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Abstract

We propose some questions about Fukaya categories. Given a class
of isomorphisms 0 ∼ τ , where τ represents the truth value of a particle,
and 0 is a 0 object in a Fukaya category, what are its spectral homology
theories? This is a variation on the works of P. Seidel and E. Riehl.

Preamble

This document is inspired by both the works of Paul Seidel and the intense
collaborations of Verity and Riehl. We propose symplectic cohomology as a
possible spectral homology theory, softly answering the question laid out in the
abstract.

Notation 0.1. We write Pen(Sing(K)) for the category of pencils with fixed
point Sing(K).

The theme of this manuscript is that modding a lightcone by a quasi-
isomorphism to a zero object induces a causal structure on it. The torsion
category of [5] acts upon a pencil of Lefshetz hypersurfaces centered about the

singularity b̂ ∈ L4. This yields certain locally privileged geodesics upon which
the Ricci iteration

Ricgi→gi+1 : xt 7−→ xt+1

acts on a polynomial x.

B0

B≥0

B

mod by ∼

globalize

The above diagram represents the relationship between the (from top to bottom)
reduced, relative, and classical Fukaya category. Our take on it is that a natural
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topology for this lightcone is induced by Riehl’s ∞-cosmoi graded over a pencil
of hypersurfaces of the lightcone. We let a prime p be realized physically as a
particle. Gradations of fields represent gauge fields with weighted slice spectra of
valuations, which correspond to quantum mechanical probability distributions.

We let
o(α) : α 7−→ τ ◦ α

be the canonical valuation for any α. This valuation is given by a flatly
embedding tautological line bundle with a characteristic p. We can use Scholze’s
tilting procedure

(q0)
♭ : 0 7−→ p

to lift out of the zero object into a short exact sequence, which can be used to
triangulate a category C .

We establish once and for all the canonical class

C∞ := (∞,C) ≡ ∞|sSetsFin
/C

Seidel, in his legendary lecture on Fukaya categories [1], gives us the following
equivalences:

C ∼= F(M \B) ∼= L4 \ b̂

[[q]] ∼= F≥0(M) ∼= L4
/ℓ

((q)) ∼= F (M) ∼= L4

where the right-hand-side is the author’s interpretation. We define ℓ to be a
curve in an infinite loop space. When embedded into timewise distinct sections
of a Minkowski lightcone, these give us a stratification consisting of causal
geodesics. We denote the moduli space of all lightcones by

C∞ ⊃
∫ ∞→∞

∞
L4

here and it is indeed an ∞-cosmos of Emily Riehl. That is to say, every
individual lightcone is itself in fact an ∞-category. We, however, prefer to use
the term quasi-category, when we are emphasizing the full subcategory whose
morphisms are quasi-isomorphisms q̂ 7−→ q.
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1 Infinity Cosmoi

Notation 1.1. We let ∼ denote a Seidel quasi-fibration, and ≃ the Riehl
isofibration, which we treat as a “strictified” or enriched quasi-fibration. For
a solid definition of the former, we refer the reader to [14].

Let C∞ be the category whose objects are lightcones, and whose morphisms
are Quillen equivalences. Let C∞

∼ be the same category, but whose morphisms
are quasi-fibrations.

Let
(C∞

∼ )/∆ = U∞
∆

be a uniform space. Then, the fiber spectra of this space is given by smooth
motion between stratifications given by the diagonal span

Xy ←− ∆ −→ Yx

We define X
∧
Y to be (Y

∧
X )−1, where

(X
∧
Y) = ∆+

and
(Y

∧
X ) = ∆−

such that x ∈ (X
∧
Y) and y ∈ (Y

∧
X ).

We can think of ∞ as a projective point, and particularly, when we are
working with the model lightcone, it is the point corresponding to P × A1 × b̂,
where b̂ is the singularity of the lightcone. The realiztion of the point

||∞|| −→ {∗}

is specifically a map out of C∞
∼ . This is a particularly nice map when the

r.h.s. is treated as a simplicially enriched category with fibrations, cofibrations,
and weak equivalences. This allows us to treat our ∞-categories like Cisinski
categories, or, at the very least Waldhausen categories.
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There is a natural morphism

C∞ ↪→ SH

given by the Haine-Pstragowski weight filtration. In order to calculate the
spectral information of a particle, we need to select a gauge boson and normalize
the weight of each realization to the probabilistic center of its mass spectrum.

At the∞ level, each fibration of a cosmos is a let binding, which is equivalent
to a rank one isomorphism. This is represented by the sampling of a wave
function in infinite-dimensional Hilbert space at a specialized point in a Lagrangian
submanifold containing the center of a lightcone. The author’s preferred ontological
description of this phenomenon is that the phenomenological velocity of these
particles increases at or around b̂.
∞-cosmoi are essentially effective spectral cohomology theories.

Example 1.1. See the proof of [3, C.1.14].

∞-cosmoi force us to consider not just any ordinary functor, but a special
class of functors called ∞-functors, which are ≤ ∞-cells.

Notation 1.2. For an ∞-category C∞, we will say that the category is an
(∞, n)-category if m ≤ n for any m-cell in C∞.

Definition 1.1. The cosmic Galois group

CosG

is given by the map
A |K⊂A ×G

∼−→ K

This is a variation on a theme of Connes [12]. More properly, this is a motivic
map from an ∞-cosmos (seen as a “wild” object) to a more “tame” topological
stack. This leads to an intriguing duality between, on the one hand, Noohi’s
topological stacks, and on the other hand, fields, which are considered here to
be both mathematical and physical entities. Note that while the cosmic Galois
group has actions which are ∞-maps, it is not a group in the ordinary sense
in that its inverse are only k-maps for k ≪ ∞. This leads to a deformation
quantization, as explained by Konstevich [13].

2 Fukaya Categories

Fukaya categories are the appropriate category for establishing a connection
from ∞-cosmoi to the preferred localization at a bounded point in physical

space. That is to say, maps C∞ B−→ L4, specifically to an appropriate Lagrangian
submanifold, factor uniquely through one of the three Fukaya categories established
in the preamble. These are the reduced, relative, and pure/classical/unreduced
categories. We let

V/q ⊬ ({∗} ∈ V ) ∼ q
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denote
V \ q

where
V = {v0, ..., v∞}

is a variety. Seidel himself uses vm = Sup(V ), but we must induce quasi-
isomorphism:

(vm ∼ v∞) ∼= ((m ∈ K◦) ∼ ∞)

in order for our categories to play nicely enough with one another to constitute
an ∞-cosmos.

Axiom 2.1. L4 is a holomorphic space.

This makes sense to prescribe, as we would often want to map our polynomials
to harmonic functions. It is particularly appealing to think of b̂ (our ∞-point)
as a solenoid in potential well whose outbound ∞-maps are harmonic. This
paints the classical picture of the distribution of tension on an ordinary spring,
reducing the canonical worldline of a particle to a simple harmonic oscillator.
This interpretation comes at a price. Namely, we exclude rigid objects, which
are resistant to canonical deformation of any kind. This excludes, say the etale
cohomology theory from entering into the picture, which limits the number of
tools available for this level of analysis. This is a double-edged sword . We can
think of Seidel’s unreduced Fukaya category as the moduli space of all topoi in
which the blow-up at ∞ exists. It is most convenient to work with non-etale
points for this category, and to instead work with etale points for the relative
one, and Nisnevich points for the reduced category.

3 Lightcones

We present the following (informal) definition for a light-cone, which is appropriate
even for grade school students:

Definition 3.1. Suppose we have two ice cream cones, both touching at their
sharpest points. At the base of one of the cones, we have all of the places that
the light we see could have came from. At the base of the other, we have all of
the places that light could travel to. At the center, we have the present.

We denote by L• a •-dimensional lightcone. In the case of 1 time dimension
and 3 spacial dimensions, we obtain an orbifold L4 ∼= L1+3, where the time
dimension is a one-dimensional superalgebra. Denote by L4

− the past of the
lightcone and L4

+ the future.

Theorem 3.1. All maps L4
− 7−→ L4

+ factor uniquely through a frame at b̂.

Proof. Construct a net n = p⃗ijk lying in the worldline of a particle. We define
this net to be a sequence:

(n −→∞) ∈ N+
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which factors uniquely through an irreducible character ℵ in the superalgebra
of L4

±.

Remark 3.1. We can strictify this theorem by require the net to be Cauchy.
This requires all of the L-packets to lift to an integrable rational point, or
quantum ((q)).

It is clear that the appropriate field for L4 is the reduced Fukaya category
C, which is the projective image of Emmersons’s energy field E. This describes
the generic gauge fibers induced by an arbitrary Newtonian force field F acting
on a smooth manifold M . Due to relativistic effects, the mass of the quantum
may appear contracted to zero as it approaches b̂.

That is to say, we are actually thinking about each quantum as a collection
of smooth fibers ΓΣ : γ −→ δ, where

δ =
1

2
γ ± 1

2

This gives a description of a string at the tree level, regardless of either the
orientation of the string, or its openness or closure status. This allows the
particle to fulfill the Emmerson-Heisenberg Compatibility condition:

∆α ·∆β ≥
1

2
| ⟨|α̂, β̂|⟩

where ∆ is the Heisenberg uncertainty of a variable pertaining to the particle.
Keep in mind that if the loop ℓq is closed, then the particle q is the closure of
the loop.

Setting γ to be Planck’s reduced constant, we obtain either a 0 or 1 measurement
of γ, which represents a realization of a truth value in an arbitrary force field.
By normalizing the mass of the particle to its truth value, we obtain either a
creation or annihilation event.

Set
Hn(L

4
±) ≃ (0 ∼ ∞)n

to be causally embedded in the lightcone. This is an arity n map, or n-cell, from
an unmeasured value to a phase space whose uncertainty is zero.

The first Chern class of this n-cell is invertible, resulting in both a positive
and a negative value for τ(q), which makes it a 1-vector.

3.1 String and Spin Levels

We endow the worldline of a particle Wp with a group string which encodes the
energetic information of p.

At the string level, it is most appropriate to work with E, while at the spin
level, it is more convenient to work with R. This is because of the relative
restrictions afforded to each. We gain a map:

E2|C 7−→ R1|Q
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where each Q is mapped to some N. This basically treats each “good reduction”
of a fermionic action like a bosonic one. In fact, the space of these good reduction
is where we find Emmerson’s energy constant

ℏE = QuantE(R)

where QuantE(R) = B(O)⊗R E.

Remark 3.2. By its design, QuantE(R) is constructible. One nice candidate
for its fabric is a sheaf of Abelian groups. In some sense, it is the Abelianization
of the group B(O). For O < 3 this is trivial.

We have Pshv(ℏE) ∼= A , where A is an ∞ cosmos. The sheafification is an
exit path

EPShv : QCoh(A ) −→ Coh(A)

where A is a Lie algebra. Note that, since the range of the morphism is real, the
algebra fails to be non-trivially super. Recall from the work of Sati and Schreiber
that Spin(A) is a real Lie group whence the path groupoid over Rep(A) is
smooth.

4 Associators and Binors

From [8]:
“The binor calculus forms the underpinning of the Penrose theory of spin

networks.”
Let S n : s

•n

−→ t be an n-cell in an ∞-groupoid. We will let the closure of
S n to be n = (∆ ∼ q). Here, ∆ is the associator for

s s′

s′ t

1

1

1 1
2

We define the map
1 : S n>1 −→ S 1∨0

which is a binary classifier sending every n > 1 to a binary tree.

Definition 4.1. A binor, B0|1 is the smallest full subcategory of Bp|q.

Proposition 4.1. Any collection of binors

1⋃
0

B0|1 = B

is replete and has auto-equivalences defining a reflexive subtopos for every 1 ∈
B0|1.
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Axiom 4.1.

((1 \ 0) ∨ (0 \ 1) = 1

2
P (x)

A property of binors is that they are binary classifiers which map

τ −→ {0}to{1}

for all (τ(x) ∼= (τ ∼ x)) and for all (x). Here, x is weakly equivalent to P for
all P (x) : x −→ x.

Definition 4.2. An associator, a, is the smallest completion of K = A∪B such
that

K◦ = supA ∨ supB

when (sup(a) ∼= sup(b)), making A ∨ B transitivite for all a ∈ A and b ∈ B.

Proposition 4.2. An associator a is equal to A ∧ B for groups A and B of
quasi-fibrations.

Proposition 4.3.

∀a ∃ai ∈ a
j−→ aj ∈ a

k−→ ak ∈ a

making a a 3-cycle.

Call the above series a(ijk). Write

Hola(ijk)p

for the holonomy groupoid of a parton p. Every action of a flow tensor on

Hol
a(ijk)
p may be written λ(p), where λ is an eigenfuctor in End(p).

Proposition 4.4. Every map S n
B0|1−−−→ S 0∨1 has a unique decomposition

λ(p) · λ(p)′

where
p′ = ṗ

is the mirror image of p.

Proof. Write

Cent(p) =
d(λ(p), λ(p)′)

2

Our proof is reduced to showing that the map

Sn f7−→ Cent(p)

is a binor. This follows from letting f |0|1 ∼= B0|1 be the restriction taking the
map to its decomposition.

That this decomposition is unique is obvious given a canonical choice of
local coordinates and a neighborhood system on which our distance function is
evaluated.
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4.1 Recollection

A collection of smooth fibers admits a description as a gauge field with a
principle ultrafilter. In our case, that ultrafilter is a binor which is strictified by
an associator. We use the formula∫ 1

0

d(τx, x)

to induce a triangular foliation on our field

F ⋆ Gm

For a sheaf Sτ of truth values, we define a “kink” to be a twist on a nerve:

Dehn(Nℵ)

where ℵ is a dominant character, where by

Definition 4.3. dominant we mean a countably infinite character.

Recall that Seidel [10] defined a strong equivalence between the Dehn twist
and the Picard-Lefschetz monodromy map.

A kink acts on the tangent bundle of all paths

Tγδ : γ ∈ ℵ −→ δ ∈ ℵ ≃ (γ −→ δ) ∈ ℵ

which produces a reduction in the glide along ℵ.

Axiom 4.2. A countably infinite character always contains its cardinality:

ℵ ⊇ card(ℵ)

Tγδ defines an orientable micro-surface, or in other words a surface upon
which the microlocal analysis of sheaves may be performed on. There is a
proliferation of pyknotic objects in this regime, where by regime we mean:

Definition 4.4. A regime is a topological space containing the homotopy type
of an object.

A property of a regime is that it contains all of the characters which ℵ is
transcendental over, but not necessarily algebraic over.

Definition 4.5. There is an isofibration hetween the number of kinks of a
system, and the third Betti number of the system. We will write

Kn(S) ∼= B3(S)

These are sections where the values of a gauge field are trivially measured
to be {∅} ∨ 0.
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Axiom 4.3. In characteristic ℓ ̸= p:

S ↪→ S n

Axiom 4.4. The space
BS n

is homeomorphic to
BS

This homeomorphism is actually acting on presheaves of polynomial rings,
which may be Taylor expanded into sheaves. This is analogous to the embedding

C at
↪→∼ QC at

as pursued in Verity and Riehl’s classic text on ∞-categories.1 [3] Recall that
if morphisms (w, f) are weak equivalences, than the third must also be by the
2-out-of-3 property.2

See C.1.13 in [ibid] for a formal treatment of the gluing condition we are
using. We operate using the convention that QC ats are profinite extensions of
C ats. They are in some sense the moduli space of lightcones, as discussed in
[Sect. 3]. Our relationships are encapsulated by the following diagram:

q QC at

n C at

♭

δ

♭

δ

where δ is the discretization of functor, and where ♭ is Scholze’s canonical tilting
functor.3 We re-appropriate this functor here for a strictly qfpp morphism, or
a canonical flat embedding:

•♭ : • ∈ char0(R) −→ • ∈ charp(R)

for a prime p ̸= ℓ. Here, qfpp stands for “quasi-flat pre-projective.”
We have a diagram

q0 q∞

q̇0 q̇∞

factoring through p : o −→ ... −→ (n < ∞). The bottom leg here is the
transcendent morphism of the mirror image of a homologous pair (q0, q∞).

1We also refer the reader to this book, pg. 443 for my favorite definition of “categories
with fibrant objects.” This book also seems to have some profound references to say about
homotopy type theory.

2In a later note, we will use this property to define a transformation from an acyclic group
to a cyclic group of order 3, which corresponds to a spin of 2/3.

3See [4]

10



Set
piδi(x) :

q
∼−→ Σ̂q̂

to be an iso-fibration sending q to its suspension category of Quillen equivalences.
We have

Maps(·, ·) ≡ Y on([[q]])

then we impose our localization piδi(x):

q Σ̂q̂ ΣΣ̂q̂

q̇ Σ̇q Σ̇Σq

∼ ∼
≃

∼ ∼

· · ·

≃

giving us

Maps(·, ·) ≡ Y on([[q]])

q̇

Thereby establishing a Yoneda principle for Fukaya categories.

5 Galois Connections

We define a special category of connections, the Galois connections GalΓ :
τ(x) 7−→ x whose projection is the identity on a quasi-fibration (x ∼ p). These
will be of special importance to us in the case when τ is given by the classical
evaluation map

ev0 = o(x) −→ |x|

where |x| is the absolute value realization of x. This is, in some sense, a second
quantization of a collection of quasi-quanta in a potential well equipped with a
gradient, where by “gradient’ we mean a curvature of the gauge field over p.

We think ev0 as a map
R× −→ r

of a ring to its most representative unit.

Definition 5.1. We define the module r-mod to be the module of highest weight,
such that the map

(Hn(r) −→ Hn+1(r
′ ∼ r))

∼−→Walls

is an isofibration.
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A map from R to r-mod is essentially a projection out of a moduli space
ModR onto an instanton:

ModR ↠ (̂i ∼ b̂ ∈ □E)

The notion of a Galois connection is in some sense dual to the notion of
forcing. For a connection

GalΓ : A −→ B

write
A ⊣ B

for the adjunction formed by “de-sheafifying” the space Bet. A Galois connection
has the following property:

Property 5.1. GΓ : x
∼−→ y consists of a series of successive isofibrations:

x0 ≃ ... ≃ (x∞ ∧ y∞) ≃ ... ≃ y0

whose center is an (∞, 2)-groupoid.

Notation 5.1. By x
∼−→ y, we mean that x ≃ y is a valid isofibration.

Remark 5.1. We refer the reader to [9] for an account of a connection

GΓ : A 7−→ Bd ∼= M

This paper also introduces the the wrapped Fukaya category, FukWr of Fukaya
categories tensored with branes wrapped over a kinked point pk.

where Bd is a brane of topological dimension d, meaning that it is homeomorphic
to Rd. This is an instantiation of the Lurie-Riehl straightening of a modulated
category C − mod. The unstraightening of this space is defined to be the
hyperbolic blow-up of the space’s rational points:

B↑(Rat(Spec(R)))

This operator admits a left adjoint,

B↓(Rat(Spec(R)))

which sends the group-like objects in FukWr to point-like analogues in the
reduced Fukaya category B0.

Axiom 5.1.
((B↓(−) ◦B↑(−) ∨ (B↑(−) ◦B↓(−)) = Id−

This axiom is isomorphic to the statement that restricting and then unrestricting
is the same thing as the zero action: doing nothing. This is to say:

Xbj = B↑
↓(bi)
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for a fiber spectrum centered about an etale fiber j = |i|et.
Recall that

Xbj = Id(X,b)

is an equivalence between the objects 1 ∈ 1 and 1 ∈ 2. Thus, the result of
applying the identity functor to Xbj is to obtain an isofibration

1
∼−→ 2

which factors uniquely through an idempotent of lowest weight.

Theorem 5.1. The map
1

∼−→ 2

factors uniquely as a map

((0 ∼ ∞) ∼ 1̂) −→ 1

where 1̂ is a unit in R× ⊆ (1,2).

Proof. Using Emmerson’s modified axiom of choice, we let w0 be an element of
lowest weight in the set of units of the ring R. Assume that this is the least
upper bound in 1. Then, we can identify the quasi-isomorphism

1̂ ≃ w0

with a net in {1,2} such that all morphisms 0 −→ ... −→ (0 ∼ 1) factor
uniquely through the quasi-isomorphism.

6 Fermionic Structures

Fermionic structures strictify non-commutative structures by enforcing a “strong”
version of anti-commutativity. For a fermionic structure SFerm on a brane, we
have:

SFerm = ker(S) \ AAb

Write
(Hijk)λ(x) ∼= λ((Hi)x ∩ (Hj)x ∩ (Hk)x)

where x is the both the center of the algebra H, as well as the determinant of
some submatrix of SO(3). Here, λ is the eigenfunctor given in [Prop. 4.4].

Definition 6.1. A fermionic structure on a brane Bd is a pencil of hypersurfaces

Pen(λ(x))

centered about λ(x) which are topological realizations of sheaves of anti-commutative
functors.
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The functors of our sheaves need not obey the strict law of composition; that
is to say

g ◦ f does not necessarily = gf

∀{f, g} : ∗ −→ ∇∗(x)

Remark 6.1. The structure given by the map isomorphism at the beginning of
this section is bosonic whence the intersections in the right-hand-side commute,
and fermionic elsewise.

A big question is whether the suspension spectrum of a particle is fermionic
or bosonic. We propose that, even in the bosonic case, a particle p may admit a
suspension spectrum Σ∞(p) which is fermionic. This means we have the classical
relationship:

(Sp(p))R(Sp−(p)⊕ Sp+(p))

which lifts to an equivalence when the prescribed fiber of p is the one given by
the tautological line bundle of a maximal atlas of the Picard functor Pic(p).
Viz.:

Proposition 6.1.

TautA(Pic(p)) is the uniformizer for p

Proof. Trivial.

If the∞-suspension of an instanton’s worldsheet is fermionic, then the trace

Trs = {s×Ψ(̂i)|s ⊂ SO(3)}

of the matrix representing its wave-function cannot be reduced to a unit. Namely,
the reduction

Trs
∗−→ h

is obstructed from lifting to an equivalence. This means that the cofibrant
objects of Trs have no weak equivalences to objects in the category 1×fdHilb,
yielding chaotic fiber spectra and thus chaotic holonomy for bundle gerbes over
p.

7 Ergodicity

In this section we give some examples of ergodic systems.
We define

Xbi =

∞∑
i=0

(x ∼ bi)

to be an ergodic system whence the probability density of X is given by the
fiber spectrum bi as parameterized by i = spec(b). For a Fukaya category B•,
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this means roughly that every symmetry about the preferred locus is Lebesgue
integrable by the function

f(lK) :

∫ (2dim(l)−1)π

0

k̇ ∈ K̇

where
Pen(k̇) = Pen(Sing(K \ lK))

Proposition 7.1. There is an equivalence

Xbi = Avg(IdX)

given by the etale map
|IdX |et : X

∼−→ Xbi

Example 7.1. Let X ∈ Sp and let B(X) be a canonical basis for X. Remove
a single point from X like so:

X \ xn

Then, we have an equivalence

∞∑
n=0

xn
∼=

∫ ∞

0

∂(x) ∀x ∈ X

Example 7.2. Let C be a symmetric monoidal category. Then, the collection
of arrows given by

f=L∑
f=Idc∈C

f : c −→ ... −→ c

where L is an infinite long exact series with a singular pole at zero, corresponds
precisely to the ∞-cell sending the zero object to itself, which is the identity
functor.

Example 7.3. Let p be a particle in a phase space P . The phase space is said
to be “ergodic” if it is homogenous, and if

lim
t→∞

pt = Avg(p)

such that the location of the particle, after an infinite amount of time, is identical
to the most probable location for the particle.

Example 7.4. Assign to every number in a field K a weight wk. We say a
process is ergodic over K if, for a filtration over K, the weight of each number
is equal to the realization of the number. In the case of counting, every element
is given a canonical evaluation o(n) : wn 7−→ n, and we obtain an operad
wn ⊙+1 wIde

.
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Example 7.5. Let D be a dendrite. If

∞∑
n=0

Nn
D

is an ∞-map from D to its center, then the dendrite is ergodic.

Proposition 7.2. The reduced Fukaya category supports more ergodic systems
than the relative Fukaya category.

To see that this is true, note that the map

B≥0 ↷ B0

induces a formal specialization

(n ∈ N)⇝ lK

Such that the fiber spectrum Xn is sent to its period-zero instantiation in K.
This is by no means a trivial statement. Indeed, one could use this knowledge
to construct a highly stable model of ∞-categories over B0, where each object
is a complete Segal space.

Essentially, one lets Π∞(B) denote the set of all homotopies and their types
in the complete, unreduced Fukaya category, and one obtains a map

Π∞(B)|0 : B 7−→ Id0∈B

Here,
Id0 = π0(b̂)

and, since this restriction can be applied anywhere on a given topological space
(say, a lightcone), we obtain a relativistic choice of preferred locus, and thus
the relativity of simultaneity. That is to say, any zero object in the category of
light-cones may be used to construct some light-cone in which it is the privileged
frame. We then obtain a frame bundle consisting of Lefschetz hypersurfaces,
which are topologically equivalent to geodesics, which in L• are, in the nicest
case, conic sections.
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