Seven Archimedean circles with six-fold symmetry for the arbelos

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract

We show that there are seven Archimedean circles with 6 -fold symmetry for the arbelos.

Keywords. arbelos, Archimedean circle.
Mathematics Subject Classification (2010). 51M04.

1. Introduction

For a point C on the segment $A B$ such that $|B C|=2 a,|C A|=2 b$, we consider an arbelos formed by the three semicircles of diameters $B C, C A$ and $A B$ constructed on the same side of $A B$. The perpendicular to $A B$ at C is called the axis. Let D and E be the points such that $A C D$ and $B C E$ are equilateral triangles. If the segments $A E$ and $C D$ meet in a point F and the segments $B D$ and $C E$ meet in a point G, then E. A. J. Garcìa shows that the circles of diameters $C F, C G$ and $F G$ are Archimedean [2] (see the circles in yellow in Figure 1), i.e., they have radius $r_{\mathrm{A}}=\frac{a b}{a+b}$. In this note we show that there are two more Archimedean circles indicated in red in Figure 1.

Figure 1.
2. Result

Our results can be obtained as a special case of the next theorem. A similar result to the part (i) can be found in [4].

Theorem 1. Assume that $A C D$ and $B C E$ are similar isosceles triangles with bases $A C$ and $B C$ and the segments $A E$ and $C D$ meet in a point F and the segments $B D$ and $C E$ meet in a point G. Then the following statements are true.
(i) The line $F G$ is parallel to $A B$.
(ii) If $a x, b x$ and d are the distances from the points E, D and G to the line $A B$, respectively, then $d=x r_{\mathrm{A}}$.
(iii) If the segment $D E$ meets the axis in a point H, then $F C G H$ is a rhombus.

Proof. Considering the figure in the real projective plane, we can assume that $A D \cap C E=L_{3}$ and $C D \cap B E=M_{1}$ (see Figure 2). Let $L_{1}=A, L_{2}=D, M_{2}=E$ and $M_{3}=B$. Then the points L_{1}, L_{2} and L_{3} are collinear, and the points M_{1}, M_{2} and M_{3} are also collinear. Therefore by Pappus theorem, the three points $F=(12)=L_{1} M_{2} \cap L_{2} M_{1}, G=(23)=L_{2} M_{3} \cap L_{3} M_{2}$ and (31) $=L_{3} M_{1} \cap L_{1} M_{3}$ are collinear. Since the last point lies on the line at infinity, the lines $A B$ and $F G$ meet on this line, i.e., they are parallel. This proves (i). We denote the foot of perpendicular from a point P to $A B$ by P_{f}. Let $t=\left|C F_{f}\right|=\left|C G_{f}\right|$. From the similar triangles $B D D_{f}$ and $B G G_{f}$, we have

$$
\frac{b x}{2 a+b}=\frac{d}{2 a-t} .
$$

Similarly, from the similar triangles $A E E_{f}$ and $A F F_{f}$, we have

$$
\frac{a x}{a+2 b}=\frac{d}{2 b-t}
$$

Eliminating t from the equations, we have $d=x r_{\mathrm{A}}$. This proves (ii). We can assume $a<b$. From the similar triangles formed by $D E$, the line parallel to $A B$ passing through E, and the lines $D D_{f}$ and $H C$, we have

$$
\frac{|C H|-a x}{a}=\frac{b x-a x}{a+b} .
$$

This implies $|\mathrm{CH}|=2 x r_{\mathrm{A}}$. Therefore (iii) is proved by (i) and (ii).

Figure 2.
Theorem 2. If $A C D$ and $B C E$ are equilateral triangles constructed on the same side of $A B$ as the arbelos, and the segment $D E$ meets the axis in a point H, then the circles of diameters FH and GH are Archimedean.

Proof. Since the point H is the reflection of the point C in the line $F G$ by Theorem 1(iii), the circles of diameters $F H$ and $G H$ are the reflections of the Archimedean circles of diameters $C F$ and $C G$, respectively (see Figure 3).

Figure 3: Seven Archimedean circles.
Since the circles with centers F and G touching the axis are Archimedean, we get the seven Archimedean circles in total with 6 -hold symmetry. Archimedean circles with four-hold symmetry can be found in [3].

Figure 4: Three Archimedean circles.
If the points D and E lie on the semicircles of diameters $A C$ and $B C$, then we have $x=1$ in Theorem 1. Hence the rhombus $F C G H$ is a square and the circumcircle of this and the circles with centers F and G touching the axis are Archimedean (see Figure 4). The circumcircle of $F C G H$ is the Bankoff circle [1].

References

[1] L. Bankoff, Are the twin circles of Archimedes really twins?, Math. Mag., 72 (1974) 214218.
[2] E. A. J. García, Three Archimedean circles arising from equilateral triangles, Sangaku J. Math., 4 (2020) 86-87.
[3] H. Okumura, Archimedean circles passing through a special point, Int. J. Geom., 4 (2015) 5-10.
[4] H. Okumura, Two similar triangles, Mathematical Gazette, 79 no. 486, (1995) 569-571.

