# New proof of Pythagorean Theorem

Junyoung Jang

#### Abstract

We found a new proof of Pythagorean Theorem by using trigonometry. We induced double angle formula of sine and cosine functions in non-circular way.

### 1 Deriving double formula of sine and cosine



By law of sines [1],

$$\frac{b}{\sin 2\alpha} = \frac{a}{\sin\left(\frac{\pi}{2} - \alpha\right)} = \frac{a}{\cos\alpha}$$

For  $\overline{AC}$ , it holds

$$b = 2 \cdot a \cos\left(\frac{\pi}{2} - \alpha\right) = 2a \sin \alpha.$$

Therefore,  $\frac{2a\sin\alpha}{\sin 2\alpha} = \frac{a}{\cos\alpha}$  gives

$$\sin 2\alpha = 2\sin\alpha\cos\alpha.$$

For  $\overline{AB}$ , it holds

$$a = b\cos\left(\frac{\pi}{2} - \alpha\right) + a\cos 2\alpha = b\sin \alpha + a\cos 2\alpha.$$

Putting  $b = 2a \sin \alpha$  gives

$$a = 2a\sin^2 \alpha + a\cos 2\alpha \Rightarrow \cos 2\alpha = 1 - 2\sin^2 \alpha.$$

# 2 Proof of Pythagorean Theorem



Let 
$$\overline{AD}$$
 be a bisector of  $\angle BAC$ . By Angle bisector theorem [2], it holds  $\frac{CD}{\overline{DB}} = \frac{AC}{\overline{AB}}$ . Therefore,  
 $\overline{CD} = \frac{b}{c} \cdot \overline{DB}$ . Since  $\overline{CD} + \overline{DB} = a$ , we have  $\left(1 + \frac{b}{c}\right) \overline{DB} = a$ , i.e.  $\overline{DB} = \frac{ac}{b+c}$ ,  $\overline{CD} = \frac{ab}{b+c}$ .  
Meanwhile, we have  $\sin 2\theta = \frac{a}{c}$ ,  $\cos 2\theta = \frac{b}{c}$ ,  $\tan \theta = \frac{\frac{ab}{b+c}}{b} = \frac{a}{b+c}$ .  
From  $\cos 2\theta = 1 - 2\sin^2 \theta$ , we have  $\sin \theta = \sqrt{\frac{c-b}{2c}}$ .  
From  $\sin 2\theta = 2\sin\theta\cos\theta$ , we have  $\tan \theta = \frac{\sin \theta}{\cos\theta} = \frac{2\sin^2 \theta}{\sin 2\theta} = \frac{\frac{c-b}{a}}{\frac{a}{c}} = \frac{c-b}{a}$ .  
Therefore,  $\frac{a}{b+c} = \frac{c-b}{a}$ , it completes  $a^2 + b^2 = c^2$ .

# References

- [1] Harold Scott Macdonald Coxeter and Samuel L Greitzer. *Geometry revisited*, volume 19. Maa, 1967.
- [2] Alfred S Posamentier. Advanced Euclidian Geometry: Excursions for Students and Teachers. Springer Science & Business Media, 2002.