I have also discovered the fundamental geometrical ratio b/w a circle and a square in which it’s inscribed and have also discovered a new circle formula. This paper makes this strong case with less ambiguity.

**Category:** Geometry

[128] **viXra:1308.0076 [pdf]**
*submitted on 2013-08-15 05:36:22*

**Authors:** S.Kalimuthu

**Comments:** 3 Pages. NA

Matrices and determinants are widely used to solve problems in electronics, statics , robotics , linear programming , optimization , intersections of planes , genetics, physics , cosmology and all other areas of science and engineering. In this work, we attempt to deduce E5 from E1 to E4 by applying determinants.

**Category:** Geometry

[127] **viXra:1307.0109 [pdf]**
*submitted on 2013-07-23 02:28:17*

**Authors:** Khrapko R

**Comments:** 9 Pages. Theoretical and Mathematical Physics Volume 65, Issue 3, December 1985 p. 1196

Various path-dependent functions are described in a uniform manner by means of a series expansion of Taylor type. For this, "path integrals" and "path tensors" are introduced. They are systems of multicomponent quantities whose values are defined for an arbitrary path in a coordinated region of space in such a way that they carry sufficient information about the shape of the path. These constructions are regarded as elementary path-dependent functions and are used instead Of the power monomials of an ordinary Taylor series. The coefficients of such expansions are interpreted as partial derivatives, which depend on the order of differentiation, or as nonstandard covariant derivatives, called two-point derivatives. Examples of path-dependent functions are given. We consider the curvature tensor of a space whose geometrical properties are specified by a translator of parallel transport of general type (nontransitive). A covariant operation leading to "extension" of tensor fields is described

**Category:** Geometry

[126] **viXra:1307.0066 [pdf]**
*submitted on 2013-07-15 11:06:49*

**Authors:** Florentin Smarandache

**Comments:** 7 Pages.

Acest articol este o scurtă trecere în revistă a cărţii “SuperMatematica. Fundamente”, Vol. 1, 2012,
care constituie un domeniu nou de cercetare şi cu multe aplicaţii, iniţiat de profesorul universitar
Mircea Eugen Şelariu. Lucrarea sa este unică în literatura mondială, deoarece combină matematica
centrică cu matematica excentrică.

**Category:** Geometry

[125] **viXra:1306.0233 [pdf]**
*submitted on 2013-06-29 12:21:12*

**Authors:** Kelly McKennon

**Comments:** 102 Pages.

We investigate that mathematical idea which in algebra is known as a cross ratio, in one-dimensional geometry as a projective line,
in two-dimensional geometry as a circle, and in three-dimensional geometry as a regulus. We view each of these in its natural habitat, and show how each is an
avatar of one Platonic object, which object we term a meridian.

**Category:** Geometry

[124] **viXra:1306.0190 [pdf]**
*submitted on 2013-06-21 12:44:04*

**Authors:** Klaus Lange

**Comments:** 6 Pages. 8 figures

It will be shown how the well known eleven nets for three dimensional cubes,
separated in 10 + 1 forms, are hiding a special dual 3-6-1-structure. Implications for space -
time models in theoretical physics will be questioned.

**Category:** Geometry

[123] **viXra:1306.0155 [pdf]**
*submitted on 2013-06-19 01:52:08*

**Authors:** Eckhard Hitzer, Christian Perwass

**Comments:** 6 Pages. 7 figures, 4 tables. Proceedings of Fuzzy System Symposium (FSS 2009), Tsukuba, Japan, 14-16 Jul. 2009.

Most matter in nature and technology is composed of crystals and crystal grains. A full
understanding of the inherent symmetry is vital. A new interactive software tool is demonstrated, that
visualizes 3D space group symmetries. The software computes with Clifford (geometric) algebra. The space
group visualizer (SGV) is a script for the open source visual CLUCalc, which fully supports geometric
algebra computation. In our presentation we will first give some insights into the geometric algebra
description of space groups. The symmetry generation data are stored in an XML file, which is read by
a special CLUScript in order to generate the visualization. Then we will use the Space Group Visualizer
to demonstrate space group selection and give a short interactive computer graphics presentation on how
reflections combine to generate all 230 three-dimensional space groups.

**Category:** Geometry

[122] **viXra:1306.0134 [pdf]**
*submitted on 2013-06-17 05:10:48*

**Authors:** Eckhard Hitzer

**Comments:** 22 Pages. 16 figures, 6 tables. In K. Tachibana (ed.) Tutorial on Reflections in Geometric Algebra, Lecture notes of the international Workshop for “Computational Science with Geometric Algebra” (FCSGA2007), Nagoya Univ., Japan, 14-21 Feb. 2007, pp. 34-44 (2007).

This tutorial focuses on describing the implementation and use of reflections in the geometric
algebras of three-dimensional (3D) Euclidean space and in the five-dimensional (5D) conformal model
of Euclidean space. In the latter reflections at parallel planes serve to implement translations as well.
Combinations of reflections allow to implement all isometric transformations. As a concrete example
we treat the symmetries of (2D and 3D) space lattice crystal cells. All 32 point groups of three
dimensional crystal cells (10 point groups in 2D) are exclusively described by vectors (two for each
cell in 2D, three for one particular cell in 3D) taken from the physical cell. Geometric multiplication of
these vectors completely generates all symmetries, including reflections, rotations, inversions, rotary reflections
and rotary-inversions. The inclusion of translations with the help of the 5D conformal
model of 3D Euclidean space allows the full formulation of the 230 crystallographic space groups in
geometric algebra. The sets of vectors necessary are illustrated in drawings and all symmetry group
elements are listed explicitly as geometric vector products. Finally a new free interactive software tool
is introduced, that visualizes all symmetry transformations in the way described in the main
geometrical part of this tutorial.

**Category:** Geometry

[121] **viXra:1306.0119 [pdf]**
*submitted on 2013-06-17 03:27:06*

**Authors:** Eckhard Hitzer

**Comments:** 16 Pages. 8 figures, 1 table. Proc. of the Symposium Innovative Teaching of Mathematics with Geometric Algebra 2003, Nov. 20-22, 2003, RIMS, University of Kyoto, Japan, pp. 89-104 (2003).

Over time an astonishing and sometimes confusing variety of descriptions of conic sections has been developed. This article will give a brief overview over some interesting descriptions, showing formulations in the three geometric algebras of Euclidean three space, projective geometry and the conformal model of Euclidean space. Some illustrations with Cinderella created Java applets will be given. I think a combined geometric algebra & illustration approach can motivate students to explorative learning.

**Category:** Geometry

[120] **viXra:1306.0118 [pdf]**
*submitted on 2013-06-17 03:33:05*

**Authors:** Eckhard Hitzer

**Comments:** 6 Pages. 2 figures, 1 table. Proc. of the International Symposium 2003 of Advanced Mechanical Engineering, Pukyong National Univ., Busan, Korea, 22-25 Nov. 2003, pp. 109-114 (2003).

In the so-called conformal model of Euclidean space of geometric algebra, circles receive a very elegant description by the outer product of three general points of that circle, forming what is called a tri-vector. Because circles are a special kind of conic section, the question arises, whether in general some kind of third order outer product of five points on a conic section (or certain linear combinations) may be able to describe other types of conic sections as well. The main idea pursued in this paper is to follow up a formula of Grassmann for conic sections through five points and implement it in the conformal model. Grassmann obviously based his formula on Pascal’s theorem. At the end we consider a simple linear combination of circle tri-vectors.

**Category:** Geometry

[119] **viXra:1306.0115 [pdf]**
*submitted on 2013-06-17 04:05:54*

**Authors:** Eckhard Hitzer, Luca Redaelli

**Comments:** 6 Pages. 18 figures. Proceedings of Fukui University International Congress, International Symposium on Advanced Mechanical Engineering, 11-13 Sep. 2002, pp. 7-12 (2002).

Conventional illustrations of elementary relations and physical applications of geometric algebra are
helpful, but restricted in communicating full generality and time dependence. The main restrictions are one
special perspective in each graph and the static character of such illustrations. Several attempts have been
made to overcome such restrictions. But up till now very little animated and interactive, free, instant access,
online material is available.
This talk presents therefore a set of well over 60 newly developed (freely online accessible[1]) JAVA applets.
These applets range from the elementary concepts of vector, bivector, outer product and rotations to triangle
relationships, oscillations and polarized waves. A special group of 21 applets illustrates three geometrically
different approaches to the representation of conics; and even more ways to describe ellipses. Finally
Clifford's circle chain theorem is illustrated for two to eight primary circles. The interactive geometry
software Cinderella[2] was used for creating these applets. Some construction principles will be explained
and a number of applets will be demonstrated. The interactive features of many of the applets invite the user
to freely explore by a few mouse clicks as many different special cases and perspectives as he likes. This is
of great help in "visualizing" the geometry encoded in the concepts and formulas of Geometric Algebra.

**Category:** Geometry

[118] **viXra:1306.0052 [pdf]**
*submitted on 2013-06-08 09:44:49*

**Authors:** Michael Pogorsky

**Comments:** 2 Pages.

The properties of trisected triangle are utilized in this proof in the way different from other known proofs.

**Category:** Geometry

[117] **viXra:1306.0037 [pdf]**
*submitted on 2013-06-06 10:14:00*

**Authors:** Arun S. Muktibodh

**Comments:** 5 Pages.

In this paper we introduce the concept of half-groups. This is a totally new
concept and demands considerable attention. R.H.Bruck [1] has defined a half groupoid.
We have imposed a group structure on a half groupoid wherein we have an identity element
and each element has a unique inverse. Further, we have defined a new structure called
Smarandache half-group. We have derived some important properties of Smarandache half-
groups. Some suitable examples are also given.

**Category:** Geometry

[116] **viXra:1305.0022 [pdf]**
*submitted on 2013-05-03 23:36:36*

**Authors:** Temur Z. Kalanov

**Comments:** 11 Pages.

@@The work is devoted to solution of an actual problem – the problem of relation between geometry and natural sciences. Methodological basis of the method of attack is the unity of formal logic and of rational dialectics. It is shown within the framework of this basis that geometry represents field of natural sciences. Definitions of the basic concepts "point", "line", "straight line", "surface", "plane surface", and “triangle” of the elementary (Euclidean) geometry are formulated. The natural-scientific proof of the parallel axiom (Euclid’s fifth postulate), classification of triangles on the basis of a qualitative (essential) sign, and also material interpretation of Euclid’s, Lobachevski’s, and Riemann’s geometries are proposed.

**Category:** Geometry

[115] **viXra:1305.0013 [pdf]**
*submitted on 2013-05-03 01:15:25*

**Authors:** Temur Z. Kalanov

**Comments:** 10 Pages.

@@The critical analysis of the Pythagorean theorem and of the problem of irrational numbers is proposed. Methodological basis for the analysis is the unity of formal logic and of rational dialectics. It is shown that: 1) the Pythagorean theorem represents a conventional (conditional) theoretical proposition because, in some cases, the theorem contradicts the formal-logical laws and leads to the appearance of irrational numbers; 2) the standard theoretical proposition on the existence of incommensurable segments is a mathematical fiction, a consequence of violation of the two formal-logical laws: the law of identity of geometrical forms and the law of lack of contradiction of geometrical forms; 3) the concept of irrational numbers is the result of violation of the dialectical unity of the qualitative aspect (i.e. form) and quantitative aspect (i.e. content: length, area) of geometric objects. Irrational numbers represent a calculation process and, therefore, do not exist on the number scale. There are only rational numbers.

**Category:** Geometry

[114] **viXra:1304.0016 [pdf]**
*submitted on 2013-04-04 04:06:02*

**Authors:** Xu Chen

**Comments:** 9 Pages.

In this article, we will discuss the smooth $(X_{M}+\sqrt{-1}Y_{M})$-invariant forms on M and
to establish a localization formulas. As an application, we get a localization formulas
for characteristic numbers.

**Category:** Geometry

[113] **viXra:1303.0146 [pdf]**
*submitted on 2013-03-19 23:14:58*

**Authors:** Morio Kikuchi

**Comments:** 14 Pages.

The types of inversions are made clear.

**Category:** Geometry

[112] **viXra:1303.0130 [pdf]**
*submitted on 2013-03-17 17:44:41*

**Authors:** Edigles Guedes

**Comments:** 4 pages

By means of geometrical problem of how many points can you find on the (half) parabola, such that the distance between any pair of them is rational, we construct some parametric equations.

**Category:** Geometry

[111] **viXra:1303.0104 [pdf]**
*submitted on 2013-03-14 11:07:48*

**Authors:** Mircea Eugen Selariu

**Comments:** 21 Pages.

EXIS TĂ O LEGATURĂ ÎNTRE PARABOLA CA POVESTIRE Ş I PARABOLA DIN
MATEMATICĂ ?
“ Exis tă ! Există şi între parabolele centrice şi parabolele excentrice sau excentricele parabolice !

**Category:** Geometry

[110] **viXra:1303.0015 [pdf]**
*submitted on 2013-03-03 10:51:13*

**Authors:** Marian Nitu, Florentin Smarandache, Mircea Eugen Selariu

**Comments:** 23 Pages.

This work’s central idea is to present new transformations, previously non - existent
in Ordinary mathematics, named centric mathematics ( CM) but that became possible due
to new born eccentric mathematics, and, implicit, to supermathematics.
As shown in this work, the new geometric transformations, named conversion or
transfiguration, wipes the boundaries between discrete and continuous geometric forms,
showing that the first ones are also continuous, being just apparently discontinuous.

**Category:** Geometry

[109] **viXra:1301.0143 [pdf]**
*submitted on 2013-01-23 10:28:29*

**Authors:** Andrew Nassif

**Comments:** 10 Pages.

Linear Perspective allows you the ability to work by representing light passing through a scene in a rectangular base, this method is often used in some paintings or modern day sketches.

**Category:** Geometry

[108] **viXra:1211.0134 [pdf]**
*submitted on 2012-11-22 21:32:20*

**Authors:** Carlos Perelman, Fang Fang, Garret Sadler, Klee Irwin

**Comments:** 9 Pages.

Inspired by the recent sums of the squares law obtained by Kovacs-Fang-Sadler-Irwin we derive the law of the sums of the squares of the areas, volumes and hyper-volumes associated with the faces, cells and hyper-cells of regular polytopes in diverse dimensions after using Clifford algebraic methods.

**Category:** Geometry

[107] **viXra:1211.0099 [pdf]**
*submitted on 2012-11-18 14:50:51*

**Authors:** Vincenzo Nardozza

**Comments:** 12 Pages.

A method for dealing with the product of step discontinuities and Dirac delta functions, related each other by a continuous function, is proposed.
The method is extended to the product of more general distributions and to the product of distributions in a multidimensional case.
Further points on product of distributions are discussed showing, among other thing, that the proposed product is associative and commutative.
A standard method, for applying the above defined product of distributions to polyhedra vertices, is analysed and the method is applied to a special case where the famous defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[106] **viXra:1211.0024 [pdf]**
*submitted on 2012-11-05 13:29:38*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 4 Pages.

We’ll prove now that there is a similar relation for the isometric cevians as Steiner's relation for the isogonal cevians.

**Category:** Geometry

[105] **viXra:1211.0023 [pdf]**
*submitted on 2012-11-05 13:31:16*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 3 Pages.

In this article we’ll discuss about a theorem which results from a duality transformation
of a theorem and the configuration in relation to the Euler’s line.

**Category:** Geometry

[104] **viXra:1210.0006 [pdf]**
*submitted on 2012-10-01 22:56:01*

**Authors:** Ren Shiquan

**Comments:** 11 Pages. this is a draft of review.

We give a review on the connection theory of fibre bundles, according to our study procedure.

**Category:** Geometry

[103] **viXra:1210.0005 [pdf]**
*submitted on 2012-10-01 23:08:15*

**Authors:** Ren Shiquan

**Comments:** 8 Pages.

This is a review of our study on the holonomy group and De Rham Decomposition of manifolds.

**Category:** Geometry

[102] **viXra:1209.0108 [pdf]**
*submitted on 2012-09-29 11:14:31*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 5 Pages.

In this article we’ll prove through computation the Feuerbach’s theorem relative to the
tangent to the nine points circle, the inscribed circle, and the ex-inscribed circles of a given
triangle.

**Category:** Geometry

[101] **viXra:1208.0070 [pdf]**
*submitted on 2012-08-16 17:24:24*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 4 Pages.

In this article we’ll give solution to a problem of geometrical construction and we’ll show
the connection between this problem and the theorem relative to Carnot’s circles.

**Category:** Geometry

[100] **viXra:1205.0092 [pdf]**
*submitted on 2012-05-23 20:05:38*

**Authors:** Mircea Eugen Şelariu

**Comments:** 23 Pages.

Prezentarea ar trebui să începă cu funcţiile beta excentrice, deoarece ele vor fi
utilizate în continuare şi la definirea şi prezentarea următoarelor FSM-CE, care sunt
funcţiile amplitudine excentrică, funcţii asemănătoare din multe puncte de vedere cu
funcţiile eliptice Jacobi amplitudine sau amplitudinus am(u,k).
Dar va începe cu fucţia “rege” radial excentric rexθ şi Rexα.

**Category:** Geometry

[99] **viXra:1205.0060 [pdf]**
*submitted on 2012-05-13 16:00:45*

**Authors:** Hilário Fernandes de Araújo Júnior

**Comments:** 3 Pages.

The cosine's law shows that, if we have a triangle with sides a, b and c, and an angle α between the sides b and c, this relationship is right:
a²=b²+c²−2bc[cos α].Will be shown here this law deduction through the trigonometry's
fundamental relation.

**Category:** Geometry

[98] **viXra:1205.0055 [pdf]**
*submitted on 2012-05-11 20:15:25*

**Authors:** Hilário Fernandes de Araújo Júnior

**Comments:** 4 Pages.

In this article, is developed a π representation as an infinite sum, through a definite integral.

**Category:** Geometry

[97] **viXra:1205.0051 [pdf]**
*submitted on 2012-05-09 07:44:01*

**Authors:** Alberto Coe

**Comments:** 3 Pages.

Using elementary geometry we have performed an approach to Pi .this agrees to the fifth decimal place .

**Category:** Geometry

[96] **viXra:1205.0003 [pdf]**
*submitted on 2012-05-02 23:20:08*

**Authors:** Jay Yoon

**Comments:** 5 Pages.

I will present a proof of Euclid’s fifth postulate (I.Post.5) that proves, as an intermediate step, a proposition equivalent to it (I.32); namely, that in any triangle, the sum of the three interior angles of the triangle equals two right angles. The proof that I.32 implies I.Post.5 and vice versa is well-established and will be omitted for the sake of brevity. The proof technique is somewhat unorthodox in that it proves I.33, which states that straight lines which join the ends of equal and parallel straight lines in the same directions are themselves equal and parallel, before establishing I.32, contrary to the order in which the propositions are demonstrated in Euclid’s Elements.
Two triangle congruence theorems, namely the side-angle-side (I.4) and side-side-side congruence theorems (I.8) are employed in order to prove I.33 without recourse to I.Post.5 or any of its equivalent formulations. In addition, a parallelogram is constructed by an unorthodox method; namely, by defining the diagonals upon which the parallelogram’s sides will be determined prior to the sides themselves. The proof assumes the five common notions stated in Book I of The Elements without explicitly making a reference to them when they are used. Furthermore, a figure is presented with color-coded angles and sides, with angles of the same color being equal in measure and sides of both the same color and the same number of tick marks being equal in length. The sides *GH* and *EJ* enclosed by brackets are indicated to be equal in length, the reason for the different notation being that the tick marks were used in reference to the halves of *GH*, namely *OG* and *OH*. The tick marks then refer to the parts of *GH*, and the bracket refers to the whole of *GH*; the latter is then equated to *EJ* by I.33, which is proven before its use.

**Category:** Geometry

[95] **viXra:1204.0097 [pdf]**
*submitted on 2012-04-27 09:27:47*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 3 Pages.

In this article we will introduce the quasi-isogonal Cevians and we’ll emphasize on
triangles in which the height and the median are quasi-isogonal Cevians.

**Category:** Geometry

[94] **viXra:1204.0096 [pdf]**
*submitted on 2012-04-27 09:29:37*

**Authors:** Florentin Smarandache

**Comments:** 2 Pages.

In [1] professor Ion Pătraşcu proves the following theorem:
The Brocard’s point of an isosceles triangle is the intersection of the medians and the
perpendicular bisectors constructed from the vertexes of the triangle’s base, and reciprocal.
We’ll provide below a different proof of this theorem than the proof given in [1] and [2].

**Category:** Geometry

[93] **viXra:1203.0006 [pdf]**
*submitted on 2012-03-02 10:47:14*

**Authors:** Marcos Georgallides

**Comments:** 21 Pages.

Article < The Six , Triple Concurrency Points , Line > is an extension of two Fundamental branches of geometry that of Perspectivity ( Desargues`s theorem , where 3 concurrency Points in a center of Perspectivity and 3 concurrency points on a line of Perspectivity , per two sides ) and that of Projective geometry ( Pascal`s theorem , with the 3 concurrency Points on a line , per two sides ) . Analyzing Extremum Principle ( Extrema ) on lines and Points , it was found that in any triangle ( three points only , which form a Plane ) and on the circumcircle exist one Inscribed and one Circumscribed , Extrema Triangle , such that on the six Extrema lines ( with a common concurrency point ) , both Perspectivity and Projective geometry concurrence on Common points on Extrema Lines . i.e. 18 lines concurrence in Six Points , per three , on a line , six triple concurrency points line.
This Compact logic of Extrema exists on Points and in lines of Euclidean geometry.
Article < Energy Laws follow Properties of Euclidean geometry > , is the deeper concept of Pythagoras theorem , where Conservation laws , referred to Physics and Mechanics , follow Euclidean moulds because these Principles belong to geometry as Points and Spaces ( geometry ) create Quantities and Qualities . Analyzing Euclid Spaces , it was found that on any two Equal and perpendicular , One dimensional Units , exists a Plane Formation ( A changeable and constant Tensor ) of constructing Squares , such that the Sum of Areas of the two Changeable Squares ( the Sum of the Squares of sides) is constant and equal to that of the circumscribed Square .The same also exists in Space Formation , where then ,
The Total Resultant Volume (cube of Resultant Sphere ) is the Sum of Changeable Volumes ( the Sum of the Cubes of Spheres of sides ). In Space Formation Changeable Volumes are Perpendicular each other , meaning that Conservation in Space ( Solid geometry ) occurs on Perpendiculars since first dimensional Units are Vectors .
This geometrical mould of Conservation , is followed by Energy in Mechanics and Physics . i.e.
The referred Energy Conservation laws in Mechanics and Physics , follow the Principle ( mould ) of Conserved Areas for Pythagoras` theorem on the moving machine of the two changeable Squares , and Conserved Perpendicular Volumes for Spaces on the Three Changeable Spheres .

**Category:** Geometry

[92] **viXra:1203.0001 [pdf]**
*submitted on 2012-03-01 05:51:13*

**Authors:** David Proffitt

**Comments:** 3 Pages.

A reformulation of the area of a planar two-dimensional object in the frequency domain allows for the computation of the true area of a band-limited boundary to be calculated.

**Category:** Geometry

[91] **viXra:1202.0032 [pdf]**
*submitted on 2012-02-11 17:14:46*

**Authors:** Mircea Selariu, Florentin Smarandache, Marian Nitu

**Comments:** 14 Pages.

This paper presents the correspondences of the eccentric
mathematics of cardinal and integral functions and centric mathematics,
or ordinary mathematics. Centric functions will also be presented in the
introductory section, because they are, although widely used in undulatory
physics, little known.

**Category:** Geometry

[90] **viXra:1201.0061 [pdf]**
*submitted on 2012-01-15 22:14:03*

**Authors:** Florentin Smarandache, Ion Patrascu

**Comments:** 244 Pages.

This book is addressed to students, professors and researchers of
geometry, who will find herein many interesting and original results.
The originality of the book The Geometry of Homological Triangles
consists in using the homology of triangles as a “filter” through which
remarkable notions and theorems from the geometry of the triangle are
unitarily passed.
Our research is structured in seven chapters, the first four are
dedicated to the homology of the triangles while the last ones to their
applications.

**Category:** Geometry

[89] **viXra:1201.0047 [pdf]**
*submitted on 2012-01-10 09:29:35*

**Authors:** Markos Georgallides

**Comments:** 12 Pages.

In this work is given a new approach to the Open Question of professor Florentine Smarandache concerning the decreasing Tunnel for Orthocenter H on any triangle ABC . Circumcenter O , Centroid K and Ortocenter H lie on Euler line OH . The midpoint N of segment OH is the center of the nine - points circle which is passing from the three midpoints of each side and from the three feet of the altitudes , so this point N is orthic`s triangle circum center . This property of point N ( as it is the first link of a chain ) connects segment ( bar ) OH with an infinite set of segments OnHn of the orthic triangles where On coincides with point Nn-1 , that of each time midpoint of segments . This chain is the locus of point N and that of the repetitive ( rotating ) segment OnHn . On any triangle ABC and on the vertices of the triangle , is constructed an orthogonal hyperbola which passes from orthocenter and provides two fix points ( the foci ) in plane .
As a result is the Axial Symmetry to the two axis , the orthogonal x,y and that of asymptotes . Since orthocenter H changes position , then AH is altering magnitude and direction , therefore AH is a repetitive damped Vector Quantity which assumes its extreme in the opposite direction relative to the first or prior positions . The above property results to a Central Symmetry to one of the vertices A , B , C with the two hyperbolas and after following the greatest of sides a , b , c . Damped Vector AHn can then convergent to Hn which is the Orthocenter of AnBnCn and it is the extreme in opposite direction . i.e.
Orthocenter H… Hn limits to a point on a chain ( straight line or curved ) through A .

**Category:** Geometry

[88] **viXra:1111.0092 [pdf]**
*submitted on 24 Nov 2011*

**Authors:** Alexander Egoyan

**Comments:** 6 pages.

In this work a new approach to multidimensional geometry based on smooth infinitesimal analysis (SIA) is
proposed. An embedded surface in this multidimensional geometry will look different for the external and internal
observers: from the outside it will look like a composition of infinitesimal segments, while from the inside like a set of
points equipped by a metric. The geometry is elastic. Embedded surfaces possess dual metric: internal and external.
They can change their form in the bulk without changing the internal metric.

**Category:** Geometry

[87] **viXra:1110.0072 [pdf]**
*submitted on 28 Oct 2011*

**Authors:** Nilgün Sönmez, Catalin Barbu

**Comments:** 4 pages.

In this study, we give a hyperbolic version of the Smarandache's
theorem in the Poincaré upper half-plane model.

**Category:** Geometry

[86] **viXra:1110.0066 [pdf]**
*submitted on 25 Oct 2011*

**Authors:** Linfan Mao

**Comments:** 377 pages

Our WORLD is a multiple one both shown by the natural world and human beings. For
example, the observation enables one knowing that there are infinite planets in the universe.
Each of them revolves on its own axis and has its own seasons. In the human
society, these rich or poor, big or small countries appear and each of them has its own system.
All of these show that our WORLD is not in homogenous but in multiple. Besides,
all things that one can acknowledge is determined by his eyes, or ears, or nose, or tongue,
or body or passions, i.e., these six organs, which means theWORLD consists of have and
not have parts for human beings. For thousands years, human being has never stopped his
steps for exploring its behaviors of all kinds.

**Category:** Geometry

[85] **viXra:1108.0008 [pdf]**
*submitted on 4 Aug 2011*

**Authors:** T Körpinar, E Turhan

**Comments:** 8 pages

In this paper, we study spacelike biharmonic curve with a timelike binormal in the Lorentzian
Heisenberg group Heis. We define a special case of such curves and call it Smarandache tn_{1} curves
in the Lorentzian Heisenberg group Heis. We construct parametric equations of Smarandache tn_{1}
curves in terms of spacelike biharmonic curves with a timelike binormal in the Lorentzian Heisenberg
group Heis

**Category:** Geometry

[84] **viXra:1107.0008 [pdf]**
*submitted on 4 Jul 2011*

**Authors:** Chun-Xuan Jiang

**Comments:** 3 pages

In this paper we prove ...(see paper) part 6

**Category:** Geometry

[83] **viXra:1107.0007 [pdf]**
*submitted on 4 Jul 2011*

**Authors:** Chun-Xuan Jiang

**Comments:** 3 pages

In this paper we prove ...(see paper) part 5

**Category:** Geometry

[82] **viXra:1107.0006 [pdf]**
*submitted on 4 Jul 2011*

**Authors:** Chun-Xuan Jiang

**Comments:** 3 pages

In this paper we prove ...(see paper) part 4

**Category:** Geometry

[81] **viXra:1107.0005 [pdf]**
*submitted on 3 Jul 2011*

**Authors:** Mircea Eugen Selariu

**Comments:** 18 pages, In Romanian

LOBE EXTERIOARE SI CVAZILOBE INTERIOARE
CERCULUI UNITATE

**Category:** Geometry

[80] **viXra:1106.0058 [pdf]**
*submitted on 27 Jun 2011*

**Authors:** Mircea Selariu

**Comments:** 20 pages.

TEOREMA S A BISECTOARELOR UNUI PATRULATER INSCRIPTIBIL SI TEOREMELE S ALE TRIUNGHIULUI

**Category:** Geometry

[79] **viXra:1106.0057 [pdf]**
*submitted on 27 Jun 2011*

**Authors:** Mircea Selariu

**Comments:** 13 pages.

NOI LINII CONCURENTE SI UN NOU PUNCT DE INTERSECTIE
INTR-UN TRIUNGHI

**Category:** Geometry

[78] **viXra:1104.0079 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 16 pages

A tendering is a negotiating process for a contract through by
a tenderer issuing an invitation, bidders submitting bidding documents and
the tenderer accepting a bidding by sending out a notification of award. As
a useful way of purchasing, there are many norms and rulers for it in the
purchasing guides of the World Bank, the Asian Development Bank,..., also
in contract conditions of various consultant associations. In China, there is
a law and regulation system for tendering and bidding. However, few works
on the mathematical model of a tendering and its evaluation can be found in
publication. The main purpose of this paper is to construct a Smarandache
multi-space model for a tendering, establish an evaluation system for bidding
based on those ideas in the references [7] and [8] and analyze its solution by
applying the decision approach for multiple objectives and value engineering.
Open problems for pseudo-multi-spaces are also presented in the final section.

**Category:** Geometry

[77] **viXra:1104.0078 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 26 pages

A Smarandache multi-space is a union of n different spaces
equipped with some different structures for an integer n ≥ 2, which can be
both used for discrete or connected spaces, particularly for geometries and
spacetimes in theoretical physics. This monograph concentrates on
characterizing various multi-spaces including three parts altogether. The first part is
on algebraic multi-spaces with structures, such as those of multi-groups,
multi-rings, multi-vector spaces, multi-metric spaces, multi-operation systems and
multi-manifolds, also multi-voltage graphs, multi-embedding of a graph in an
n-manifold,..., etc.. The second discusses Smarandache geometries, including
those of map geometries, planar map geometries and pseudo-plane geometries,
in which the Finsler geometry, particularly the Riemann geometry appears as
a special case of these Smarandache geometries. The third part of this book
considers the applications of multi-spaces to theoretical physics, including the
relativity theory, the M-theory and the cosmology. Multi-space models for
p-branes and cosmos are constructed and some questions in cosmology are
clarified by multi-spaces. The first two parts are relative independence for
reading and in each part open problems are included for further research of
interested readers (part IV)

**Category:** Geometry

[76] **viXra:1104.0077 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 74 pages

A Smarandache multi-space is a union of n different spaces
equipped with some different structures for an integer n ≥ 2, which can be
both used for discrete or connected spaces, particularly for geometries and
spacetimes in theoretical physics. This monograph concentrates on
characterizing various multi-spaces including three parts altogether. The first part is
on algebraic multi-spaces with structures, such as those of multi-groups,
multi-rings, multi-vector spaces, multi-metric spaces, multi-operation systems and
multi-manifolds, also multi-voltage graphs, multi-embedding of a graph in an
n-manifold,..., etc.. The second discusses Smarandache geometries, including
those of map geometries, planar map geometries and pseudo-plane geometries,
in which the Finsler geometry, particularly the Riemann geometry appears as
a special case of these Smarandache geometries. The third part of this book
considers the applications of multi-spaces to theoretical physics, including the
relativity theory, the M-theory and the cosmology. Multi-space models for
p-branes and cosmos are constructed and some questions in cosmology are
clarified by multi-spaces. The first two parts are relative independence for
reading and in each part open problems are included for further research of
interested readers (part III)

**Category:** Geometry

[75] **viXra:1104.0076 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 78 pages

A Smarandache multi-space is a union of n different spaces
equipped with some different structures for an integer n &t; 2, which can be
both used for discrete or connected spaces, particularly for geometries and
spacetimes in theoretical physics. This monograph concentrates on
characterizing various multi-spaces including three parts altogether. The first part is
on algebraic multi-spaces with structures, such as those of multi-groups,
multirings, multi-vector spaces, multi-metric spaces, multi-operation systems and
multi-manifolds, also multi-voltage graphs, multi-embedding of a graph in an
n-manifold,..., etc.. The second discusses Smarandache geometries, including
those of map geometries, planar map geometries and pseudo-plane geometries,
in which the Finsler geometry, particularly the Riemann geometry appears as
a special case of these Smarandache geometries. The third part of this book
considers the applications of multi-spaces to theoretical physics, including the
relativity theory, the M-theory and the cosmology. Multi-space models for
p-branes and cosmos are constructed and some questions in cosmology are
clarified by multi-spaces. The first two parts are relative independence for
reading and in each part open problems are included for further research of
interested readers.

**Category:** Geometry

[74] **viXra:1104.0075 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 47 pages

A Smarandache multi-space is a union of n different spaces
equipped with some different structures for an integer n ≥ 2, which can be
both used for discrete or connected spaces, particularly for geometries and
spacetimes in theoretical physics. This monograph concentrates on
characterizing various multi-spaces including three parts altogether. The first part is
on algebraic multi-spaces with structures, such as those of multi-groups,
multirings, multi-vector spaces, multi-metric spaces, multi-operation systems and
multi-manifolds, also multi-voltage graphs, multi-embedding of a graph in an
n-manifold,..., etc.. The second discusses Smarandache geometries, including
those of map geometries, planar map geometries and pseudo-plane geometries,
in which the Finsler geometry, particularly the Riemann geometry appears as
a special case of these Smarandache geometries. The third part of this book
considers the applications of multi-spaces to theoretical physics, including the
relativity theory, the M-theory and the cosmology. Multi-space models for
p-branes and cosmos are constructed and some questions in cosmology are
clarified by multi-spaces. The first two parts are relative independence for
reading and in each part open problems are included for further research of
interested readers.

**Category:** Geometry

[73] **viXra:1104.0074 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 9 pages

A Smarandache multi-space is a union of n spaces A1,A2,...,An
with some additional conditions holding. Combining Smarandache
multispaces with classical metric spaces, the conception of multi-metric space is
introduced. Some characteristics of a multi-metric space are obtained and
Banach's fixed-point theorem is generalized in this paper.

**Category:** Geometry

[72] **viXra:1104.0073 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 7 pages

A Smarandache multi-space is a union of n spaces A1,A2,...,An
with some additional conditions holding. Combining Smarandache multispaces
with linear vector spaces in classical linear algebra, the conception
of multi-vector spaces is introduced. Some characteristics of a multi-vector
space are obtained in this paper.

**Category:** Geometry

[71] **viXra:1104.0072 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 8 pages

A Smarandache multi-space is a union of n spaces A1,A2,...,An
with some additional conditions holding. Combining Smarandache multispaces
with rings in classical ring theory, the conception of multi-ring spaces
is introduced. Some characteristics of a multi-ring space are obtained in this
paper

**Category:** Geometry

[70] **viXra:1104.0071 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 8 pages

A Smarandache multi-space is a union of n spaces
A1,A2, ... ,An with some additional conditions holding. Combining classical
of a group with Smarandache multi-spaces, the conception of a
multi-group space is introduced in this paper, which is a generalization
of the classical algebraic structures, such as the group, filed, body,...,
etc.. Similar to groups, some characteristics of a multi-group space are
obtained in this paper.

**Category:** Geometry

[69] **viXra:1104.0070 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 16 pages

As we known, the Seifert-Van Kampen theorem handles
fundamental groups of those topological spaces (see paper)

**Category:** Geometry

[68] **viXra:1104.0069 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 16 pages

For an integer m > 1, a combinatorial manifold fM is defined to be
a geometrical object fM such that for(...) there is a local chart (see paper)
where Bnij is an nij -ball for integers 1 < j < s(p) < m. Integral theory
on these smoothly combinatorial manifolds are introduced. Some classical
results, such as those of Stokes' theorem and Gauss' theorem are generalized to
smoothly combinatorial manifolds in this paper.

**Category:** Geometry

[67] **viXra:1104.0068 [pdf]**
*submitted on 19 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 37 pages

For an integer m ≥ 1, a combinatorial manifold fM is defined to be
a geometrical object fM such that for (...), there is a local chart
(see paper)
where Bnij is an nij -ball for integers 1 ≤ j ≤ s(p) ≤ m. Topological
and differential structures such as those of d-pathwise connected, homotopy
classes, fundamental d-groups in topology and tangent vector fields, tensor
fields, connections, Minkowski norms in differential geometry on these finitely
combinatorial manifolds are introduced. Some classical results are generalized
to finitely combinatorial manifolds. Euler-Poincare characteristic is discussed
and geometrical inclusions in Smarandache geometries for various geometries
are also presented by the geometrical theory on finitely combinatorial
manifolds in this paper.

**Category:** Geometry

[66] **viXra:1104.0062 [pdf]**
*submitted on 20 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 15 pages.

A Smarandache geometry is a geometry which has at least one
Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two
different ways within the same space, i.e., validated and invalided, or only
invalided but in multiple distinct ways and a Smarandache n-manifold is a
n-manifold that support a Smarandache geometry. Iseri provided a construction
for Smarandache 2-manifolds by equilateral triangular disks on a plane and a
more general way for Smarandache 2-manifolds on surfaces, called map geometries
was presented by the author in [9]-[10] and [12]. However, few observations
for cases of n ≥ 3 are found on the journals. As a kind of Smarandache
geometries, a general way for constructing dimensional n pseudo-manifolds are
presented for any integer n ≥ 2 in this paper. Connection and principal fiber
bundles are also defined on these manifolds. Following these constructions,
nearly all existent geometries, such as those of Euclid geometry,
Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler
geometry and Finsler geometry, ...,etc., are their sub-geometries.

**Category:** Geometry

[65] **viXra:1104.0061 [pdf]**
*submitted on 20 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 19 pages.

Combinatorics is a powerful tool for dealing with relations among
objectives mushroomed in the past century. However, an more important work
for mathematician is to apply combinatorics to other mathematics and other
sciences not merely to find combinatorial behavior for objectives. Recently,
such research works appeared on journals for mathematics and theoretical
physics on cosmos. The main purpose of this paper is to survey these thinking
and ideas for mathematics and cosmological physics, such as those of
multi-spaces, map geometries and combinatorial cosmoses, also the
combinatorial conjecture for mathematics proposed by myself in 2005. Some
open problems are included for the 21th mathematics by a combinatorial
speculation.

**Category:** Geometry

[64] **viXra:1104.0060 [pdf]**
*submitted on 20 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 16 pages.

Parallel lines are very important objects in Euclid plane geometry
and its behaviors can be gotten by one's intuition. But in a planar map
geometry, a kind of the Smarandache geometries, the situation is complex
since it may contains elliptic or hyperbolic points. This paper concentrates on
the behaviors of parallel bundles in planar map geometries, a generalization of
parallel lines in plane geometry and obtains characteristics for parallel bundles.

**Category:** Geometry

[63] **viXra:1104.0059 [pdf]**
*submitted on 20 Apr 2011*

**Authors:** Linfan Mao

**Comments:** 19 pages.

On a geometrical view, the conception of map geometries is introduced,
which is a nice model of the Smarandache geometries, also new kind of
and more general intrinsic geometry of surfaces. Some open problems related
combinatorial maps with the Riemann geometry and Smarandache geometries
are presented.

**Category:** Geometry

[62] **viXra:1104.0054 [pdf]**
*submitted on 18 Apr 2011*

**Authors:** Elemér E Rosinger

**Comments:** 31 pages.

One is reminded in this paper of the often overlooked fact that the geometric
straight line, or GSL, of Euclidean geometry is not necessarily
identical with its usual Cartesian coordinatisation given by the real
numbers in **R**. Indeed, the GSL is an abstract idea, while the Cartesian,
or for that matter, any other specific coordinatisation of it is but
one of the possible mathematical models chosen upon certain reasons.
And as is known, there are a a variety of mathematical models of GSL,
among them given by nonstandard analysis, reduced power algebras,
the topological long line, or the surreal numbers, among others. As
shown in this paper, the GSL can allow coordinatisations which are
arbitrarily more rich locally and also more large globally, being given
by corresponding linearly ordered sets of no matter how large cardinal.
Thus one can obtain in relatively simple ways structures which
are more rich locally and large globally than in nonstandard analysis,
or in various reduced power algebras. Furthermore, vector space
structures can be defined in such coordinatisations. Consequently,
one can define an extension of the usual Differential Calculus. This
fact can have a major importance in physics, since such locally more
rich and globally more large coordinatisations of the GSL do allow
new physical insights, just as the introduction of various microscopes
and telescopes have done. Among others, it and general can reassess
special relativity with respect to its independence of the mathematical
models used for the GSL. Also, it can allow the more appropriate
modelling of certain physical phenomena. One of the long vexing issue
of so called "infinities in physics" can obtain a clarifying reconsideration.
It indeed all comes down to looking at the GSL with suitably
constructed microscopes and telescopes, and apply the resulted new
modelling possibilities in theoretical physics. One may as well consider
that in string theory, for instance, where several dimensions are supposed
to be compact to the extent of not being observable on classical
scales, their mathematical modelling may benefit from the presence of
infinitesimals in the mathematical models of the GSL presented here.
However, beyond all such particular considerations, and not unlikely
also above them, is the following one : theories of physics should be
not only background independent, but quite likely, should also be independent
of the specific mathematical models used when representing
geometry, numbers, and in particular, the GSL.
One of the consequences of considering the essential difference between
the GSL and its various mathematical models is that what appears to
be the definitive answer is given to the intriguing question raised by
Penrose : "Why is it that physics never uses spaces with a cardinal
larger than that of the continuum ?".

**Category:** Geometry

[61] **viXra:1104.0053 [pdf]**
*submitted on 17 Apr 2011*

**Authors:** Catalin Barbu, Florentin Smarandache

**Comments:** 6 pages.

In this study, we present a proof of the Menelaus theorem for
quadrilaterals in hyperbolic geometry, and a proof for the transversal theorem for
triangles.

**Category:** Geometry

[60] **viXra:1103.0119 [pdf]**
*submitted on 31 Mar 2011*

**Authors:** Markos Georgallides

**Comments:** 7 pages.

Universe is following Euclid Spaces. In Euclidean geometry points do not exist , but their
position and correlation is doing geometry and physics . The universe cannot be created ,
because becomes and never is . According to Euclidean geometry , and since the position
of points ( empty Space ) creates geometry and Spaces , the trisection of any angle exists in
these Spaces and in this way. Infinite points exist always between points.

**Category:** Geometry

[59] **viXra:1103.0076 [pdf]**
*submitted on 19 Mar 2011*

**Authors:** Martiros Khurshudyan

**Comments:** 3 pages.

Geometry it is not a word, moreover it is not just mathematical research area. It is art,
it is the base of our Nature, it is language of Nature. The aim of this article is to present
how Thales`s theorem is working for simple cases, when we need to divide a geometrical
object into equal parts: mainly, we considered the problem of dividing a straight segment
of length N into n equal parts. On the base of this simple case, we proposed a
generalizations of the problem. We presented they as questions. Purpose of this article is
to ask to find solutions for the questions. It seems, that for the positive answer, here must
be developed geometrical techniques.

**Category:** Geometry

[58] **viXra:1103.0043 [pdf]**
*submitted on 13 Mar 2011*

**Authors:** Markos Georgallides

**Comments:** 6 pages

It is not Accidental the fact that the Perception and Order of Elements of the Euclidean
Geometry are with so much conceptual importance . This will appear clearly with the analysis
which follows

**Category:** Geometry

[57] **viXra:1103.0042 [pdf]**
*submitted on 13 Mar 2011*

**Authors:** Markos Georgallides

**Comments:** 20 pages

This article was sent to some specialists in Euclidean Geometry for criticism .
The geometrical solution of this problem is based on the four Postulates for Constructions
in Euclid geometry

**Category:** Geometry

[56] **viXra:1103.0035 [pdf]**
*submitted on 11 Mar 2011*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 3 pages

In this article we'll obtain through the duality method a property in relation to the contact
cords of the opposite sides of a circumscribable octagon.

**Category:** Geometry

[55] **viXra:1103.0034 [pdf]**
*submitted on 11 Mar 2011*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 9 pages

In this article will prove some theorems in relation to the triplets of
homological triangles
two by two. These theorems will be used later to build triplets of triangles
two by two trihomological.

**Category:** Geometry

[54] **viXra:1102.0015 [pdf]**
*submitted on 10 Feb 2011*

**Authors:** S. Bhattacharya

**Comments:**
2 pages. Romanian language.

Prezentam aici un model simplu al geometriei Smarandache si
invitam cititorul, ca o distractie matematica, sa compuna alte modele.

**Category:** Geometry

[53] **viXra:1102.0014 [pdf]**
*submitted on 10 Feb 2011*

**Authors:** L. Kuciuk, M. Antholy

**Comments:**
4 pages. Romanian language.

O Geometrie Smarandache este o geometrie care are cel putin o axioma negata in mod smarandachean (1969).
Spunem ca o axioma este negata smarandachean daca axioma se comporta cel putin in doua moduri diferite
in acelasi spatiu (i.e. validata si negata, sau numai negata dar in mai multe moduri diferite).

**Category:** Geometry

[52] **viXra:1102.0006 [pdf]**
*submitted on 5 Feb 2011*

**Authors:** Ovidiu Sandru

**Comments:** 3 pages.

A model formed by two parallel plans is constructed which behaves the Smarandache geometries.

**Category:** Geometry

[51] **viXra:1101.0093 [pdf]**
*submitted on 28 Jan 2011*

**Authors:** Jongsoo Park

**Comments:** 17 pages, In Korean

Fast Approximation of *π* Using Regular Polyon

**Category:** Geometry

[50] **viXra:1101.0068 [pdf]**
*submitted on 22 Jan 2011*

**Authors:** Don Jojan

**Comments:** 4 pages

Here I am presenting the construction of an angle of 50^{o}
without using a compass or a protractor.

**Category:** Geometry

[49] **viXra:1101.0067 [pdf]**
*submitted on 22 Jan 2011*

**Authors:** Don Jojan

**Comments:** 4 pages

Here I am presenting the construction of an angle of 120^{o}
without using a compass or a protractor.

**Category:** Geometry

[48] **viXra:1101.0046 [pdf]**
*submitted on 14 Jan 2011*

**Authors:** Don Jojan

**Comments:** 4 pages

Here I am presenting the construction of an angle of 60^{o} without using a compass or a protractor.

**Category:** Geometry

[47] **viXra:1011.0028 [pdf]**
*submitted on 20 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 1 pages

Let's consider the points...

**Category:** Geometry

[46] **viXra:1010.0060 [pdf]**
*submitted on 28 Oct 2010*

**Authors:** Linfan Mao

**Comments:** 83 pages, in Chinese

Mathematical Combinatorics
& Smarandache Multi-Spaces

**Category:** Geometry

[45] **viXra:1010.0055 [pdf]**
*submitted on 20 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 3 pages

This generalization of the Theorem of Menelaus from a triangle to a polygon with n sides is
proven by a self-recurrent method which uses the induction procedure and the Theorem of
Menelaus itself.

**Category:** Geometry

[44] **viXra:1010.0050 [pdf]**
*submitted on 20 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 5 pages

In this paper we present unsolved problems that involve infinite tunnels of recursive triangles or
recursive polygons, either in a decreasing or in an increasing way. The "nedians or order i in a
triangle" are generalized to "nedians of ratio r"
and "nedians of angle α" or "nedians at angle β",
and afterwards one considers their corresponding "nedian triangles" and "nedian polygons".
This tunneling idea came from physics.

**Category:** Geometry

[43] **viXra:1010.0038 [pdf]**
*submitted on 25 Oct 2010*

**Authors:** Florentin Smarandache, Ion Pătraşcu

**Comments:** 6 pages

In this article we will use the Desargues' theorem and its reciprocal to solve two
problems.

**Category:** Geometry

[42] **viXra:1010.0008 [pdf]**
*submitted on 4 Oct 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:** 4 pages

In this article we'll emphasize on two triangles and provide a vectorial proof of
the fact that these triangles have the same orthocenter. This proof will, further allow us to
develop a vectorial proof of the Stevanovic's theorem relative to the orthocenter of the
Fuhrmann's triangle.

**Category:** Geometry

[41] **viXra:1009.0046 [pdf]**
*submitted on 12 Sep 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:** 5 pages

In this article we'll present an elementary proof of a theorem of Alexandru Pantazi
(1896-1948), Romanian mathematician, regarding the bi-orthological triangles.

**Category:** Geometry

[40] **viXra:1009.0015 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** M. Khoshnevisan

**Comments:**
2 pages.

In this paper we present the Smarandache's Concurrent Lines Theorem in the geometry
of the triangle.

**Category:** Geometry

[39] **viXra:1009.0013 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** M. Khoshnevisan

**Comments:**
2 pages.

In this paper we present the Smarandache's Cevians Theorem (II) in the geometry of the
triangle.

**Category:** Geometry

[38] **viXra:1009.0012 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** M. Khoshnevisan

**Comments:**
2 pages.

We present the Smarandache's Cevians Theorem in the geometry of the triangle.

**Category:** Geometry

[37] **viXra:1009.0011 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** M. Khoshnevisan

**Comments:**
2 pages.

In this paper we present the Smarandache's Ratio Theorem in the geometry of the
triangle.

**Category:** Geometry

[36] **viXra:1009.0010 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** Mihai Dicu

**Comments:**
1 page.

The Smarandache-Pătraşcu Theorem of Orthohomological Triangles is the
folllowing:

**Category:** Geometry

[35] **viXra:1009.0009 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** Ion Pătraşcu

**Comments:**
3 pages.

We present the Smarandache's Orthic Theorem in the geometry of the triangle.

**Category:** Geometry

[34] **viXra:1009.0006 [pdf]**
*submitted on 2 Sep 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:**
10 pages

In a previous paper we have introduced the ortho-homological triangles, which are
triangles that are orthological and homological simultaneously.
In this article we call attention to two remarkable ortho-homological triangles (the given
triangle ABC and its first Brocard's triangle), and using the Sondat's theorem relative to
orthological triangles, we emphasize on four important collinear points in the geometry of the
triangle.

**Category:** Geometry

[33] **viXra:1008.0081 [pdf]**
*submitted on 28 Aug 2010*

**Authors:** Catalin Barbu

**Comments:** 3 pages

In this note, we present a proof to the Smarandache's Minimum Theorem in the Einstein
Relativistic Velocity Model of Hyperbolic Geometry.

**Category:** Geometry

[32] **viXra:1008.0043 [pdf]**
*submitted on 16 Aug 2010*

**Authors:** Jeidsan A. C. Pereira

**Comments:** 10 Pages.

Given a vector space V of dimension n and a natural number k < n, the
grassmannian G_{k}(V) is defined as the set of all subspaces W ⊂ V such that
dim(W) = k. In the case of V = R^{n}, G_{k}(V) is the set of k-fl
ats in R^{n} and
is called real grassmannian [1]. Recently the study of these manifolds has
found applicability in several areas of mathematics, especially in Modern
Differential Geometry and Algebraic Geometry. This work will build two
differential structures on the real grassmannian, one of which is obtained as a
quotient space of a Lie group [1], [3], [2], [7]

**Category:** Geometry

[31] **viXra:1008.0037 [pdf]**
*submitted on 12 Aug 2010*

**Authors:** Marian Dincă

**Comments:** 2 Pages.

In this paper it is given proof Yff's conjecture using convexity arguments.

**Category:** Geometry

[30] **viXra:1008.0031 [pdf]**
*submitted on 11 Aug 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:** 3 pages

In [1] we proved, using barycentric coordinates, the following theorem

**Category:** Geometry

[29] **viXra:1008.0030 [pdf]**
*submitted on 11 Aug 2010*

**Authors:** Marian Dincă

**Comments:** 4 Pages.

In this paper an elementary proof of the Wolstenholme-Lenhard ciclic
inequality for real numbers and L.Fejes T&oactute;th conjecture( equivalent by Erdis-Mordell
inequality for polygon) is given, using a remarcable identity
We give the following:

**Category:** Geometry

[28] **viXra:1007.0035 [pdf]**
*submitted on 23 Jul 2010*

**Authors:** Marian Dincă, J. L. Díaz-Barrero

**Comments:** 4 pages.

In this short note a new proof of a classical inequality involving the
areas of a pair of triangles is presented.

**Category:** Geometry

[27] **viXra:1007.0011 [pdf]**
*submitted on 8 Jul 2010*

**Authors:** Marian Dincă, Şcoala Generală

**Comments:** 1 page.

In the paper given a new proof the two inequalities using unitary method.

**Category:** Geometry

[26] **viXra:1006.0069 [pdf]**
*submitted on 30 Jun 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:** 4 pages.

In this article we prove the Sodat's theorem regarding the orthohomological triangle and
then we use this theorem and Smarandache-Patrascu's theorem in order to obtain another
theorem regarding the orthohomological triangles.

**Category:** Geometry

[25] **viXra:1006.0059 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:**
3 pages.

In this paper we analyze and prove two properties of a hexagon circumscribed to a circle

**Category:** Geometry

[24] **viXra:1006.0058 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** Florentin Smarandache, Ion Pătraşcu

**Comments:**
3 pages.

A Multiple Theorem with Isogonal and Concyclic Points

**Category:** Geometry

[23] **viXra:1006.0024 [pdf]**
*submitted on 13 Mar 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:**
13 pages.

In this paper we prove that if P_{1},P_{2} are isogonal points in the triangle ABC ,
and if A_{1}B_{1}C_{1} and A_{2}B_{2}C_{2} are their ponder triangle such that the triangles ABC and
A_{1}B_{1}C_{1} are homological (the lines AA_{1} , BB_{1} , CC_{1} are concurrent), then the triangles
ABC and A_{2}B_{2}C_{2} are also homological.

**Category:** Geometry

[22] **viXra:1006.0015 [pdf]**
*submitted on 11 Mar 2010*

**Authors:** Roberto Torretti

**Comments:** 3 pages

The Smarandache anti-geometry is a non-euclidean geometry that
denies all Hilbert's twenty axioms, each axiom being denied in many ways in the same
space. In this paper one finds an economics model to this geometry by making the
following correlations:
(i) A point is the balance in a particular checking account, expressed in U.S. currency.
(Points are denoted by capital letters).
(ii) A line is a person, who can be a human being. (Lines are denoted by lower case
italics).
(iii) A plane is a U.S. bank, affiliated to the FDIC. (Planes are denoted by lower case
boldface letters).

**Category:** Geometry

[21] **viXra:1006.0004 [pdf]**
*submitted on 3 Jun 2010*

**Authors:** Claudiu Coandă, Florentin Smarandache, Ion Pătraşcu

**Comments:** 5 pages

In this article we propose to determine the triangles' class... (see paper for full abstract)

**Category:** Geometry

[20] **viXra:1006.0003 [pdf]**
*submitted on 3 Jun 2010*

**Authors:** Florentin Smarandache, Catalin Barbu

**Comments:** 4 pages

In this note, we present the hyperbolic Menelaus theorem in the
Poincaré disc of hyperbolic geometry.

**Category:** Geometry

[19] **viXra:1005.0053 [pdf]**
*submitted on 11 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 171 pages

Solved problems of geometry and trigonometry for college students.

**Category:** Geometry

[18] **viXra:1005.0016 [pdf]**
*submitted on 5 May 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:** 3 pages

In [1] Professor Claudiu Coandă proves the following theorem using the barycentric
coordinates.

**Category:** Geometry

[17] **viXra:1004.0137 [pdf]**
*submitted on 10 Mar 2010*

**Authors:** L. Kuciuk, M. Antholy

**Comments:**
23 pages.

In this paper we make a presentation of these exciting geometries and present a model for
a particular one.

**Category:** Geometry

[16] **viXra:1004.0050 [pdf]**
*submitted on 8 Apr 2010*

**Authors:** Claudiu Coandă

**Comments:** 4 pages

In this article we prove the Smarandache-Pătrașcu's Theorem in relation to the inscribed
orthohomological triangles using the barycentric coordinates.

**Category:** Geometry

[15] **viXra:1004.0025 [pdf]**
*submitted on 3 Apr 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:** 3 pages

In this note we prove a problem given at a Romanian student mathematical competition, and we
obtain an interesting result by using a Theorem of Orthohomological Triangles.

**Category:** Geometry

[14] **viXra:1004.0003 [pdf]**
*submitted on 8 Mar 2010*

**Authors:** Mircea Eugen Șelariu

**Comments:** 14 pages, translated from Romanian by Marian Nitu and Florentin Smarandache

In this paper we talk about the so-called Super-Mathematics Functions (SMF), which often
constitute the base for generating technical, neo-geometrical, therefore less artistic objects.
These functions are the results of 38 years of research, which began at University of Stuttgart
in 1969. Since then, 42 related works have been published, written by over 19 authors, as shown in
the References.

**Category:** Geometry

[13] **viXra:1003.0272 [pdf]**
*submitted on 8 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 9 pages

In this paper we review eight previous proposed and solved problems of elementary 2D
geometry [1], and we extend them either from triangle to polygons or from 2D to 3D-space and
make some comments about them.

**Category:** Geometry

[12] **viXra:1003.0256 [pdf]**
*submitted on 8 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 4 pages

In this article we present the two classical negations of Euclid's Fifth Postulate
(done by Lobachevski-Bolyai-Gauss, and respectively by Riemann), and in addition of
these we propose a partial negation (or a degree of negation) of an axiom in geometry.
The most important contribution of this article is the introduction of the degree of
negation (or partial negation) of an axiom and, more general, of a scientific or humanistic
proposition (theorem, lemma, etc.) in any field - which works somehow like the negation
in fuzzy logic (with a degree of truth, and a degree of falsehood) or like the negation in
neutrosophic logic [with a degree of truth, a degree of falsehood, and a degree of
neutrality (i.e. neither truth nor falsehood, but unknown, ambiguous, indeterminate)].

**Category:** Geometry

[11] **viXra:1003.0254 [pdf]**
*submitted on 26 Mar 2010*

**Authors:** Cătălin Barbu

**Comments:** 4 pages

In this note, we present a proof of Smarandache's cevian triangle
hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

**Category:** Geometry

[10] **viXra:1003.0245 [pdf]**
*submitted on 25 Mar 2010*

**Authors:** Cătălin Barbu

**Comments:** 4 pages

In this note, we present a proof of the hyperbolic a Smarandache's
pedal polygon theorem in the Poincaré disc model of hyperbolic geometry.

**Category:** Geometry

[9] **viXra:1003.0227 [pdf]**
*submitted on 7 Mar 2010*

**Authors:** Linfan Mao

**Comments:** 124 pages

A combinatorial map is a connected topological graph cellularly embedded in a
surface. As a linking of combinatorial configuration with the classical mathematics,
it fascinates more and more mathematician's interesting. Its function and role in
mathematics are widely accepted by mathematicians today.

**Category:** Geometry

[8] **viXra:1003.0221 [pdf]**
*submitted on 7 Mar 2010*

**Authors:** Linfan Mao

**Comments:** 499 pages

Anyone maybe once heard the proverb of the six blind men with an elephant, in
which these blind men were asked to determine what an elephant looks like by touch
different parts of the elephant's body. The man touched its leg, tail, trunk, ear, belly
or tusk claims that the elephant is like a pillar, a rope, a tree branch, a hand fan, a
wall or a solid pipe, respectively. Each of them insisted his view right. They entered
into an endless argument. All of you are right! A wise man explains to them: why
are you telling it differently is because each one of you touched the different part of
the elephant. So, actually the elephant has all those features what you all said.

**Category:** Geometry

[7] **viXra:1003.0187 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Mihály Bencze, Florin Popovici, Florentin Smarandache

**Comments:** 5 pages

In this article we present a generalization of a Leibniz's theorem in geometry and
an application of this.

**Category:** Geometry

[6] **viXra:1003.0164 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 7 pages

In these paragraphs one presents three generalizations of the famous theorem of
Ceva

**Category:** Geometry

[5] **viXra:1003.0162 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 2 pages

In this short note we will prove a generalization of Joung's theorem in space.

**Category:** Geometry

[4] **viXra:1003.0116 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Florentin Smarandache

**Comments:** 23 pages

The goal of this paper is to experiment new math concepts
and theories, especially if they run counter to the classical
ones. To prove that contradiction is not a catastrophe, and
to learn to handle it in an (un)usual way.
To transform the apparently unscientific ideas into scientific
ones, and to develop their study (The Theory of Imperfections).
And finally, to interconnect opposite (and not only) human
fields of knowledge into as-heterogeneous-as-possible
another fields.

**Category:** Geometry

[3] **viXra:1003.0058 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Ion Pătraşcu

**Comments:** 5 pages, Translated by Prof. Florentin Smarandache

In this article we prove the theorems of the orthopole and we obtain, through
duality, its dual, and then some interesting specific examples of the dual of the theorem
of the orthopole.

**Category:** Geometry

[2] **viXra:1003.0057 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Ion Pătraşcu

**Comments:** 7 pages, Translated by Prof. Florentin Smarandache

The purpose of this article is to familiarize the reader with these notions, emphasizing on
connections between them.

**Category:** Geometry

[1] **viXra:1003.0056 [pdf]**
*submitted on 6 Mar 2010*

**Authors:** Ion Pătraşcu

**Comments:** 5 pages, Translated by Prof. Florentin Smarandache

In this article we elementarily prove some theorems on the poles and polars
theory, we present the transformation using duality and we apply this transformation to
obtain the dual theorem relative to the Samson's line.

**Category:** Geometry

[77] **viXra:1605.0233 [pdf]**
*replaced on 2016-06-11 07:43:18*

**Authors:** James A. Smith

**Comments:** 15 Pages.

The beautiful Problem of Apollonius from classical geometry ("Construct all of the circles that are tangent, simultaneously, to three given coplanar circles") does not appear to have been solved previously by vector methods. It is solved here via Geometric Algebra (GA, also known as Clifford Algebra) to show students how they can make use of GA's capabilities for expressing and manipulating rotations and reflections. As Viète did when deriving his ruler-and-compass solution, we first transform the problem by shrinking one of the given circles to a point. In the course of solving the transformed problem, guidance is provided to help students ``see" geometric content in GA terms. Examples of the guidance that is given include (1) recognizing and formulating useful reflections and rotations that are present in diagrams; (2) using postulates on the equality of multivectors to obtain solvable equations; and (3) recognizing complex algebraic expressions that reduce to simple rotations of multivectors.

**Category:** Geometry

[76] **viXra:1605.0233 [pdf]**
*replaced on 2016-06-05 15:58:39*

**Authors:** James A. Smith

**Comments:** 15 Pages.

The beautiful Problem of Apollonius from classical geometry ("Construct all of the circles that are tangent, simultaneously, to three given coplanar circles") does not appear to have been solved previously by vector methods. It is solved here via Geometric Algebra (GA, also known as Clifford Algebra) to show students how they can make use of GA's capabilities for expressing and manipulating rotations and reflections. As Viète did when deriving his ruler-and-compass solution, we first transform the problem by shrinking one of the given circles to a point. In the course of solving the transformed problem, guidance is provided to help students ``see" geometric content in GA terms. Examples of the guidance that is given include (1) recognizing and formulating useful reflections and rotations that are present in diagrams; (2) using postulates on the equality of multivectors to obtain solvable equations; and (3) recognizing complex algebraic expressions that reduce to simple rotations of multivectors.

**Category:** Geometry

[75] **viXra:1605.0233 [pdf]**
*replaced on 2016-06-03 19:48:48*

**Authors:** James A. Smith

**Comments:** 14 Pages.

The beautiful Problem of Apollonius from classical geometry (“Construct all of the circles that are tangent, simultaneously, to three given coplanar circles”) does not appear to have been solved previously by vector methods. It is solved here via GA to show students how they can make use of GA’s capabilities for expressing and manipulating rotations and reflections. As Viete did when deriving his ruler-and-compass solution, we first transform the problem by shrinking one of the given circles to a point. In the course of solving
the transformed problem, guidance is provided to help students “see” geometric content in GA terms. Examples of the guidance that is given include (1) recognizing and formulating useful reflections and rotations that are present in diagrams; (2) using postulates on the equality of multivectors to obtain solvable equations; and (3)recognizing complex algebraic expressions that reduce to simple rotations of multivectors.

**Category:** Geometry

[74] **viXra:1602.0234 [pdf]**
*replaced on 2016-03-08 16:32:26*

**Authors:** Espen Gaarder Haug

**Comments:** 19 Pages.

Squaring the Circle is a famous geometry problem going all the way back to the ancient Greeks. It is the great quest of constructing a square with the same area as a circle using a compass and straightedge in a finite number of steps. Since it was proved that pi was a transcendental number in 1882, the task of Squaring the Circle has been considered impossible. Here, we will show it is possible to Square the Circle in Euclidean space-time. It is not possible to Square the Circle in Euclidean space alone, but it is fully possible in Euclidean space-time, and after all we live in a world with not only space, but also time. By drawing the circle from one reference frame and drawing the square from another reference frame, we can indeed Square the Circle. By taking into account space-time rather than just space the Impossible is possible! However, it is not enough simply to understand math in order to Square the Circle, one must understand some “basic” space-time physics as well. As a bonus we have added a solution to the impossibility of Doubling the Cube. As a double bonus we also have also boxed the sphere! As one will see one can claim we simply have bent the rules and moved a problem from one place to another. One of the main essences of this paper is that we can move challenging space problems out from space and into time, and vice versa.

**Category:** Geometry

[73] **viXra:1602.0234 [pdf]**
*replaced on 2016-02-24 04:24:44*

**Authors:** Espen Gaarder Haug

**Comments:** 17 Pages.

Squaring the Circle is a famous geometry problem going all the way back to the ancient Greeks. It is the great quest of constructing a square with the same area as a circle using a compass and straightedge in a finite number of steps. Since it was proved that pi was a transcendental number in 1882, the task of Squaring the Circle has been considered impossible. Here, we will show it is possible to Square the Circle in Euclidean space-time. It is not possible to Square the Circle in Euclidean space alone, but it is fully possible in Euclidean space-time, and after all we live in a world with not only space, but also time. By drawing the circle from one reference frame and drawing the square from another reference frame, we can indeed Square the Circle. By taking into account space-time rather than just space the Impossible is possible! However, it is not enough simply to understand math in order to Square the Circle, one must understand some “basic” space-time physics as well. As a bonus we have added a solution to the impossibility of Doubling the Cube. As a double bonus we also have also boxed the sphere! As one will see one can claim we simply have bent the rules and moved a problem from one place to another. One of the main essences of this paper is that we can move challenging space problems out from space and into time, and vice versa.

**Category:** Geometry

[72] **viXra:1602.0234 [pdf]**
*replaced on 2016-02-22 17:51:04*

**Authors:** Espen Gaarder Haug

**Comments:** 16 Pages.

Squaring the Circle is a famous geometry problem going all the way back to the ancient Greeks. It is the great quest of constructing a square with the same area as a circle using a compass and straightedge in a finite number of steps. Since it was proved that pi was a transcendental number in 1882, the task of Squaring the Circle has been considered impossible. Here, we will show it is possible to Square the Circle in Euclidean space-time. It is not possible to Square the Circle in Euclidean space alone, but it is fully possible in Euclidean space-time, and after all we live in a world with not only space, but also time. By drawing the circle from one reference frame and drawing the square from another reference frame, we can indeed Square the Circle. By taking into account space-time rather than just space the Impossible is possible! However, it is not enough simply to understand math in order to Square the Circle, one must understand some “basic” space-time physics as well. As a bonus we have added a solution to the impossibility of Doubling the Cube. As a double bonus we also have tried to box the sphere!

**Category:** Geometry

[71] **viXra:1512.0303 [pdf]**
*replaced on 2015-12-18 20:37:40*

**Authors:** Robert B. Easter

**Comments:** 30 Pages.

This paper introduces the differential operators in the G(8,2) Geometric Algebra, called the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA). The differential operators are three x, y, and z-direction bivector-valued differential elements and either the commutator product or the anti-commutator product for multiplication into a geometric entity that represents the function to be differentiated. The general form of a function is limited to a Darboux cyclide implicit surface function. Using the commutator product, entities representing 1st, 2nd, or 3rd order partial derivatives in x, y, and z can be produced. Using the anti-commutator product, entities representing the anti-derivation can be produced from 2-vector quadric surface and 4-vector conic section entities. An operator called the pseudo-integral is defined and has the property of raising the x, y, or z degree of a function represented by an entity, but it does not produce a true integral. The paper concludes by offering some basic relations to limited forms of vector calculus and differential equations that are limited to using Darboux cyclide implicit surface functions. An example is given of entity analysis for extracting the parameters of an ellipsoid entity using the differential operators.

**Category:** Geometry

[70] **viXra:1512.0303 [pdf]**
*replaced on 2015-12-18 01:51:12*

**Authors:** Robert B. Easter

**Comments:** 28 Pages.

This paper introduces the differential operators in the G(8,2) Geometric Algebra, called the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA). The differential operators are three x, y, and z-direction bivector-valued differential elements and either the commutator product or the anti-commutator product for multiplication into a geometric entity that represents the function to be differentiated. The general form of a function is limited to a Darboux cyclide implicit surface function. Using the commutator product, entities representing 1st, 2nd, or 3rd order partial derivatives in x, y, and z can be produced. Using the anti-commutator product, entities representing the anti-derivation can be produced from 2-vector quadric surface and 4-vector conic section entities. An operator called the pseudo-integral is defined and has the property of raising the x, y, or z degree of a function represented by an entity, but it does not produce a true integral. The paper concludes by offering some basic relations to limited forms of vector calculus and differential equations that are limited to using Darboux cyclide implicit surface functions. An example is given of entity analysis for extracting the parameters of an ellipsoid entity using the differential operators.

**Category:** Geometry

[69] **viXra:1512.0303 [pdf]**
*replaced on 2015-12-16 23:13:56*

**Authors:** Robert B. Easter

**Comments:** 28 Pages.

**Category:** Geometry

[68] **viXra:1511.0182 [pdf]**
*replaced on 2016-07-22 09:22:40*

**Authors:** Robert B. Easter

**Comments:** 16 Pages.

The G(8,2) Geometric Algebra, also called the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), has entities that represent conic sections. DCGA also has entities that represent planar sections of Darboux cyclides, which are called cyclidic sections in this paper. This paper presents these entities and many operations on them. Operations include reflection, projection, rejection, and intersection with respect to spheres and planes. Other operations include rotation, translation, and dilation. Possible applications are introduced that include orthographic and perspective projections of conic sections onto view planes, which may be of interest in computer graphics or other computational geometry subjects.

**Category:** Geometry

[67] **viXra:1508.0086 [pdf]**
*replaced on 2015-10-01 17:57:21*

**Authors:** Robert B. Easter

**Comments:** 62 Pages.

This paper introduces the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and has entities representing points and general Darboux cyclide surfaces in Euclidean 3D space. The general Darboux cyclide is a quartic surface. Darboux cyclides include circular tori and all quadrics, and also all surfaces formed by their inversions in spheres. Dupin cyclide surfaces can be formed as inversions in spheres of circular toroid, cylinder, and cone surfaces. Parabolic cyclides are cubic surfaces formed by inversion spheres centered on other surfaces. All DCGA entities can be conformally transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. All entities can be inversed in general spheres and reflected in general planes. Entities representing the intersections of surfaces can be created by wedge products. All entities can be intersected with spheres, planes, lines, and circles. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying implicit surface equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[66] **viXra:1508.0086 [pdf]**
*replaced on 2015-09-30 22:19:24*

**Authors:** Robert B. Easter

**Comments:** 62 Pages.

This paper introduces the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and has entities representing points and general Darboux cyclide surfaces in Euclidean 3D space. The general Darboux cyclide is a quartic surface. Darboux cyclides include circular tori and all quadrics, and also all surfaces formed by their inversions in spheres. Dupin cyclide surfaces can be formed as inversions in spheres of circular toroid, cylinder, and cone surfaces. Parabolic cyclides are cubic surfaces formed by inversion spheres centered on other surfaces. All DCGA entities can be conformally transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. All entities can be inversed in general spheres and reflected in general planes. Entities representing the intersections of surfaces can be created by wedge products. All entities can be intersected with spheres, planes, lines, and circles. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying implicit surface equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[65] **viXra:1508.0086 [pdf]**
*replaced on 2015-09-24 13:06:54*

**Authors:** Robert B. Easter

**Comments:** 53 Pages.

This paper introduces the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and has entities representing points and general Darboux cyclide surfaces in Euclidean 3D space. The general Darboux cyclide is a quartic surface. Darboux cyclides include circular tori and all quadrics, and also all surfaces formed by their inversions in spheres. Dupin cyclide surfaces can be formed as inversions in spheres of circular toroid, cylinder, and cone surfaces. Parabolic cyclides are cubic surfaces formed by inversion spheres centered on other surfaces. All DCGA entities can be conformally transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. All entities can be inversed in general spheres and reflected in general planes. Entities representing the intersections of surfaces can be created by wedge products. All entities can be intersected with spheres, planes, lines, and circles. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying implicit surface equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[64] **viXra:1508.0086 [pdf]**
*replaced on 2015-09-20 08:27:38*

**Authors:** Robert B. Easter

**Comments:** 52 Pages.

**Category:** Geometry

[63] **viXra:1508.0086 [pdf]**
*replaced on 2015-09-02 15:26:57*

**Authors:** Robert B. Easter

**Comments:** 49 Pages.

This paper introduces the Double Conformal Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA that adds geometrical entities for all 3D quadric surfaces and a torus surface. More generally, DCGA has an entity for general cyclide surfaces in 3D, which is a class of quartic surfaces that includes the quadric surfaces and toroid and also their inversions in spheres known as Dupin cyclides. All entities representing various geometric surfaces and points can be transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. Versors provide an algebra of spatial transformations that are different than linear algebra transformations. Entities representing the intersections of geometric surfaces can also be created by wedge products. All entities can be intersected with spheres, planes, lines, and circles. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying implicit surface equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[62] **viXra:1508.0086 [pdf]**
*replaced on 2015-08-21 22:21:34*

**Authors:** Robert B. Easter

**Comments:** 43 Pages.

This paper introduces the Double Conformal Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and adds geometrical entities for all 3D quadric surfaces and a toroid entity. All entities, representing various geometric surfaces and points, can be transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. Versors provide an algebra of spatial transformations that are different than linear algebra transformations. Entities representing the intersections of geometric surfaces can also be created by wedge products. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying implicit surface equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[61] **viXra:1508.0086 [pdf]**
*replaced on 2015-08-17 10:53:51*

**Authors:** Robert B. Easter

**Comments:** 43 Pages.

This paper introduces the Double Conformal Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and adds geometrical entities for all 3D quadric surfaces and a toroid entity. All entities, representing various geometric surfaces and points, can be transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. Versors provide an algebra of spatial transformations that are different than linear algebra transformations. Entities representing the intersections of geometric surfaces can also be created by wedge products. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying homogeneous polynomial equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[60] **viXra:1508.0086 [pdf]**
*replaced on 2015-08-13 13:34:52*

**Authors:** Robert B. Easter

**Comments:** 43 Pages.

This paper introduces the Double Conformal Geometric Algebra (DCGA), based in the G8,2 Clifford geometric algebra. DCGA is an extension of CGA and adds geometrical entities for all 3D quadric surfaces and a toroid entity. All entities, representing various geometric surfaces and points, can be transformed in 3D space by rotors, dilators, translators, and motors, which are all types of versors. Versors provide an algebra of spatial transformations that are different than linear algebra transformations. Entities representing the intersections of geometric surfaces can also be created by wedge products. DCGA provides a higher-level algebra for working with 3D geometry in an object/entity-oriented system of mathematics above the level of the underlying homogeneous polynomial equations of algebraic geometry. DCGA could be used in the study of geometry in 3D, and also for some applications.

**Category:** Geometry

[59] **viXra:1507.0218 [pdf]**
*replaced on 2015-07-30 03:34:38*

**Authors:** Dao Thanh Oai

**Comments:** 3 Pages.

In this note, I introduce three conjectures of generalization of the Lester circle theorem, the Parry circle theorem, the Zeeman-Gossard perspector theorem respectively

**Category:** Geometry

[58] **viXra:1507.0216 [pdf]**
*replaced on 2015-07-30 03:26:55*

**Authors:** Dao Thanh Oai

**Comments:** 1 Page.

In Euclidean geometry, Feuerbach-Luchterhand theorem is a generalization of Pythagorean theorem, Stewart theorem and the British Flag theorem.....In this note, I propose two conjectures of generalization of Feuerbach-Luchterhand theorem.

**Category:** Geometry

[57] **viXra:1411.0038 [pdf]**
*replaced on 2014-11-13 02:07:02*

**Authors:** Philip Gibbs

**Comments:** 8 Pages.

There is a class of geometric problem that seeks to find the shape of largest area that can pass down a corridor of given form or turn round inside a given shape. A popular example is the moving sofa problem for a shape that can be moved round an L-shaped corner in a corridor of width one. This problem has a conjectured solution proposed by Gerver in 1992. We investigate some of these problems numerically giving strong empirical evidence that Gerver was right and that a similar solution can be constructed for the related Conway car problem.

**Category:** Geometry

[56] **viXra:1410.0160 [pdf]**
*replaced on 2015-02-18 05:44:42*

**Authors:** Wenceslao Segura González

**Comments:** 46 Pages. Spanish

The affine connection is the primary geometric element from which derive all other quantities that characterize a given geometry. In this article the concept of affine connection, its properties and the quantities derived from it are studied, we also present some of the connections that have been used in physical theories. We introduce the metric tensor and we study its relation with the affine connection. This study is intended for application in alternative theories of gravity to the General Theory of Relativity and to the unified field theories.

**Category:** Geometry

[55] **viXra:1410.0160 [pdf]**
*replaced on 2015-01-06 05:06:56*

**Authors:** Wenceslao Segura González

**Comments:** 43 Pages. Spanish

The affine connection is the primary geometric element from which derive all other quantities that characterize a given geometry. In this article the concept of affine connection, its properties and the quantities derived from it are studied, we also present some of the connections that have been used in physical theories. We introduce the metric tensor and we study its relation with the affine connection. This study is intended for application in alternative theories of gravity to the General Theory of Relativity and to the unified field theories.

**Category:** Geometry

[54] **viXra:1410.0160 [pdf]**
*replaced on 2014-12-05 12:45:26*

**Authors:** Wenceslao Segura González

**Comments:** 41 Pages. Spanish

**Category:** Geometry

[53] **viXra:1410.0160 [pdf]**
*replaced on 2014-11-11 12:24:10*

**Authors:** Wenceslao Segura González

**Comments:** 36 Pages. Spanish

**Category:** Geometry

[52] **viXra:1410.0160 [pdf]**
*replaced on 2014-10-27 11:11:39*

**Authors:** Wenceslao Segura González

**Comments:** 36 Pages. Spanish

**Category:** Geometry

[51] **viXra:1408.0191 [pdf]**
*replaced on 2014-08-31 13:31:01*

**Authors:** Tobías de Jesús Rosas Soto

**Comments:** 17 Pages. Artículo en español, con resumen en inglés. Contiene ecuaciones, y 13 figuras, a color para mejor comprensión.

Usando la noción de C-ortocentro se extienden, a planos de Minkowski en general, nociones de la geometría clásica relacionadas con un triángulo, como por ejemplo: puntos de Euler, triángulo de Euler, puntos de Poncelet. Se muestran propiedades de estas nociones y sus relaciones con la circunferencia de Feuerbach. Se estudian sistemas C-ortocéntricos formados por puntos presentes en dichas nociones y se establecen relaciones con la ortogonalidad isósceles y cordal. Además, se
prueba que la imagen homotética de un sistema C-ortocéntrico es un sistema C-ortocéntrico.
---
Using the notion of C-orthocenter, notions of the classic euclidean geometry related with a triangle, as for example: Euler points; Euler’s triangle; and Poncelet’s points, are extended to Minkowski planes in general. Properties of these notions and their relations with the Feuerbach’s circle, are shown. C-orthocentric systems formed by points in the above notions are studied and relations with the isosceles and chordal orthogonality, are established. In addition, there is proved that the homothetic image of a C-orthocentric system is a C-orthocentric system.

**Category:** Geometry

[50] **viXra:1407.0027 [pdf]**
*replaced on 2014-07-23 12:52:51*

**Authors:** Jan Hakenberg

**Comments:** 25 Pages.

We list examples of 2-dimensional domains bounded by subdivision curves together with their exact area, centroid, and inertia. We assume homogeneous mass-distribution within the space bounded by the curve. The subdivision curves that we consider are generated by 1) the low order B-spline schemes, 2) the generalized, interpolatory C^1 four-point scheme, as well as 3) the more recent dual C^2 four-point scheme.
The derivation of the (d + 2)-linear form that computes the area moment of degree p + q = d based on the initial control points for a given subdivision scheme is deferred to a publication in the near future.

**Category:** Geometry

[49] **viXra:1404.0409 [pdf]**
*replaced on 2014-06-04 23:42:12*

**Authors:** Temur Z. Kalanov

**Comments:** 22 Pages.

Analysis of the foundations of standard trigonometry is proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is shown that the foundations of trigonometry contradict to the principles of system approach and contain formal-logical errors. The principal logical error is that the definitions of trigonometric functions represent quantitative relationships between the different qualities: between qualitative determinacy of angle and qualitative determinacy of rectilinear segments (legs) in rectangular triangle. These relationships do not satisfy the standard definition of mathematical function because there are no mathematical operations that should be carry out on qualitative determinacy of angle to obtain qualitative determinacy of legs. Therefore, the left-hand and right-hand sides of the standard mathematical definitions have no the identical sense. The logical errors determine the essence of trigonometry: standard trigonometry is a false theory.

**Category:** Geometry

[48] **viXra:1404.0018 [pdf]**
*replaced on 2014-04-03 21:57:25*

**Authors:** Morio Kikuchi

**Comments:** 12 Pages.

We generalize inversion mathematically(4).

**Category:** Geometry

[47] **viXra:1402.0013 [pdf]**
*replaced on 2014-03-26 21:50:04*

**Authors:** Morio Kikuchi

**Comments:** 8 Pages.

We generalize inversion mathematically(3).

**Category:** Geometry

[46] **viXra:1401.0219 [pdf]**
*replaced on 2014-10-06 10:49:45*

**Authors:** Philip E Gibbs

**Comments:** 24 Pages.

Lebesgue’s universal covering problem is re-examined using computational methods. This leads to conjectures about the nature of the solution which if correct could provide a blueprint for a complete solution. Empirical lower bounds for the minimal area are computed using different hypotheses based on the conjectures. A new upper bound of 0.844112 for the area of the minimal cover is derived improving previous results. This method for determining the bound is suggested by the conjectures and computational observations but is proved independently of them. The key innovation is to modify previous best results by removing corners from a regular hexagon at a small slant angle to the edges of the dodecahedron used before. Simulations indicate that the minimum area for a convex universal cover is likely to be around 0.84408.

**Category:** Geometry

[45] **viXra:1401.0219 [pdf]**
*replaced on 2014-02-01 05:34:17*

**Authors:** Philip E Gibbs

**Comments:** 24 Pages.

Lebesgue’s universal covering problem is re-examined using computational methods. This leads to conjectures about the nature of the solution which if correct could provide a blueprint for a complete solution. Empirical lower bounds for the minimal area are computed using different hypothesis based on the conjectures. A new upper bound of 0.844112 for the area of the minimal cover is derived improving previous results. This method for determining the bound is suggested by the conjectures and computational observations but is proved independently of them. The key innovation is to modify previous best results by removing corners from a regular hexagon at a small slant angle to the edges of the dodecahedron used before. Simulations indicate that the minimum area for a convex universal cover is likely to be around 0.84408.

**Category:** Geometry

[44] **viXra:1401.0206 [pdf]**
*replaced on 2014-02-07 21:18:57*

**Authors:** Ren Shiquan

**Comments:** 35 Pages. This is the reading report I and II on differential forms and de Rham cohomology of manifolds respectively. These reports are results of our group discussion and may include mistakes. Thanks.

In report I, we study differential forms on a manifold. We first give the definition of differential forms. Then the exterior derivative, Lie derivative, and integrations of differential forms are discussed. Finally we will look at a special family of differential forms, called harmonic forms.
In report II, we study topological structures of manifolds using differential forms. We first state the de Rham cohomology Theorem and introduce Cech cohomology as a tool. Then we discuss about Hodge Theorem. Finally, we study some applications of these theorems.

**Category:** Geometry

[43] **viXra:1401.0011 [pdf]**
*replaced on 2014-04-02 21:18:40*

**Authors:** Morio Kikuchi

**Comments:** 12 Pages.

We generalize inversion mathematically(2).

**Category:** Geometry

[42] **viXra:1312.0109 [pdf]**
*replaced on 2014-01-13 19:55:46*

**Authors:** Morio Kikuchi

**Comments:** 12 Pages.

We generalize inversion mathematically.

**Category:** Geometry

[41] **viXra:1312.0075 [pdf]**
*replaced on 2014-02-23 13:54:55*

**Authors:** Igor Nikolaev

**Comments:** 181 Pages. Chapters 4 and 6 are posted

The text consists of an introduction, table of contents and Chapters 1, 4, 5 and 6 of a 300 pages book

**Category:** Geometry

[40] **viXra:1311.0141 [pdf]**
*replaced on 2014-01-13 19:53:33*

**Authors:** Morio Kikuchi

**Comments:** 11 Pages.

We generalize inversion.

**Category:** Geometry

[39] **viXra:1311.0115 [pdf]**
*replaced on 2013-11-28 13:07:36*

**Authors:** Nathan O. Schmidt

**Comments:** 16 pages, 4 figures, accepted in Algebras, Groups and Geometries

In this work, we deploy Santilli's iso-dual iso-topic lifting and Inopin's holographic ring (IHR) topology as a platform to introduce and assemble a tesseract from two inter-locking, iso-morphic, iso-dual cubes in Euclidean triplex space. For this, we prove that such an "iso-dual tesseract" can be constructed by following a procedure of simple, flexible, topologically-preserving instructions. Moreover, these novel results are significant because the tesseract's state and structure are directly inferred from the one initial cube (rather than two distinct cubes), which identifies a new iso-geometrical inter-connection between Santilli's exterior and interior dynamical systems.

**Category:** Geometry

[38] **viXra:1309.0158 [pdf]**
*replaced on 2013-09-23 14:12:48*

**Authors:** Antony Ryan

**Comments:** 7 Pages.

Kissing Numbers (1) appear to be the product of dimension number and the dimension’s simplex vertex number for 0-3 Euclidean spatial dimensions, but depart from the linear product of dimension and dimension+1 relationship at 4-dimensions and above increasing away from this exponentially. For 0-8 dimensions there is a Coxeter Number root system type relationship. The author proposes a very simple relationship which satisfies both aforementioned patterns, but extends from dimension 0 infinitely upwards. The conjecture is seen to satisfy the non-root system 24-dimensions and leads to prediction. The simplex nature of this work may be utilised in Quantum Gravity theories similar to Causal Dynamical Triangulation.

**Category:** Geometry

[37] **viXra:1309.0013 [pdf]**
*replaced on 2015-01-05 06:23:27*

**Authors:** Robert A. Herrmann

**Comments:** 19 Pages.

It is demonstrated how useful it is to utilize general logic-systems to investigate finite consequence operators (operations). Among many other examples relative to a lattice of finite consequences operators, a general characterization for the lattice-theoretic supremum of a nonempty collection of finite consequence operators is given. Further, it is shown that for any denumerable language L there is a rather simple collection of finite consequence operators and, for the propositional language, three simple modifications to the finitary rules of inference that demonstrate that a lattice of finite consequence operators is not meet-complete. This also demonstrates that simple properties for such operators can be language specific. Using general logic-systems, it is further shown that the set of all finite consequence operators defined on L has the power of the continuum and each finite consequence operator is generated by denumerably many general logic-systems. In the last section, the model called the constructed natural numbers is discussed.

**Category:** Geometry

[36] **viXra:1308.0126 [pdf]**
*replaced on 2015-03-04 20:45:34*

**Authors:** O. V. Vijimo

**Comments:** 48 Pages. Under review in an International peer-reviewed Journal (100 Plus)

This paper provides the proof of invalidity of the most fundamental constant known to mankind. Imagining a circle without "\pi" is simply unthinkable but it’s going to be a reality very soon. "\pi" is not a true circle constant. This paper explores this idea and proposes a new constant in the process which gives the correct measure of a circle. It is given by "\tau". As a result, it redefines the area of the circle. The circle area currently accounted is wrong and therefore needs correction. This has serious implications for science. I have also discovered the fundamental geometrical ratio b/w a circle and a square in which it’s inscribed and have also discovered a new circle formula. This paper makes this strong case with less ambiguity.

**Category:** Geometry

[35] **viXra:1308.0126 [pdf]**
*replaced on 2014-05-18 23:13:07*

**Authors:** O. V. Vijimo

**Comments:** 40 Pages. Undergoing Review in a International Peer Reviewed Journal

This paper provides the proof of invalidity of the most fundamental constant known to mankind. Imagining a circle without "$\pi$" is simply unthinkable but it’s going to be a reality very soon. "$\pi$" is not a true circle constant. This paper explores this idea and proposes a new constant in the process which gives the correct measure of a circle. It is given by "$\tau$". As a result, it redefines the area of the circle. The circle area currently accounted is wrong and therefore needs correction. This has serious implications for science. I have also discovered the fundamental geometrical ratio b/w a circle and a square in which it’s inscribed and have also discovered a new circle formula. This paper makes this strong case with less ambiguity.

**Category:** Geometry

[34] **viXra:1308.0126 [pdf]**
*replaced on 2013-09-25 19:30:39*

**Authors:** O. V. Vijimo

**Comments:** 40 Pages; 25 Figures; Under Review in an Int. Peer Reviewed Jrnl.

This paper provides the proof of invalidity of the most fundamental constant known to mankind. Imagining a circle without "$\pi$" is simply unthinkable but it’s going to be a reality very soon. "$\pi$" is not a true circle constant. This paper explores this idea and proposes a new constant in the process which gives the correct measure of a circle. It is given by "$\tau$". As a result, it redefines the area of the circle. The circle area currently accounted is wrong and therefore needs correction. This has serious implications for science. I have also discovered the fundamental geometrical ratio b/w a circle and a square in which it’s inscribed and have also discovered a new circle formula. This paper makes this strong case with less ambiguity

**Category:** Geometry

[33] **viXra:1308.0126 [pdf]**
*replaced on 2013-08-31 19:20:30*

**Authors:** O. V. Vijimon

**Comments:** 40 Pages; 25 Figures; Under Review in an Int. Peer Reviewed Jrnl.

This paper provides the proof of invalidity of the most fundamental constant known to mankind. Imagining a circle without "{Pi}" is simply unthinkable but it’s going to be a reality very soon. "{Pi}" is not a true circle constant. This paper explores this idea and proposes a new constant in the process which gives the correct measure of a circle. It is given by "{Tau}". As a result, it redefines the area of the circle. The circle area currently accounted is wrong and therefore needs correction. This has serious implications for science. I have also discovered the fundamental geometrical ratio b/w a circle and a square in which it’s inscribed and have also discovered a new circle formula. This paper makes this strong case with less ambiguity.

**Category:** Geometry

[32] **viXra:1307.0066 [pdf]**
*replaced on 2013-07-31 10:30:23*

**Authors:** Florentin Smarandache

**Comments:** 10 Pages.

Acest articol este o scurtă trecere în revistă a cărţii “SuperMatematica. Fundamente”, Vol. 1 şi Vol. 2, ediţia a II-a, 2012, care constituie un domeniu nou de cercetare şi cu multe aplicaţii, iniţiat de profesorul universitar Mircea Eugen Şelariu. Lucrarea sa este unică în literatura mondială, deoarece combină matematica centrică cu matematica excentrică.

**Category:** Geometry

[31] **viXra:1306.0233 [pdf]**
*replaced on 2013-12-31 19:09:35*

**Authors:** Kelly McKennon

**Comments:** 114 pages and 24 figures.

Descriptions of 1-dimensional projective space in terms of the cross ratio, in one-dimensional geometry as a projective line, in two-dimensional geometry as a circle, and in three-dimensional geometry as a regulus.
A characterization of projective 3-space is given in terms of polarity.
This paper differs from the original version by addition of a section showing that the circle is distinguished from other meridians by its compactness and the existence of exponential functions.

**Category:** Geometry

[30] **viXra:1304.0074 [pdf]**
*replaced on 2013-04-19 20:49:23*

**Authors:** Morio Kikuchi

**Comments:** 8 Pages.

There are two directions in inversion.

**Category:** Geometry

[29] **viXra:1303.0146 [pdf]**
*replaced on 2013-04-03 19:52:20*

**Authors:** Morio Kikuchi

**Comments:** 14 Pages.

The types of inversions are made clear.

**Category:** Geometry

[28] **viXra:1303.0015 [pdf]**
*replaced on 2013-03-03 12:08:50*

**Authors:** Marian Nitu, Florentin Smarandache, Mircea Eugen Selariu

**Comments:** 23 Pages.

This work central idea is to present new transformations, previously non - existent
in Ordinary mathematics, named centric mathematics ( CM) but that became possible due
to new born eccentric mathematics, and, implicit, to supermathematics.
As shown in this work, the new geometric transformations, named conversion or
transfiguration, wipes the boundaries between discrete and continuous geometric forms,
showing that the first ones are also continuous, being just apparently discontinuous.

**Category:** Geometry

[27] **viXra:1211.0134 [pdf]**
*replaced on 2012-11-26 06:15:14*

**Authors:** Carlos Perelman, Fang Fang, Garret Sadler, Klee Irwin

**Comments:** 9 Pages.

Inspired by the recent sums of the squares law obtained by Kovacs-Fang-Sadler-Irwin we derive the law of the sums of the squares of the areas, volumes and hyper-volumes associated with the faces, cells and hyper-cells of regular polytopes in diverse dimensions after using Clifford algebraic methods.

**Category:** Geometry

[26] **viXra:1211.0099 [pdf]**
*replaced on 2013-07-14 16:04:32*

**Authors:** Vincenzo Nardozza

**Comments:** 16 Pages.

A method for dealing with the product of step discontinuous and delta functions is proposed. A standard method for applying the above defined product of distributions to polyhedron vertices is analysed and the method is applied to a special case where the well known defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[25] **viXra:1211.0099 [pdf]**
*replaced on 2013-04-23 12:53:29*

**Authors:** Vincenzo Nardozza

**Comments:** 11 Pages.

A method for dealing with the product of step discontinuous and delta functions is proposed. A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the well known defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[24] **viXra:1211.0099 [pdf]**
*replaced on 2013-02-15 11:34:01*

**Authors:** Vincenzo Nardozza

**Comments:** 20 Pages.

A method for dealing with the product of step discontinuous and delta functions is proposed. A new space of generalised functions extending the space D', together with a well defined product, is constructed. The new space of generalized functions is used to prove interesting equalities involving products among elements of D'.
A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the well known defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[23] **viXra:1211.0099 [pdf]**
*replaced on 2013-01-03 09:05:50*

**Authors:** Vincenzo Nardozza

**Comments:** 19 Pages.

A method for dealing with the product of step discontinuous and delta function is proposed. A new space of generalised function, extending the space D', is constructed. The new space of generalised functions is used to show why it is not possible to define the most general product, among steps, deltas and delta derivatives. The new space of generalized function is used also to prove interesting equalities involving products among elements of D'.
A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the famous defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[22] **viXra:1211.0099 [pdf]**
*replaced on 2012-12-18 17:45:07*

**Authors:** Vincenzo Nardozza

**Comments:** 14 Pages.

A method for dealing with the product of step discontinuities and Dirac delta functions, related each other by a continuous function, is proposed. The proposed method is similar, for many aspects, to the Colombeau theory but different in the formalism and the perspective.
The method is extended to the product of more general step discontinuous distributions and to the product of distributions in a multidimensional case. A space extension of generalised functions, in which product of step and delta functions is commutative and associative, is constructed.
A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the famous defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[21] **viXra:1211.0099 [pdf]**
*replaced on 2012-12-17 17:51:53*

**Authors:** Vincenzo Nardozza

**Comments:** 14 Pages.

A method for dealing with the product of step discontinuities and Dirac delta functions, related each other by a continuous function, is proposed. The proposed method is similar, for many aspects, to the Colombeau theory but different in the formalism and the perspective.
The method is extended to the product of more general step discontinuous distributions and to the product of distributions in a multidimensional case. A space extension of generalised functions, in which product of step and delta functions is commutative and associative, is constructed.
A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the famous defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.

**Category:** Geometry

[20] **viXra:1211.0099 [pdf]**
*replaced on 2012-11-30 14:28:45*

**Authors:** Vincenzo Nardozza

**Comments:** 12 Pages.

A method for dealing with the product of step discontinuities and Dirac delta functions, related each other by a continuous function, is proposed. The proposed method is similar, for many aspects, to the Colombeau theory but different in the formalism and the perspective, which make it particularly suitable for applications in differential geometry.
The method is extended to the product of more general distributions and to the product of distributions in a multidimensional case. Further points on product of distributions are discussed showing, among other thing, that the proposed product is associative and commutative.
A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the famous defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus.
Key Words: distribution theory, product of distributions, discrete differential geometry.

**Category:** Geometry

[19] **viXra:1211.0099 [pdf]**
*replaced on 2012-11-21 16:25:23*

**Authors:** Vincenzo Nardozza

**Comments:** 14 Pages. reason for new issue: fix of minor typo. examples added in the appendix

A method for dealing with the product of step discontinuities and Dirac delta functions, related each other by a continuous function, is proposed. The proposed method is similar, for many aspects, to Colombeau theory but different in the formalism and the perspective, which make it particularly suitable for applications in differential geometry.
The method is extended to the product of more general distributions and to the product of distributions in a multidimensional case.
Further points on product of distributions are discussed showing, among other thing, that the proposed product is associative and commutative.
A standard method, for applying the above defined product of distributions to polyhedron vertices, is analysed and the method is applied to a special case where the famous defect angle formula, for the discrete curvature of polyhedra, is derived using the tools of tensor calculus. An elementary application to the theory of differential equations is discussed in the appendix.

**Category:** Geometry

[18] **viXra:1205.0088 [pdf]**
*replaced on 2012-07-24 23:40:57*

**Authors:** Morio Kikuchi

**Comments:** 8 Pages.

A point in the disk is represented by an intersection of two semiellipses in two directions.

**Category:** Geometry

[17] **viXra:1204.0016 [pdf]**
*replaced on 2013-02-24 19:54:30*

**Authors:** Morio Kikuchi

**Comments:** 8 Pages.

A constant of length in an orthogonal sphere agrees with a constant of length in a plane which passes through origin.

**Category:** Geometry

[16] **viXra:1203.0049 [pdf]**
*replaced on 2012-07-24 23:33:01*

**Authors:** Morio Kikuchi

**Comments:** 15 Pages.

In equidistant curve coordinate system, the two expressions of the length between two points in disk and upper half-plane are the same.

**Category:** Geometry

[15] **viXra:1201.0090 [pdf]**
*replaced on 2013-02-10 20:57:47*

**Authors:** Morio Kikuchi

**Comments:** 10 Pages.

In the inversion between two coordinate spheres, a ratio of length and constant of length is invariable.

**Category:** Geometry

[14] **viXra:1112.0073 [pdf]**
*replaced on 2013-01-03 19:57:22*

**Authors:** Morio Kikuchi

**Comments:** 14 Pages.

In hyperboloid model, a metric by use of equidistant curve coordinate system is obtained by parametric representation.

**Category:** Geometry

[13] **viXra:1111.0113 [pdf]**
*replaced on 2012-07-24 23:23:58*

**Authors:** Morio Kikuchi

**Comments:** 7 Pages.

The differential forms of two kinds in equidistant curve coordinate system can be changed into the differential forms in spherical orthogonal coordinate system by making a radius of the infinity sphere smaller limitlessly and making a constant of length larger limitlessly.

**Category:** Geometry

[12] **viXra:1111.0005 [pdf]**
*replaced on 2012-05-23 01:12:23*

**Authors:** Morio Kikuchi

**Comments:** 15 Pages.

In three-dimensional equidistant curve coordinate system, a constant of length on a sphere depends upon its radius. Equidistant curve and round line have the relation of the inversion between a plane and a coordinate sphere, generally between a coordinate sphere and another coordinate sphere.

**Category:** Geometry

[11] **viXra:1109.0061 [pdf]**
*replaced on 2012-05-23 01:05:10*

**Authors:** Morio Kikuchi

**Comments:** 7 Pages.

Two points on disk and exterior disk which have the same equidistant curve coordinates have the relation of the inversion on a circle which divides both regions. An isometry is realized between exterior disk and lower half-plane.

**Category:** Geometry

[10] **viXra:1108.0023 [pdf]**
*replaced on 2012-05-23 00:58:20*

**Authors:** Morio Kikuchi

**Comments:** 13 Pages.

An isometry is realized between disk of which radius is not limited to 1 and upper half-plane. Metrics are the same in both regions when equidistant curve coordinate system is used.

**Category:** Geometry

[9] **viXra:1106.0062 [pdf]**
*replaced on 2013-02-09 21:07:35*

**Authors:** Morio Kikuchi

**Comments:** 10 Pages.

Product of metric coefficient and radius of round line is constant in spherical orthogonal coordinate system. Coordinates and so forth are constant in the coordinate transformation from orthogonal coordinates into spherical orthogonal coordinates if the value is special.

**Category:** Geometry

[8] **viXra:1103.0077 [pdf]**
*replaced on 2012-04-04 03:24:03*

**Authors:** Morio Kikuchi

**Comments:** 4 Pages.

Spherical orthogonal coordinate system agrees with plane orthogonal coordinate system in coordinates, length, and angle of an intersection. Using spherical orthogonal coordinate system, we can realize complex sphere to which complex number is indicated with no stereographic projection. By the coordinate transformation of the inversion which is characterized by swap of origin and point at infinity, three-dimensional orthogonal coordinates are transformed into new coordinates, namely three-dimensional spherical orthogonal coordinates, however coordinates and so forth are constant.

**Category:** Geometry

[7] **viXra:1103.0043 [pdf]**
*replaced on 23 May 2011*

**Authors:** Markos Georgallides

**Comments:** 12 pages.

This article explains what is a Point, a Positive Space and a negative Anti-Space for their
equilibrium, how points exist and their correlation also in Spaces .
Any two points A,B on Spaces consist the first dimensional Unit AB, which has infinite bounded
Spaces, Anti-Spaces and Sub-Spaces on unit AB .
It is proved that when points A, B exist in a constant distance ds = AB, which is then a Restrained
System of this Unit, then equilibrium under equal and opposite Impulses Pa, Pb on points A, B .
This means that any distance AB of the Space is a DIPOLE
or [ FMD = AB - Pa, Pb ], which is the first material unit .
The unique case where at the points of Space and Anti-Space exist null Impulses, then is the Primary
Neutral Space and it is obvious that the infinite Dipole ds = 0 → AB → ∞ move in
this P.N.S . The position of points on Space /Space, Anti-Space/ Anti-Space
Space / Anti-Space, Anti-Space / Space, creates (+) matter (-) antimatter (±) Neutral matter
which moves in this Space with finite velocity and in case of the bounded Neutral Space AB,
which may have zero Inertia, moves with infinite velocity .
Since Neutral Space is the interval between Impulse ( which Impulse is the Principle of movement )
and Spaces ( which Spaces are the medium of movement ), therefore, Motion can alternatively occur
itself as that of a Dipole = matter ( which is particle ) and as that of Impulses Pa, Pb ( which
is a wave ) in the Neutral matter and Neutral Anti-matter . [ The one thing, say the light, is then
as Particle and as Wave Structure ]
Following the principle < Cause on → Communicator → the Obvious > is then
explained that, Monads, can reproduce themselves through their bounded Communicator ( we may
refer this as the DNA of the Monad ) .
Following Euclidean logic for Spaces, and since one may use them as the first dimensional
Unit ds = 0 → AB → ∞ in Geometry, Algebra, etc either as Dipole ds = AB,
[ FMD = AB - Pa, Pb ] and since also Primary Neutral Space is proved
to be Homogenous and Isotropic, then also in Mechanics and Physics and in all laws of
Universe .

**Category:** Geometry

[6] **viXra:1103.0035 [pdf]**
*replaced on 13 Mar 2011*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 3 pages

In this article we'll obtain through the duality method a property in relation to the contact
cords of the opposite sides of a circumscribable octagon.

**Category:** Geometry

[5] **viXra:1101.0093 [pdf]**
*replaced on 31 Jan 2011*

**Authors:** Jongsoo Park

**Comments:** 18 pages, In Korean

Fast Approximation of *π* Using Regular Polyon

**Category:** Geometry

[4] **viXra:1009.0006 [pdf]**
*replaced on 5 Sep 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:**
11 pages

In a previous paper [5] we have introduced the ortho-homological triangles, which are
triangles that are orthological and homological simultaneously.
In this article we call attention to two remarkable ortho-homological triangles (the given
triangle ABC and its first Brocard's triangle), and using the Sondat's theorem relative to
orthological triangles, we emphasize on four important collinear points in the geometry of the
triangle. Orthological / homological / orthohomological triangles in the 2D-space are generalized
to orthological / homological / orthohomological polygons in 2D-space, and even more to
orthological / homological / orthohomological triangles, polygons, and polyhedrons in 3D-space.

**Category:** Geometry

[3] **viXra:1009.0006 [pdf]**
*replaced on 4 Sep 2010*

**Authors:** Ion Pătraşcu, Florentin Smarandache

**Comments:**
10 pages

In a previous paper we have introduced the ortho-homological triangles, which are
triangles that are orthological and homological simultaneously.
In this article we call attention to two remarkable ortho-homological triangles (the given
triangle ABC and its first Brocard's triangle), and using the Sondat's theorem relative to
orthological triangles, we emphasize on four important collinear points in the geometry of the
triangle.

**Category:** Geometry

[2] **viXra:1005.0016 [pdf]**
*replaced on 2012-04-18 09:35:00*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 3 Pages.

Professor Claudiu Coandă proved, using the barycentric coordinates, a remarkable theorem. We generalize this theorem using some results from projective geometry relative to
the pole and polar notions.

**Category:** Geometry

[1] **viXra:1003.0272 [pdf]**
*replaced on 3 Apr 2010*

**Authors:** Florentin Smarandache

**Comments:** 12 pages

In this paper we review nine previous proposed and solved problems of elementary 2D
geometry [4] and [6], and we extend them either from triangles to polygons or polyhedrons,or
from circles to spheres (from 2D-space to 3D-space), and make some comments about them.

**Category:** Geometry