
Finding Rational Points of Circles, Spheres,
Hyper-Spheres via Stereographic Projection

and Quantum Mechanics

Carlos Castro Perelman

November 2023

Ronin Institute, 127 Haddon Place, Montclair, N.J. 07043, USA
perelmanc@hotmail.com

Abstract

One of the consequences of Fermat’s last theorem is the existence of a countable
infinite number of rational points on the unit circle, which allows in turn, to find
the rational points on the unit sphere via the inverse stereographic projection of
the homothecies of the rational points on the unit circle. We proceed to iterate this
process and obtain the rational points on the unit S3 via the inverse stereographic
projection of the homothecies of the rational points on the previous unit S2. One
may continue this iteration/recursion process ad infinitum in order to find the ra-
tional points on unit hyper-spheres of arbitrary dimension S4, S5, · · · , SN . As an
example, it is shown how to obtain the rational points of the unit S24 that is asso-
ciated with the Leech lattice. The physical applications of our construction follow
and one finds a direct relation among the N+1 quantum states of a spin-N2 particle
and the rational points of a unit SN hyper-sphere embedded in a flat Euclidean
RN+1 space.

Keywords : Fermat Last Theorem; Rational Points; Surfaces; Leech Lattice; Quantum
Mechanics.

1 Rational Points in Circles, Spheres and Hyper-

Spheres

Fermat’s Last Theorem (FLT) states that no three positive integers a, b, and c satisfy the
equation an + bn = cn for any integer value of n greater than 2. The cases n = 2 has
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infinitely many solutions and is directly related to the generation of Pythagorean triples.
The first proof of FLT was carried by Wiles [1]. After Wiles’ proof there have been other
attempts like the one based on Euler’s double equations [2].

We begin by recalling the geometrical procedure how to generate Pythagorean triples,
namely triples of non-zero integers (positive, negative) a, b, c obeying a2 + b2 = c2, like
32+42 = 52. Let us find how to generate an infinite family of points P lying on the circle
of radius unity such that their coordinates P = (x, y) are rational numbers obeying

x2 + y2 = 1, x ≡ a

c
, y ≡ b

c
(1)

One draws a unit circle centered at the origin and chooses any point X = (p
q
; 0) lying

on the real line whose coordinates p
q
(with p, q integers) are rational numbers. Take the

north pole of the unit circle N = (0, 1) and draw the straight line connecting the north
pole N with the point X on the real line. Choose p

q
> 1 so the point X lies outside the

unit circle (the construction also works for a point inside the unit circle). The intersection
of the straight line N X with the unit circle will generate the desired rational points on
the unit circle whose coordinates are given by the following rational numbers1

x =
2pq

p2 + q2
, y =

p2 − q2

p2 + q2
, x2 + y2 = 1 (2)

The substitution p = m+ n, q = m− n allows to recast eq-(2) in the equivalent form

x =
m2 − n2

m2 + n2
, y =

2mn

m2 + n2
, x2 + y2 = 1 (3)

And vice versa, given any point P = (x, y) with rational coordinates on the unit
circle, the intersection of the line joining P and N with the real line R occurs at a point
X with rational values. Consequently, one has established a birational map (bijective
mapping of rational points to rational points and vice versa) between the real line and
the unit circle.

By setting m = 2, n = 1 one automatically recovers the point in the unit circle
with rational coordinates (3

5
, 4
5
) and corresponding to the Pythagorean triple (3, 4, 5).

Setting m = 3, n = 2 yields the point in the unit circle ( 5
13
, 12
13
) and corresponding to the

Pythagorean triple 5, 12, 13. And so forth. Due to the symmetry of the unit circle with
respect the x and y axis the most general form of all the rational points in the unit circle
are given by

x = ± m2 − n2

m2 + n2
, y = ± 2mn

m2 + n2
, x2 + y2 = 1 (4)

. with m,n integers. Due to the identities

cos2α + sin2α = 1; sin(2α) = 2 sin(α) cos(α), cos(2α) = cos2(α) − sin2(α) (5)

1The fraction 2u
u2+1 ≤ 1 with u = p

q for all values of u
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one can recognize that eq.(4) can be recast in terms of trigonometric functions after setting

cos(α) =
m√

m2 + n2
, sin(α) =

n√
m2 + n2

⇒ cos(2α) =
m2 − n2

m2 + n2
, sin(2α) =

2mn

m2 + n2

(6)
and obeying cos2(2α) + sin2(2α) = 1.

This geometrical construction is just a very special case of the stereographic projection
of a sphere onto the equatorial plane. Let us find now the points on the sphere of unit
radius centered at the origin and whose coordinates (x, y, z) are given by rational numbers.
The stereographic projection of a sphere onto the equatorial plane is given by selecting
any point on the sphere P = (x, y, z) and drawing the straight line joining that point P
with the north pole N = (0, 0, 1). The intersection of the line N P with the equatorial
plane is given by a point Q whose coordinates are given by X, Y . The relationship among
the x, y, z coordinates and X, Y is given by

x =
2X

X2 + Y 2 + 1
, y =

2Y

X2 + Y 2 + 1
, z =

X2 + Y 2 − 1

X2 + Y 2 + 1
, x2 + y2 + z2 = 1 (7)

Inverting these relations yields

X =
x

1− z
, Y =

y

1− z
, X2 + Y 2 =

1 + z

1− z
(8)

It is clear from eq-(7) that if X, Y are rational numbers, or integers, then x, y, z are
automatically rational-valued.

The intersection of the xy-plane with the unit sphere S2 is an equatorial great circle
S1 of unit radius. Hence we can use the rational points on the unit circle S1 found in
eqs.(3,4), and denoted now by x̃, ỹ to avoid confusion, and scale them by a factor of λ1 ≥ 1
and set

X = λ1 x̃ = λ1
m2 − n2

m2 + n2
, Y = λ1 ỹ = λ1

2mn

m2 + n2
; (x̃)2 + (ỹ)2 = 1 (9)

Thus, by inserting the expressions given by eq.(9) into the right hand side of eq.(7) one
arrives at

x =
2λ1

1 + λ21

m2 − n2

m2 + n2
, y =

2λ1
1 + λ21

2mn

m2 + n2
, z =

λ21 − 1

λ21 + 1
(10a)

where λ1 is a rational number (or integer), and m,n integers. One can verify from
eq.(10a) that x2 + y2 + z2 = 1. Therefore, rational points on the unit sphere can be
obtained from the prior rational points x̃, ỹ on the unit circle (found in eqs.(3,4)) after
performing the following scaling depicted in eq.(9) and inserting the values of X, Y into
eq.(7). Consequently, one can obtain rational points on the unit sphere from the rational
points on a unit circle via an inverse stereographic projection after a suitable scaling of
the rational coordinates of the unit circle by a factor of λ1 ≥ 1.
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Because we had established a birational map between the real line and the unit circle,
by setting r ≡ m/n, one can rewrite in eq.(10a) that

m2 − n2

m2 + n2
=

r2 − 1

r2 + 1
,

2mn

m2 + n2
=

2r

r2 + 1
, r ≡ m

n
(10b)

leading to a pair of rational numbers on the unit circle which will be mapped to a rational
point on the real axis, and vice versa. Similarly one has in eq.(10a) that both expressions

2λ1
1 + λ21

,
λ21 − 1

λ21 + 1
(10c)

which have the same functional form as those in eq.(10b), lead also to a pair of rational
numbers, and such that there is no irrational number λ that can yield a pair of rational
numbers in eq.(10c). Since the product/ratio of two irrationals is not always irrational,
one cannot exclude the possibility that an irrational value for r and λ might yield rational
values in eqs.(10b,10c), but we have shown that this is not possible due to the fact
that the birational maps between the real line and the unit circle establish a one-to-one
correspondence among the countable-infinity number of rationals lying on the real line
and the rational points in the unit circle.

Note that eq.(10a) is not the only combination available to us. By exchanging 2λ1

1+λ2
1
↔

λ2
1 − 1

λ2
1 + 1

in eq.(10a) one arrives at

x′ =
λ21 − 1

1 + λ21

m2 − n2

m2 + n2
, y′ =

λ21 − 1

1 + λ21

2mn

m2 + n2
, z′ =

2λ1
λ21 + 1

(10d)

One can verify that after setting, for example, m = 2, n = 1, λ1 = 2 in eqs.(10a,10d) yields
the following combinations of the sums of three squares (12)2+(16)2+(15)2 = (25)2, and
(9)2 + (12)2 + (20)2 = (25)2, respectively.

To sum up, by constraining λ1 to be rational numbers, or integers, the expressions in
eq.(10a) will generate all the possible rational points on the unit sphere. However there is
caveat because this will not be the case for higher dimensional hyperspheres. The reason
being that the product/ratio of two irrationals is not always irrational. We shall show at
the end of this work that there are rational points on Sn that require irrational scaling
factors λ. The most notorious example is the case of the hyper-sphere S24 associated with
the Pythagorean 24-tuple of numbers inherent in the 24-dimensional Leech lattice.

This stereographic construction can be generalized to hyper-spheres Sn embedded in
flat Euclidean Rn+1 spaces of n+ 1-dim. The projection of the north pole of Sn onto the
n-dimensional equatorial hyperplane obtained from the intersection of the straight line
obtained by joining a point on Sn to the north pole leads to the following relationships
among the coordinates Xn of the hyperplane and the x1, x2, · · · xn, xn+1 coordinates on
Sn

xi =
2Xi

(
∑n

j=1 X2
j ) + 1

, i = 1, 2, 3, · · · , n. xn+1 =
(
∑n

j=1 X2
j ) − 1

(
∑n

j=1 X2
j ) + 1

(11)
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one can verify that x21 + x22 · · ·+ x2n + x2n+1 = 1. Therefore, eq.(11) provides the rational
coordinates of most of the rational points on the unit hyper-sphere Sn, if the Xi’s are
rational or integer numbers.

As an example let us find the rational points on S3 following the same procedure as
the one leading to eqs.(10a,10d). S3 can be embedded into a 4-dimensional Euclidean
space R4. The 3-dim subspace R3 can be seen as a hyperplane of R4 that is defined by
the algebraic equation x4 = 0. Hence, the intersection of the hyperplane (R3) with the
unit S3 is an equatorial great “circle” given by the unit sphere S2. One just repeats the
previous procedure and performs the scaling of the rational coordinates x̃1, x̃2, x̃3 on the
unit sphere by λ2 ≥ 1 and sets

X1 = λ2 x̃1, X2 = λ2 x̃2, X3 = λ2 x̃3 (12)

x̃1, x̃2, x̃3 are the rational coordinates of the points lying on the unit sphere S2 and whose
expressions are given by eqs.(10a). Therefore, after inserting the expressions in eq.(12)
into eq.(11), when i = 1, 2, 3, yields most of the rational points (not all of them) on the
unit hypersphere S3 and which are given by the rational coordinates

x1 =
2λ2

1 + λ22

2λ1
1 + λ21

m2 − n2

m2 + n2

x2 =
2λ2

1 + λ22

2λ1
1 + λ21

2mn

m2 + n2

x3 =
2λ2

1 + λ22

λ21 − 1

λ21 + 1

x4 =
λ22 − 1

λ22 + 1
(13a)

with λ1, λ2 ≥ 1 rational or integer numbers, and m,n integers. One can verify from
eq.(13) that x21 + x22 + x23 + x24 = 1. Therefore, eq.(13a) provides the rational coordinates
of many points on the unit S3.

Once again, by exchanging 2λ2

1+λ2
2
↔ λ2

2−1

λ2
2+1

in eq.(13a) one arrives at another combination

x′1 =
λ22 − 1

1 + λ22

2λ1
1 + λ21

m2 − n2

m2 + n2

x′2 =
λ22 − 1

1 + λ22

2λ1
1 + λ21

2mn

m2 + n2

x′3 =
λ22 − 1

1 + λ22

λ21 − 1

λ21 + 1

x′4 =
2λ2
λ22 + 1

(13b)

Similarly, one can repeat the process leading to eqs.(13a,13b) from eq.(10a) to one origi-
nating from eq.(10d) instead, and arrive at the following
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x′′1 =
2λ2

1 + λ22

λ21 − 1

1 + λ21

m2 − n2

m2 + n2

x′′2 =
2λ2

1 + λ22

λ21 − 1

1 + λ21

2mn

m2 + n2

x′′3 =
2λ2

1 + λ22

2λ1
λ21 + 1

x′′4 =
λ22 − 1

λ22 + 1
(13c)

x′′′1 =
λ22 − 1

1 + λ22

λ21 − 1

1 + λ21

m2 − n2

m2 + n2

x′′′2 =
λ22 − 1

1 + λ22

λ21 − 1

1 + λ21

2mn

m2 + n2

x′′′3 =
λ22 − 1

1 + λ22

2λ1
λ21 + 1

x′′′4 =
2λ2
λ22 + 1

(13d)

The four combinations provided by eqs.(13a,13b,13c,13d) will generate four families of
rational points on the unit S3. For example, by setting m = 2, n = 1, λ1 = λ2 = 2 into
eq.(13a) one will have

(48)2 + (64)2 + (60)2 + (75)2 = (125)2 = 15625 ⇒

(48/125)2 + (64/125)2 + (60/125)2 + (75/125)2 = 1 (13e)

Similarly, by inserting those values of m = 2, n = 1, λ1 = λ2 = 2 into the other
eqs.(13b,13c,13d) one will generate the other combinations of rational points on the unit
S3.

One can continue this recursion process and derive the expressions for the rational
coordinates of the rational points on the unit hyper-spheres Sn. We began with the
intersection of lines containing two rational points with the unit circle and derived the
eqs.(2,3,4) generating all the rational points on the unit circle. Then we inserted the
scaling of these rational points on the unit circle into the expressions in eq.(7) in order to
obtain all of the rational points of the unit sphere. Then we inserted the scaling of these
rational points on the unit sphere S2 into the expressions in eq.(11), when i = 1, 2, 3, in
order to obtain most of the rational points on the unit S3. This recursion process holds
for all the other values of the dimensions of the hyper-spheres.

One may rewrite the Cartesian coordinates of the points of S3 with unit radius (13)
in terms of three angles θ1, θ2, θ3 as follows

x1 = sin(θ3) sin(θ2) cos(θ1)
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x2 = sin(θ3) sin(θ2) sin(θ1)

x3 = sin(θ3) cos(θ2)

x4 = cos(θ3) (14a)

such that x21 + x22 + x23 + x24 = 1.
Therefore, from eq.(13a) one finds the respective values for three angles associated

with the rational points in the unit S3

cos(θ1) =
m2 − n2

m2 + n2
, sin(θ1) =

2mn

m2 + n2

sin(θ2) =
2λ1

1 + λ21
, cos(θ2) =

λ21 − 1

λ21 + 1

cos(θ3) =
λ22 − 1

λ22 + 1
, sin(θ3) =

2λ2
1 + λ22

, (14b)

with λ1, λ2,m, n integers. A similar procedure follows for the other combinations in
eqs.(13b,13c,13d).

Setting θ3 = π
2
in (14a) leads to x4 = 0, sin(θ3) = 1, and one recovers the standard

expression for the x, y, z coordinates of the sphere S2 where θ1 is the azimuth angle and
θ2 is the zenith angle. S2 is the great equatorial “circle” of S3 corresponding to the angle
θ3 =

π
2
. Likewise, S1 is the great equatorial circle of S2 corresponding to the angle θ2 =

π
2
.

The angular coordinates of S4 are obtained after multiplying each term of eq.(14a) by
sin(θ4) : xi → xi sin(θ4) and adding the extra coordinate x5 = cos(θ4) as follows

x1 = sin(θ4) sin(θ3) sin(θ2) cos(θ1)

x2 = sin(θ4) sin(θ3) sin(θ2) sin(θ1)

x3 = sin(θ4) sin(θ3) cos(θ2)

x4 = sin(θ4) cos(θ3)

x5 = cos(θ4) (15)

such that x21+x22+x23+x24+x25 = 1. One can repeat this process for S5, and so forth, for
the other higher dimensional unit hyper-spheres by introducing more angles successively.
The early study of the generalized angular momentum operators and Laplacians for hyper-
spheres SN can be found in [8]. A more recent treatment of the generalized Legendre
polynomials for hyper-spheres can be found in [9].
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As a result, the recursive process to derive the rational coordinates of the unit
S4 from those of a unit S3 can be simply obtained by multiplying each term of
eqs.(13a,13b,13c,13d) by (2λ3/λ

2
3 +1), and adding x5 = (λ23 − 1/λ23 +1), or vice versa, by

exchanging 2λ3

λ2
3+1

↔ λ2
3−1

λ2
3+1

, generating in turn eight families of rational points on the unit

S4. This recursion process can be continued indefinitely with S5, S6, · · ·Sn, Sn+1, · · · by
introducing the scaling factors, rational numbers, given λ4, λ5, · · · , λn−1, λn, · · ·.

The Leech lattice can also be constructed in terms of the vector
(0, 1, 2, 3, . . . , 22, 23, 24; 70) in the 26-dimensional even Lorentzian unimodular lat-
tice Λ25,1. The existence of such an integral vector of Lorentzian norm zero relies on the
fact that 12 + 22 + · · · + 242 is a perfect square 702; the number 24 is the only integer
bigger than 1 with this property (see cannonball problem [3]). This was conjectured by
Édouard Lucas, but the proof came much later, based on elliptic functions [3]. Hence
one has the Pythagorean 24-tuple of non-vanishing numbers

02 + 12 + 22 + 32 + . . . + 242 = 702 ⇒

x1 = 0, x2 =
1

70
, x3 =

2

70
, x4 =

3

70
, · · · , x25 =

24

70
(16)

such that x21 + x22 + x23 + · · · + x225 = 1. To find the rational points in the unit S24 based
on the recursive method requires introducing λ1, λ2, · · · , λ23 scaling factors. In particular,
the last ratio x25 = 24/70 is given by

x25 =
λ223 − 1

λ223 + 1
=

24

70
⇒ λ23 =

√
47

23
= 1.429 · · · (17)

One finds that the square λ223 is rational but λ23 is not a rational number and such that
the other key factor (2λ23/1 + λ223) is irrational. The latter factor appears in the product

x24 =
2λ23

1 + λ223

λ222 − 1

λ222 + 1
=

23

70
(18)

From eqs.(17,18) one learns that

2λ23
1 + λ223

=

√
4324

70
,
λ222 − 1

λ222 + 1
=

23√
4324

⇒ λ22 =

( √
4324 + 23√
4324− 23

) 1
2

(19)

From eqs.(17,19) one can verify that the irrational scaling factors λ23, λ22 > 1 are greater
than 1 as expected. One can continue this procedure and determine all of scaling factors
as we descend down the ladder x23, x22, · · · , x2, x1 = 0. The condition x1 = 0 requires to
choose m = n⇒ (2mn/m2 + n2) = 1, and such that x2 is given by the product involving
all of the scaling factors

x2 =
1

70
=

∏ 2λi
λ2i + 1

, i = 1, 2, 3, · · · , 23 (20)

Therefore to obtain all the above rational numbers in eq.(16) associated with the Leech
lattice one requires irrational scaling factors for the λ’s. As mentioned earlier, this is
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due to the fact that the product/ratio of two irrationals is not always irrational. To sum
up, there are rational points on the unit Sn that are not captured by our formulae if one
constrains the scaling factors λ’s to be rational, or integer-valued. Irrational values would
be required also to capture all the possible rational points on the unit Sn. The circle and
the sphere are an exception.

2 The Bloch sphere and its extension for higher spin

particles

In this section we shall find physical applications of the results found above. We shall show
that the rational coordinates x1, x2, x3, · · · , xN+1 of the points in the unit SN embedded
in a flat Euclidean RN+1 space encode the rational values of the probabilities of finding
a spin-N

2
particle in a given quantum state (spin up, spin down in the special case of a

spin-1
2
particle). A quantum superposition of two orthogonal spin-1

2
states (spin up, spin

down) is given by

|ψ⟩ = α | ↑⟩ + β | ↓⟩, |α|2 + |β|2 = 1 (21)

where α, β are complex numbers. It is well known (to the experts) that the complex-valued
ratios α/β and β/α admit an stereographic interpretation such that

α

β
= Z = X + iY = eiϕ cotan(

θ

2
) = [cos(ϕ) + i sin(ϕ)] cotan(

θ

2
) (22)

where X, Y are the planar coordinates of Q associated with the stereographic projection
from the north pole of the unit sphere onto the equatorial plane obtained by joining the
north pole to the point P in the unit sphere. The inverse of Z is

W =
1

Z
= X ′ + iY ′ =

β

α
= e−iϕ tan(

θ

2
) = [cos(ϕ) − isin(ϕ)] tan(

θ

2
) (23)

where X ′, Y ′ are the planar coordinates of Q′ associated with the stereographic projection
from the south pole of the unit sphere onto the equatorial plane obtained by joining the
south pole to the point P in the unit sphere. It is known that the Riemann sphere is
obtained from the one-point-compactification of the complex plane C by adding the point
at infinity and can be identified with the one-dimensional complex projective space CP 1.
The Riemann sphere is a one-dimensional complex line that appears two-dimensional
from the real numbers point of view and it is topologically equivalent to C

⋃{∞}.
Similarly, the two-dim complex projective space CP 2 can ben be obtained from C2

by adding the complex line CP 1 at infinity to C2. Thus CP 2 is topologically equivalent
to C2⋃{CP 1}∞. CP 3 is topologically equivalent to C3⋃{CP 2}∞, and so forth. The
complex projective spaces CPN can also be interpreted as the cosets SU(N + 1)/U(N)
with N -complex dimensions (2N real dimensions).
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The main physical application of this geometrical construction is that a quantum
superposition of two spin-1

2
states (21) can be written in terms of the angles θ, ϕ as

follows

|ψ⟩ = α | ↑⟩ + β | ↓⟩ = cos(
θ

2
) | ↑⟩ + e−iϕ sin(

θ

2
) | ↓⟩, |α|2 + |β|2 = 1 (24)

The “location” of the spin up state | ↑⟩ is identified with the north pole θ = ϕ = 0, and
the spin down state | ↓⟩ with the south pole θ = π, ϕ = 0. The state |ψ⟩ is associated (has
a one-to-one correspondence) with the point P on the unit sphere given by the angles
θ, ϕ. Since the quantum states of a projective Hilbert space are represented by rays,
namely that the states |ψ⟩ ∼ λ|ψ⟩ are physically equivalent up to an arbitrary phase
factor λ = eiξ, after multiplying both sides of eq.(24) by λ = eiξ one arrives at the most
general expression

eiξ |ψ⟩ = α′ | ↑⟩ + β′ | ↓⟩ = eiξ
(
cos(

θ

2
) | ↑⟩ + e−iϕ sin(

θ

2
) | ↓⟩

)
, |α′|2 + |β′|2 = 1

(25)
involving 3 angles θ, ϕ, ξ associated with a unit S3 which can be described by the condition
|α′|2 + |β′|2 = 1, with α′, β′ two complex numbers (4 real numbers) after setting α′ =
a1+ ib1; β

′ = a2+ ib2 ⇒ (a21+ b
2
1)+ (a22+ b

2
2) = 1. Note that one still recovers the complex

ratios Z = α′/β′ = α/β;W = 1/Z, respectively, depicted in eqs.(22,23), and which admit
the stereographic projection interpretation.

This is where the notion of the Bloch sphere [5] comes into play. The Bloch sphere is
the geometrical representation of the pure state space of a two-level quantum mechanical
system; consequently the pure quantum spin states live on the unit sphere S2, whereas
the mixed states live inside the ball enclosed by S2 [5]. The physical reason is that one
can rotate the axes such that the new location of the north pole N ′ coincides with the
point P that is represented by the state |Ψ⟩ given by eq.(24). Hence |Ψ⟩ will coincide now
with the pure | ↑⟩′ state. Alternatively, one can rotate the axes such that new location
of the south pole S ′ coincides with the point P that is represented by the state |Ψ⟩ given
by eq.(24), and such that |Ψ⟩ will coincide now with the pure | ↓⟩′ state.

It is worth mentioning the Hopf fibrations of spheres [6]. Treat the phase factor eiξ in
(25) as a function of the angles θ, ϕ associated with a base point P on the two-dimensional
sphere S2. In this way a S3 can be locally fibered over S2 with S1 being the fibers (since
the phase eiξ is the circle group of rotations). The natural metric on the Bloch sphere
is the Fubini–Study metric. The mapping from the unit 3-sphere in the two-dimensional
state space C2 to the Bloch sphere is the Hopf fibration of S3 over S2 with each ray
of spinors mapping to one point on the Bloch sphere [5]. One can repeat this process
for the fibration of S7 over S4 with S3 as fibers (which can be realized in terms of unit
quaternions H). And finally, the fibration of S15 over S8 with S7 fibers (which can be
realized in terms of unit octonions O)2.

2A unit quaternion q = xo + xiei; i = 1, 2, 3 obeys qq̄ = x2
o + x2

1 + x2
2 + x2

3 = 1, which is the analytical
expression for the unit S3 embedded in R4. And a unit octonion is given by u = yo+yjej ; j = 1, 2, 3, · · · , 7
and obeys uū = y2o + y21 + y22 + · · · + y27 = 1, which is the analytical expression for a unit S7 embedded
in R8
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Let us generalize the quantum superposition (21) to one involving N+1 spin-N
2
states

(2s+ 1 = N + 1 ⇒ s = N
2
) by writing

|Ψ⟩ =
N+1∑
n=1

αn |ψn⟩,
N+1∑
n=1

|αn|2 = 1 (26)

The last condition is a result of the normalization condition ⟨Ψ||Ψ⟩ = 1. The state |Ψ⟩
belongs now to an N +1-level quantum mechanical system. Based on our construction of
the rational points on the unit SN given by the rational numbers x1, x2, · · · , xN+1 obeying
x21 + x22 + · · ·+ x2N+1 = 1, it allows to equate

|α1|2 = a21 + b21 = x21, |α2|2 = a22 + b22 = x22, . . . , |αN+1|2 = a2N+1 + b2N+1 = x2N+1

(27)
and read out automatically the rational solutions for the real and imaginary parts of all
the complex coefficients αn = an + ibn given by

a1 = x1
m′2 − n′2

m′2 + n′2 , b1 = x1
2m′n′

m′2 + n′2 ; a2 = x2
m′2 − n′2

m′2 + n′2 , b2 = x2
2m′n′

m′2 + n′2 ; . . .

aN+1 = xN+1
m′2 − n′2

m′2 + n′2 , bN+1 = xN+1
2m′n′

m′2 + n′2 (28)

with m′, n′ integers which are not to be confused with m,n in eqs.(3,4).
It is possible to generalize the construction of the Bloch sphere to dimensions larger

than two, but the geometry of such a “Bloch body” is more complicated than that of a
ball [7].

Concluding, given the superposition ofN+1 orthogonal states (qudits) in eq.(26), |αn|2
is the probability of observing a spin-N

2
particle in a given |ψn⟩ state, (spin up, spin down,

qubits in the special case of a spin-1
2
particle), then it follows that the corresponding

rational values of such probabilities are given by x1, x2, · · · , xN+1, respectively, where
xn, n = 1, 2, · · · , xN+1 are the rational coordinates of a unit SN sphere embedded in a flat
Euclidean RN+1 space. The probabilities are ≤ 1 by construction.

A heuristic reason why Fermat’s last theorem is true could possibly be related to the
nature of Quantum Mechanics. The complex coefficients αn in eq.(26) are comprised of a
real and imaginary part so one requires two real numbers (an, bn) living in R2 to specify
αn. In QM, Ψ is a complex-valued probability amplitude, thus it is the square |Ψ|2 that
furnishes the actual probability. Therefore |αn|2 = a2n + b2n is the natural expression one
encounters in QM. One does not encounter expressions like apn+b

p
n, p > 2; nor apn+b

p
n+c

p
n,

etc .... it is only the expression corresponding to Fermat’s last theorem that one encounters
in QM. The role of integers (like the quantization of energy levels in the atom) clearly
has also a QM connection. It is warranted to explore this QM interpretation further.
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3 Concluding Remarks : Fermat Surfaces

As a generalization of hyper-spheres, one can define Fermat (hyper) surfaces FN of any
dimension N and order p as the locus of points obeying the following algebraic equation

xp1 + xp2 + xp3 · · · + xpN+1 = rp, p ≥ 3, N ≥ 2 (29)

Many integer-valued solutions to (29) can be found. There are well known sums of cubes
like

(3)3 + (4)3 + (5)3 = (6)3, (11)3 + (12)3 + (13)3 + (14)3 = (20)3 (30)

Diophantine equations with sum of cubes and cube of sum can be found in [11].
The Jacobi-Madden equation [10] leads to many solutions, in particular to the following

non-trivial sums of quartic powers

(5400)4 + (1770)4 + (2634)4 + (955)4 = (5491)4 (31a)

(31764)4 + (27385)4 + (48150)4 + (7590)4 = (51361)4 (31b)

The sums of quintic powers like

(27)5 + (84)5 + (110)5 + (133)5 = (144)5 (32)

were found by [12], and so forth. Extensive numerical computations for the search of
rational points lying on Fermat (hyper) surfaces FN of arbitrary dimensions N , and
order p, obeying the following equations

i=N+1∑
i=1

|xi|p = rp, p ≥ 3, N ≥ 2 (33)

with |xi|, r positive integers were provided by [12]. The non-zero entries |xi|, i =
1, 2, 3, · · · , N,N + 1 were interpreted by the authors [12], [13] as the non-zero compo-
nents of the so-called “Fermat vectors” whose tips correspond to the rational points lying
on such Fermat (hyper) surfaces.

In this work we have described the procedure how to obtain rational points on cir-
cles, spheres and hyper-spheres based on stereographic projections. To figure out the
geometric procedure to find the rational points of Fermat surfaces is another matter. Fur-
thermore, we only studied real surfaces. It is warranted to explore the case of complex
surfaces. Enriques and Kodaira classified compact complex surfaces into ten classes. The
standard reference book for compact complex surfaces can be found in [14]. A complete
classification of complex surfaces is still undergoing to our knowledge.
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