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Revisiting Quadrature, Infinity, and the Numbers  

Gerasimos T. SOLDATOS, Ph.D., Amateur Mathematician; soldgera@yahoo.com 

TO CHRISTMAS AND EASTER

“Also he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height 

thereof; and a line of thirty cubits did compass it round about”. 

Old Testament, 1 Kings 7:23 

 

A. WORKING HYPOTHESIS 

"Two truths cannot contradict one another." Galileo Galilei (1564-1642, [23, p.186]) 

For us, here, the Aristotelian actual infinite is identified with number rationality and constructibility whereas the 

Aristotelian potential infinity is identified with number irrationality. It is a thesis which would be heretical if judged from 

the viewpoint of Euclid's theorem. Actual infinite consists of the rational numbers that may be formed on the basis of 

natural numbers whose number is equal to the product of all primes, symbolizing it via 𝝕. Potential infinite consists of 

the potential infinite of the decimal digits that might start being added at the end of a given rational endlessly, and by the 

potential infinite of the order/disorder with which decimal digits would keep piling up.  

That is, our potential infinity is the outcome of the interplay of these two kinds of potential infinity with regard to each 

of the finitely infinite rational numbers, over the whole set of rational numbers. There are as many such “two-footed” 

potential infinities as finite rationals... This is one way to compromise the would-be constructibility of the Quadrature 

with its alleged impossibility: Constructible within the context of actual infinity but impossible from the viewpoint of 

potential infinity. 

Β. A BRIEF ACCOUNT OF THE PROBLEM 

"The dear God has made the integer numbers, all the rest is man's work." Leopold Kronecker (1823-1891[20, 

p.19]) 

Constructing with a straightedge-ruler and a compass a square having area and perimeter equal to those of a given 

circle or vice versa, was deemed to be impossible by ancient Greeks: “…Bryson (of Heraclea) declared the circle to be 

greater than all inscribed and less than all circumscribed polygons” (Themistius, 317-c.390, [62]). That’s the most that 

could be done with  a ruler and a compass. Many attempts to refute the ancients have been made since then, but all have 

failed [32, 33]. In 1882, Ferdinand von Lindemann (1852-1939, [47]) proved that the squaring or quadrature of the circle 

is impossible, because 𝜋 is a transcendental, rather than an algebraic number; that is, 𝜋 is not a solution of any 

polynomial with rational coefficients. Hence, we cannot construct with a ruler and a compass a line segment 𝑥 such that 

𝑥2 = 𝜋𝑅2, or setting the radius 𝑅 of the circle equal to one, the number 𝑥 = √𝜋 is not constructible. It is quite clear that 

it is the inconstructibility of transcendence which is responsible for the impossibility of the Quadrature. 

Is this thesis true or false? If inadequate computability is thought of corroborating some notion of potential infinity, 

this statement is indeed true. From the 𝜋=3.1605 of the Rhind papyrus in the 17th century B.C. [56] and the 

𝜋=3.1415926535898732 of astronomer Ghiyath al-Din Jamshid Mas'ud al-Kashi (c.1380-1429) of Samarkand around 

1430 [5, 18, 55] to the 𝜋 with the 10000 decimal digits in 1958 and the 𝜋 with the trillion decimal places being produced 

nowadays, there has always been a computation problem. Today, the problem is that real numbers are computed by 

finite, terminating algorithms. It is these computations that are taken to be the real numbers, not the real-real numbers per 

se. And, this presents problems like, for instance, that under the classical definition of a sequence, the set of computable 

numbers is not closed in so far as taking the supremum of a bounded sequence is concerned [7, 44].  Indeed, “He who can 

properly define and divide is to be considered a god” (Plato, 429-347 B.C., [68]). 

Note for example that all numbers, rational and irrational, are representable through sums of infinite series. One such 

series is: 
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which implies that we may write: 𝑥2 = (𝑆𝑅2𝑥0)[1 + 𝑥

𝑥

2
] + 𝑟 ⇒ 𝑥2 = 𝑆𝑅2 + 𝑟, where 𝑆 is a shorthand notation for the 

above series while 𝑟 is a zero polynomial. Suppose that 𝑟 ≠ 0 and that 𝑅 ≠ 1 so that 𝑟 = 0 and 𝑥 = 𝑆𝑅′ for some 𝑅′ ≠
𝑅. Or, suppose that 𝑟 ≠ 0 and that 𝑅 = 1 so that 𝑟 = 0 and 𝑥′ = 𝑆 for some 𝑥′ ≠ 𝑥. In either case, the fact remains that 

there is always some line segment 𝑥 or 𝑥′, call it uniformly 𝑦, such that 𝑦 = 𝑅√𝑆, 𝑅 > 0. And, this is enough for us: 

The transcendental number 𝜋 comes up as the unique solution to the polynomial equation: 𝑥2 − 𝑆𝑅2𝑥0 = 0 ⇒ 𝑥 =

𝑅√𝑆 and hence, 𝑥 = √𝜋 is constructible and the squaring of the circle is possible. The construction of the number 𝑥 =

√𝜋 is possible as a line segment corresponding to an angle of tangent equal to √𝜋 the way it is elaborated below. From 

still another point of view, let the numbers of series 𝑆 (inside the brackets above) be polynomial roots so that 𝑆 may be 

seen as the elementary symmetric polynomial 𝑆 ≡ 𝑒1(𝑥1, 𝑥2, … , 𝑥𝜈) = ∑ 𝑥𝑖
𝜈
1 , 𝑖 = 1,2, … , 𝜈, coming out as a coefficient of 

the following linear factorization of a monic polynomial in 𝜇: 

∏ (𝜇 − 𝑥𝑖)
𝜈

1
= 𝜇𝜈 − 𝑒1(𝑥1, … , 𝑥𝜈)𝜇

𝜈−1 + 𝑒2(𝑥1, … , 𝑥𝜈)𝜇
𝜈−2 −⋯+ (−1)𝜈𝑒𝜈(𝑥1, … , 𝑥𝜈) 

Consequently, 𝜈 − 1, 𝜈 − 2,… would be sensible if the infinite of 𝑆 was the actual infinite, 𝝕; otherwise, ∞− 1 =
∞− 2 = ⋯ 

But, let us take the matter a little bit further. We do dismiss the transcendence of 𝜋, but do we retain its irrationality? 

We know from Euler that: 
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The numerator is always a prime number while the denominator is always a multiple of four nearest to the numerator. 

Let us ignore our theorem about the finiteness of the primes, which was advanced in the Introduction, and let us abide by 

Euclid’s Theorem that prime numbers are infinite. If it were not so, 𝜋 would be a rational number. But, what kind of 

infinity is that of the prime numbers? One way to perceive it, is to let a computer adding terms to the right of this 

expression of 𝜋 4⁄  ad infinitum, independently of man’s presence on this earth. Another way is to view the product of 

fractions as product of polynomial roots in which case the product would be the elementary symmetric polynomial 

𝑒𝜈(𝑥1, … , 𝑥𝜈) with the same caveat about the infinite of 𝜈 as with regard to 𝑒1 in connection with series 𝑆. This in turn 

means that infinity is the actual rather than the potential one. 

 

 

 

 

 

 

 

 

Fig. 1:Convergence to Finiteness 

Any notion of actual infinite as signifying the presence of some extreme limit, would suffice to sustain the assertion 

that 𝜋 is rational; rational though not computable until now. After all, what is 𝜋? It is the ratio of a circle’s circumference 

to its diameter. That is, the ratio of the four sides of the square that squares the circle to the diameter of the circle. All of 

these magnitudes have endpoints; they are rational quantities and subsequently, 𝜋 is the ratio of two rational quantities. 𝜋 

is proved to be an irrational number, because irrationality is taken to coincide with potentially infinite non-repeating 

decimal expansion. It is the potentiality of the example with the computer above, which is in disharmony with the 

physical world spatially-wise. 

The key question is whether one accepts or not the truth of the statement that there is some square which has an area 

equal to the area of some circle. Once one does reckon this statement to be true, one puts in jeopardy any argument on 
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the impossibility of the Quadrature. Because, a square is finite and so should a circle, or the same, 2𝜋, be, being thereby 

equally constructible as a square. And, one does have to concede to the truth of this, because take, for example, the 

numbers 𝑎𝑖 = √(3𝑖 − 1)(3𝑖 + 1) 3𝑖⁄  and the ratio of the perimeters of an equilateral triangle and of its circumcircle, 

2𝜋 3√3⁄ . It may be shown that lim
𝑖→∞

2𝜋(𝑎1
2𝑎2

2…𝑎𝑖
2… ) = 3√3, where 𝑖 = 1,2, … ,∞ (Fig. 2.1, Jean-Paul Delahaye, [51]).  

That is, the process of shrinking the circumcircle by multiplying its radius with the squares of the 𝑎’s, ends by 

producing a circumference equal to the perimeter of the equilateral triangle. The sides of two such triangles form a 

hexagon from which an equal-perimeter square may be drawn, having perimeter equal to two such circumferences. In 

sum, there does exist some square perimeter corresponding to 2𝜋. The end of the process of shrinking is a physical end, 

an end within the context of the two-dimensional space, not an end in the sphere of some abstract Platonic forms. The 

infinite in the lim above is the 𝝕 rather than the ∞. 

Γ. CONSTRUCTION OF ANGLE WITH GRADIENT EQUAL TO √𝛑 

"God the Great Geometrizes continually." Plutrch (46-119 AD attributed this belief to Plato 429?–347 BC; 

Convivialium disputationum, liber 8,2, [ 10]) 

Problem: 

Given line segment ℰ, construct with the use of a straightedge and a compass, a right triangle having ℰ as one of its 

catheti and with the angle formed by ℰ and the hypotenuse, having trigonometric tangent equal to √𝜋 so that the other 

cathetus may be squaring the circle drawn with radius equal to ℰ, (or construct another line segment having length equal 

to the product ℰ√𝜋 and being perpendicular at one of the endpoints of ℰ so that the latter may be squaring the circle of 

radius ℰ). 

Intuitive Observation:  

Drawing a circle of circumference 𝐿 = 2𝜋𝑅, (𝑅=radius), both 𝐿 and 𝑅 = 𝐿 2𝜋⁄  are according to traditional 

mathematics irrational numbers, because 𝜋 is such a number, and if in general 𝑦 is a rational number and 𝑧 is an 

irrational one, the numbers 𝑧 + 𝑦, 𝑧 − 𝑦, 𝑦 − 𝑧, 𝑧𝑦, 𝑧 𝑦⁄ , and 𝑦 𝑧⁄ , will be irrational as well. And, from our earlier 

discussion follows that the irrational numbers 𝐿 and 𝑅 should be as constructible as rational numbers are. 

Methodologically, I could take any number involving 𝜋 for granted such as line segment √𝜋, form the hypotenuse √2𝜋 

from the isosceles right triangle of side √𝜋, separate √2 from 𝜋 on the hypotenuse with a compass, and claim that the 

hypotenuse is the side 𝑥 of the square squaring the circle with radius equal to √2: 𝑥2 = 𝜋(√2)
2
⇒ 𝑥2 = 2𝜋 ⇒ 𝑥 =

√2𝜋… But, contrary to common sense [4], traditional mathematics do not allow me to consider 𝜋 to be constructible, and 

so I have to find another, indirect, implicit, way through which 𝜋 will be involved in my construction. And, this way is 

through trigonometry, because trigonometric numbers are based on radians of a rational multiple of 𝜋 in bijection with 

rational number of degrees. 

Analysis: Consider Fig. 2: 

(i) Let (𝛴𝛷 𝛺𝛴⁄ ) = tan𝛷𝛺𝛴 = √3 ⇒ 𝛴𝛷 = 𝛺𝛴√3 and hence, according to Pythagorean Theorem, 𝛺𝛷 =

√𝛴𝛷2 + 𝛺𝛴2 = √3𝛺𝛴2 + 𝛺𝛴2 = 𝛺𝛴√4 = 2𝛺𝛴. Or, if 𝛺𝛴 ≡ ℰ, then 𝛴𝛷 = ℰ√3, 𝛺𝛷 = 𝛺𝛰 = 𝛺𝛥 = 𝛺𝛧 = 𝛺𝛤 = 2ℰ 

and consequently, 𝛺𝛰′ = 𝛰𝛰′ = ℰ√2. And, since 𝛦𝛴 = 𝛺𝛴, it follows that 𝛦𝛴 = ℰ and 𝛺𝛦 = ℰ√2, concluding thus that 

line segments 𝛺𝛰′ and 𝛺𝛦 are radiuses of a circle with center at point 𝛺, (𝛺, ℰ√2), 𝛺 being also the center of the circle 

(𝛺, 2ℰ). Moreover, 𝛺𝐶 = √2(2ℰ)2 = 2ℰ√2, 𝛰𝐶 = 𝛺𝐶 − 𝛺𝛰 = 2ℰ√2 − 2ℰ = 2ℰ(√2 − 1) and 𝛦𝛰 = 𝛺𝛰 − 𝛺𝛦 =

2ℰ − ℰ√2 = ℰ√2(√2 − 1) = 𝛰𝐶 √2⁄  so that 𝛦𝛰 + 𝛰𝐶 = ℰ√2 = 𝛺𝛦. Point 𝛦 lies in the middles of 𝛺𝐶 and triangle △

𝛷𝛺𝛥 is an equilateral one. 

 (ii) Let next (𝛨𝛧 𝛺𝛨⁄ ) = tan𝛧𝛺𝛨 = √𝜋 ⇒ 𝛨𝛧 = 𝛺𝛨√𝜋 and hence, 𝛺𝛧 = √𝛨𝛧2 + 𝛺𝛨2 = √𝛺𝛨2 + 𝜋𝛺𝛨2 =

𝛺𝛴√1 + 𝜋. Or, if 𝛺𝛨 = 𝛨𝛩 ≡ 𝑅 ⇒ 𝛺𝛩 = 𝑅√2 and 𝛨𝛧 = 𝑅√𝜋, the above magnitudes become 𝛺𝛧 = 𝛺𝛷 = 𝛺𝛰 =

𝛺𝛥 = 𝛺𝛤 = 𝑅√1 + 𝜋 = 2ℰ, 𝛺𝛰′ = 𝛰𝛰′ = 𝛺𝛦 = 𝛦𝐶 = 𝑅√1 + 𝜋 √2⁄ , 𝛺𝐶 = 𝑅√2√1 + 𝜋, 𝛰𝐶 = 𝑅(√2 − 1)√1 + 𝜋, 

and 𝛦𝛰 = [𝑅(√2 − 1)√1 + 𝜋] √2⁄ . We also obtain the difference 𝛨𝛴 = ℰ − 𝑅 and 𝛸𝛲 ∥ 𝛩𝛦 = 𝛨𝛴√2 = 𝛸𝛲 and 𝛬𝛷 =

𝛩𝛦√2, where 𝛸 is the midpoint of 𝛨𝛬 while 𝛲 is the midpoint of 𝛴𝛷; 𝛨𝛬 = 𝑅√3, because of the similarity of triangles 

△𝛷𝛺𝛴 and △ 𝛬𝛺𝛨, and given that 𝛺𝛨 ≡ 𝑅. 
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         Fig. 2: Squaring the Circle 

(iii) Furthermore, let ℰ√3 = 𝛨𝛮 ∥ 𝛺𝛢 so that (𝑇𝑁 𝛨𝑇⁄ ) = tan𝑁𝐻𝑇 = √𝜋 ⇒ 𝑇𝑁 = 𝐻𝑇√𝜋 and hence, 𝐻𝑀 =

√𝐻𝑇2 + 𝜋𝐻𝑇2 = 𝐻𝑇√1 + 𝜋. Consequently, ℰ√3 = 𝐻𝑇√1 + 𝜋 ⇒ 𝐻𝑇 = ℰ√3 √1 + 𝜋⁄ = 𝑅√3 2⁄  and 𝑇𝑁 =

(𝑅√3 2⁄ )√𝜋. The quadrilateral 𝐻𝛸�̃�𝑇 is a square having side equal to 𝑅√3 2⁄ . Moreover, in Fig. 2, 𝐼�̃� = 𝐻𝛴 = ℰ − 𝑅 

while equalities 𝐻𝑋 = 𝐻𝑇 = 𝑅√3 2⁄  and 𝐻𝛩 = 𝐻𝛥 = 𝑅 imply that 𝑋𝛩 = 𝐻𝛩 − 𝐻𝑋 = 𝑅 − (𝑅√3 2⁄ ) = 𝐻𝛥 − 𝐻𝑇 =

𝑇𝛥 = 𝑃𝐸.  

(iv) Let finally, the upward extensions of 𝛺𝑍 and 𝛴𝛷 meet at point 𝐴 so that (𝛴𝐴 𝛺𝛴⁄ ) = (𝛴𝐴 ℰ⁄ ) = √𝜋 ⇒ 𝛴𝐴 = ℰ√3 

and subsequently, 𝛺𝐴 = √𝛺𝛴2 + 𝛴𝐴2 = √ℰ2 + 𝜋ℰ2 = ℰ√1 + 𝜋, obtaining also that 𝑍𝐴 = 𝛺𝐴 − 𝛺𝑍 = ℰ(√1 + 𝜋 − 2) 

and 𝛷𝐴 = ℰ(√𝜋 − √3) = 𝛴𝐴 − 𝛴𝛷. 

Conclusion: The radius of circle (𝛺, 𝛺𝐴 = ℰ√1 + 𝜋) gives through circle (𝛺, 𝛺𝑍 = 𝑅√1 + 𝜋 = 2ℰ) rise to the 

cathetus 𝐻𝑍 = 𝑅√𝜋 that squares the circle (𝛺, 𝛺𝛨 = 𝑅), which has radius the other cathetus 𝛺𝛨 = 𝑅 of the right 

triangle △𝛺𝑍𝐻; while the radius of the circle (𝐻,𝐻𝑁 = ℰ√3) gives rise to the cathetus 𝑇𝑁 = 𝐻𝑇√𝜋 that squares the 

circle (𝐻,𝐻𝑇 = 𝑅√3 2⁄ ), which has radius the other cathetus 𝐻𝑇 of the right triangle △𝐻𝑁𝑇. It follows that if one starts 

with the equilateral triangle △ 𝛷𝛺∆ in circle (𝛺, 𝑅√1 + 𝜋), obtain next 𝑇∆= 𝛲𝛦 on 𝛺∆, form afterwards square 𝐻𝛸�̃�𝑇 

from quadrilateral 𝛴𝛲𝐼𝑇, and draw finally, from point 𝐻 circle (𝐻, ℰ√3) to meet at point 𝑁 the perpendicular at point 𝑇, 

the result will be 𝑡𝑎𝑛𝑁𝐻𝑇 = √𝜋 and similar triangles △𝑁𝐻𝑇, △ 𝑍𝛺𝐻, and △ 𝐴𝛺𝛴, having solved through the latter 

triangles the stated Problem. 

Construction: 

(a) Given line segment ℰ = 𝛺𝛴, draw with center endpoint 𝛺, circle (𝛺, 2ℰ), form equilateral triangle △𝛷𝛺𝛥 in the 

northeast quadrant 𝛤𝛺𝛥, draw from 𝛷 perpendicular 𝛴𝛷 to side 𝛺𝛥, and receive the bisector 𝛺𝑂 of the right angle 

∠𝛤𝛺𝛥, where 𝑂 is the intersection point of the bisector with the circumference of circle (𝛺, 2ℰ) while the bisector cuts 

also 𝛴𝛷 at point 𝐸. {Or, given line segment ℰ = 𝛺𝛴, draw with center endpoint 𝛺, circle (𝛺, 2ℰ), inscribe the northeast 

quadrant 𝛤𝛺𝛥 inside square 𝛺𝛤𝐶𝛥, draw from the midpoint 𝐸 of the diagonal 𝛺𝐶 line perpendicular to side 𝛺𝛥 of angle 

∠𝛤𝛺𝛥, which perpendicular meets 𝛺𝛥 at point 𝛴 and cuts the circumference of circle (𝛺, 2ℰ) at point 𝛷, and form angle 

∠𝛷𝛺𝛴.} 

(b) From the middle 𝑃 of perpendicular 𝛴𝛷, receive distance equal to 𝑃𝐸 and transfer it on 𝛺𝛥 as line segment 𝑇𝛥, 

drawing next at 𝑇 perpendicular which cuts at point 𝐼 the parallel to 𝛺𝛥 drawn from 𝑃, forming this the parallelogram 

𝛴𝛲𝐼𝑇. With center 𝑀 at the midpoint of diagonal 𝑇𝑃 of 𝛴𝛲𝐼𝑇, draw on the left of 𝑇𝑃, semi-circumference of radius 

𝑇𝑃 2⁄ , draw from 𝑃 a half-line parallel to bisector 𝛺𝑂 (or to diagonal 𝛺𝐶), which half-line meets the semi-circumference 

at point 𝑋 and forms with 𝛴𝑃 angle ∠𝛴𝑃𝑋, draw afterwards from 𝑋 a parallel to 𝛴𝑃, which cuts 𝛺𝛥 at point 𝐻, and draw 

moreover a parallel to 𝛺𝛥, which cuts 𝑇𝐼 at point �̃�, receiving thus the quadrilateral 𝐻𝛸�̃�𝑇. 

(c) With center point 𝐻, draw circle (𝐻, 𝛴𝛷), which intersects the upward extension of 𝑇�̃� (or 𝑇𝐼) at point 𝑁 so that 

𝐻𝑁 = 𝛴𝛷, draw from center 𝛺 radius 𝛺𝑍 parallel to 𝐻𝑁, and finally, receive line segment 𝐻𝑍, forming the triangle △
𝑍𝛺𝐻 and subsequently, △ 𝐴𝛺𝛴, which is the sought triangle. 
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Proof (by Contradiction): 

We have to prove three things: First, that the quadrilateral 𝐻𝛸�̃�𝑇 is a square, next that 𝑡𝑎𝑛 𝑁𝐻𝑇 = √𝜋 and finally, that 

𝐻𝑍 is perpendicular at 𝐻: 

(α) Indeed, by construction, ∠𝑃𝑋�̃� = 45°, because 𝑋𝑃 ∥ 𝛺𝑂(∥ 𝛺𝛴). And, since, drawing 𝑇𝑋, triangle △ 𝑇𝑋𝑃 is 

inscribed in circle (𝑀, 𝑇𝑃 2⁄ ), ∠𝑇𝑋𝑃 = 90° and hence, ∠�̃�𝑋𝑇 = ∠𝑇𝑋𝑃 − ∠𝑃𝑋�̃� = 45°, which implies that 𝑇𝑋 is a 

diagonal of a square. 

(β1) Let next 𝑡𝑎𝑛𝑁𝐻𝑇 = 𝜓 ≠ √𝜋. By construction, 𝛴𝛷 = ℰ√3 and since, the upward extension of 𝐻𝑋 intersects 𝛺𝛷 

at point 𝛬 and cuts 𝛺𝑂(𝛺𝐶) at 𝛩, then by the similarity of triangles △𝛷𝛺𝛴 and △ 𝛬𝛺𝛨, 𝐻𝛬 = 𝛺𝛨√3 and 𝛨𝛩 =

𝛺𝛨√2. Or, if 𝛺𝛨 ≡ 𝑅, then 𝛨𝛬 = 𝑅√3, which implies that 𝐻𝑋 = 𝑅√3 2⁄ , since 𝑋𝑃 ∥ 𝛺𝑂(∥ 𝛺𝛴) and 𝛴𝑃 = ℰ√3 2⁄  by 

construction. Consequently, 𝐻𝑇 = 𝑅√3 2⁄ , because 𝐻𝛸�̃�𝑇 is a square. Therefore, if 𝜓 ≠ √𝜋, 𝑇𝑀 should be equal to 

𝜓(𝑅√3 2⁄ ). 

Consider now the left part of Fig. 3, which includes square 𝐻𝛸�̃�𝑇, triangle △𝑁𝐻𝑇, and the similar triangle △𝑁′𝐻′𝑇′, 

which obtains through the multiplication of the sides of △𝑁𝐻𝑇 by √𝜋. Let ∠𝑁𝐻′𝑇 be the angle which is equal to √𝜋, 

𝑡𝑎𝑛𝑁𝐻′𝑇 = √𝜋. We have 𝑇𝑁 = 𝜓(𝑅√3 2⁄ ), 𝑇𝐻′ = (𝑅√3 2⁄ )√𝜋, and 𝑇𝑁 = 𝑇𝐻′√𝜋; inserting the first two equalities 

in the last one yields that 𝜓(𝑅√3 2⁄ ) = [(𝑅√3 2⁄ )√𝜋]√𝜋 ⇒ 𝜓 = 𝜋, which is not true, because 𝜋 is a half-circle, and 

which moreover implies that 𝑇𝑁 = 𝜋(𝑅√3 2⁄ ), giving rise to five contradictions: 

The first is that △𝑁𝐻′𝑇 is a scaled-up by √𝜋 version of △ �̃�𝐻𝑇. How do we know that the hypotenuse of the smaller 

triangle coincides with diagonal �̃�𝐻? We know it, because, given that (𝑇𝐻′ 𝑇𝐻⁄ ) = (𝑅√3 2⁄ )√𝜋 (𝑅√3 2⁄ )⁄ = √𝜋, then 

by the similarity of the bigger with the smaller triangle, the same proportion √𝜋 should hold for the other side 𝑇𝑁 of △

𝑁𝐻′𝑇. And, given the length of 𝑇𝑁, this proportion is provided by the ratio 𝑇𝑁 𝑇�̃�⁄ . If 𝑇𝑁 = 𝜋(𝑅√3 2⁄ ) as it seems to 

obtain when 𝜓 = 𝜋, then 𝑇�̃� should be equal to (𝑅√3 2⁄ )√𝜋 to enable subsequently the derivation of (𝑇�̃� 𝑇𝐻⁄ ) = √𝜋. 

This does not contradict only that (𝑇�̃� 𝑇𝐻⁄ ) = 1 by construction; it also contradicts our assumption that 𝑡𝑎𝑛𝑁𝐻′𝑇 =

√𝜋, because ∠�̃�𝐻𝑇 = 45°. The third contradiction is that if 𝜓 = 𝜋 and 𝑇𝑁 = 𝜋(𝑅√3 2⁄ ), then 𝑇𝑁 should coincide with 

𝑇𝑁′; but, it does not. And, there is a fourth contradiction, because if they did coincide, then  𝑡𝑎𝑛𝑁𝐻′𝑇 =

𝑡𝑎𝑛𝑁′𝐻′𝑇 =√𝜋 and since, 𝑁𝐻 ∥ 𝑁′𝐻′, we would have 𝜓 = √𝜋 rather than 𝜓 = 𝜋. And, there is a fifth Figure 3: The 

Contradiction 

contradiction, because if 𝑡𝑎𝑛𝑁𝐻𝑇 = 𝜓 = 𝜋 and 𝑡𝑎𝑛�̃�𝐻𝑇 = √𝜋, the angle sum identity for 𝑡𝑎𝑛(�̃�𝐻𝑇 + 𝑁𝐻�̃�) would 

yield 𝑡𝑎𝑛𝑁𝐻�̃� = (𝜋 − √𝜋) (1 + 𝜋√𝜋)⁄ . Given now that ∠�̃�𝐻𝑇 + ∠𝑁𝐻�̃� + ∠𝑁𝐻𝐻′ = 𝜋 and that the sum (𝑡𝑎𝑛�̃�𝐻𝑇 +

𝑡𝑎𝑛𝑁𝐻�̃� + 𝑡𝑎𝑛𝑁𝐻𝐻′) is equal to the product (𝑡𝑎𝑛�̃�𝐻𝑇𝑡𝑎𝑛𝑁𝐻�̃�𝑡𝑎𝑛𝑁𝐻𝐻′), one obtains that 𝑁𝐻𝐻′ = −𝜋, which is 

false. 

Could it be at the other end that 𝑡𝑎𝑛𝑁′𝐻𝑇 = √𝜋? We understand through similar triangle △𝑁′𝐻𝑇 and △𝑁𝐻′′𝑇 that 

the answer is negative. We should have (𝑇𝑁′ 𝑇𝐻⁄ ) = √𝜋 = (𝑇𝑁 𝑇𝐻′′⁄ ) = 𝜓(𝑅√3 2⁄ ) 𝑥⁄ ⇒ 𝑥 = 𝑇𝐻′′ =
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𝜓(𝑅√3 2⁄ ) √𝜋⁄  and hence, 𝐻′′𝐻 = (𝑅√3 2⁄ ) − [𝜓(𝑅√3 2⁄ ) √𝜋⁄ ] = (𝑅√3 2⁄ )[(√𝜋 − 𝜓) √𝜋⁄ ], which given that 

(𝑇𝑁 𝑇�̃�⁄ ) = √𝜋, yields that 𝑇�̃� = 𝐻′′𝐻, contradicting that 𝑇�̃� = 𝑅√3 2⁄ , because 𝑅√3 2⁄ =

(𝑅√3 2⁄ )[(√𝜋 − 𝜓) √𝜋⁄ ] ⇒ √𝜋 = √𝜋 − 𝜓 ⇒ 𝜓 = 0. Note that the same result would obtain even if we accepted that 

√𝜋 ≠ (𝑇𝑁 𝑇�̃�⁄ ) = 𝜓 since, we should also have that (𝑇𝐻′′ 𝐻′′𝐻⁄ ) = 𝜓 as well. 

The general conclusion is that square 𝐻𝛸�̃�𝑇 along with the use of proportions do establish that 𝑡𝑎𝑛𝑁𝐻𝑇 = √𝜋 and 

consequently, that ℰ√3 is equal to the square root of the sum [(𝑅√3 2⁄ )
2
+ [(𝑅√3 2⁄ )√𝜋]

2
] from which it follows that 

𝑅√1 + 𝜋 = 2ℰ. 

(β2) But, do we really need 𝐻𝛸�̃�𝑇 to prove that 𝑡𝑎𝑛𝑁𝐻𝑇 = √𝜋? Let us disregard it for a moment, and let us 

experiment not only with a different hypotenuse or different horizontal triangle side, but by altering both of them the way 

the right-hand part of Fig. 3 illustrates. Suppose that the triangle with the “real √𝜋” is △𝑁𝑉𝑈 rather than △ 𝑁𝐻𝑇, with 

𝑡𝑎𝑛𝑁𝑉𝑈 = 𝑡𝑎𝑛𝑉𝐿𝐷 = √𝜋, 𝑉𝑈 = 𝑅√3 2⁄  − because this is the length we should have according to the Analysis in order 

to have √𝜋, too − and 𝑁𝑉 = 𝑁𝐻 = ℰ√3 on 𝑁𝐿 = ℰ√3√𝜋 so that 𝐿𝑇 is some multiple 𝜆 of 𝑅√3 2⁄ = 𝐷𝑇 = 𝑉𝑈.  

From the differences 𝐿𝐷 = 𝐿𝑇 − 𝐻𝑇 = 𝐿𝑇 − 𝑉𝑈 = (𝑅√3 2⁄ )(𝜆 − 1) and 𝐿𝑉 = 𝐿𝑁 − 𝑉𝑁 = ℰ√3(√𝜋 − 1), and from 

the similarity of triangles △ 𝑉𝐿𝐷 and △𝑁𝐿𝑇, we obtain the proportions: 

ℰ√3√𝜋

𝜆(𝑅√3 2⁄ )
=

ℰ√3(√𝜋 − 1)

(𝑅√3 2⁄ )(𝜆 − 1)
 

from which it follows that: 

√3√𝜋

𝜆
=
√𝜋 − 1

𝜆 − 1
⇒ 𝜆2(2√𝜋 − 1) − 𝜆2𝜋 + 𝜋 = 0 

which equation in 𝜆 yields the solutions 𝜆 = √𝜋 and 𝜆 = √𝜋 (2√𝜋 − 1)⁄ . The latter solution is rejected because it 

implies that 𝐿𝑇 = (𝑅√3 2⁄ )[√𝜋 (2√𝜋 − 1)⁄ ] and hence, that 𝐿𝐷 = 𝐿𝑇 − 𝐷𝑇 = (𝑅√3 2⁄ ){[√𝜋 (2√𝜋 − 1)⁄ ] − 1}, with 

the right-hand side becoming −(𝑅√3 2⁄ )[(1 + √𝜋) (2√𝜋 − 1)⁄ ] < 0. Consequently, multiple 𝜆 = √𝜋 reflects the angle 

∠𝑁𝑉𝑈 = ∠𝑉𝐿𝐷, the tangent of which has been assumed to be √𝜋. It follows that 𝑈𝑁 = (𝑅√3 2⁄ )√𝜋 given that 𝑉𝑈 =

𝑅√3 2⁄ , and therefore, 𝑇𝑁 = (𝑅√3 2⁄ )𝜋, which if rewritten as 𝑇𝑁 = [(𝑅√3 2⁄ )√𝜋]√𝜋, is consistent with 𝑡𝑎𝑛𝑁𝐻𝑇 =

√𝜋 and 𝐻𝑇 = 𝑅√3 2⁄ , contrary to what we have assumed. 

But, more important is the observation that if 𝑇𝑁 = [(𝑅√3 2⁄ )√𝜋]√𝜋, triangle △𝑁𝐿𝑇 should be the multiple √𝜋 of 

the sides of another triangle, similar to △𝑁𝐿𝑇, with sides equal to 𝑅√3 2⁄  and (𝑅√3 2⁄ )√𝜋, and a hypotenuse ℰ√3, 

having the angle facing the side equal to (𝑅√3 2⁄ )√𝜋, tangent equal to  √𝜋. This is a quite interesting result, because it 

suggests that even if the Construction was wrong, it would lead to the correction of the error by simply drawing a parallel 

to 𝑁𝐿 so that √𝜋 may be obtained. 

(γ) We must finally show that 𝐻𝑍 is perpendicular at 𝐻 on 𝛺𝛥. If it was at 𝐻 ≠ 𝐻, then 𝑡𝑎𝑛𝑁𝐻𝑇 = √𝜋, which 

contradicts that 𝑡𝑎𝑛𝑁𝐻𝑇 = √𝜋 unless 𝐻 and 𝐻 coincide. Also, if the upward extension of 𝐻𝑋 did not intersect the 

circumference of circle (𝛺, 2ℰ) at 𝑍 but at 𝑍, we should have 𝑡𝑎𝑛𝑍𝛺𝛨 = √𝜋 and hence, 𝑍 and 𝑍 should coincide, given 

moreover that by construction, 𝛺𝑍 ∥ 𝐻𝑁: The parallels ensure the verticality. If not anything else, 𝐻𝑍 = √𝛺𝑍2 − 𝛺𝐻2, 

which is equal to the square root of [(𝑅√1 + 𝜋)
2
− 𝑅2], implying that 𝐻𝑍 = 𝑅√𝜋, which is true and therefore, 𝐻𝑍 ⊥

𝛺𝛥. It follows that the sought triangle is △ 𝑍𝛺𝛨, with its hypotenuse 𝛺𝑍 being the side of the square squaring the circle 

with radius equal to side 𝛺𝐻…Quod Erat Demonstrandum… 

Δ. ON CONSTRUCTIBILITY 

“There is more danger of numerical sequences continued indefinitely than of trees growing up to heaven. Each 

will some time reach its greatest height.” Friedrich Ludwig Gottlob Frege (1848-1925, [22, p. 204]) 

Is there any irrational number that cannot be constructed? In so far as space is concerned, the answer is negative, 

because tangent runs from zero to infinity while secant runs from one to infinity: All irrational numbers are there; even 

infinity by itself is there. Infinity, the cosmos, is constructible, and this is why it has to be the actual, the proper infinity. 
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We have one more proof that spatial infinity has to be the actual one. Spatially-wise, there is no such thing as 

irrationality, because simply a never ending non-repeating decimal part of a decimal number could not be constructible: 

When and where our line segment would end? Irrationality should be attributed to computation inadequacies and/or non-

spatial considerations like time as a physical phenomenon. The difficulty of constructing irrationals lies in the difficulty 

of determining which exactly rationals give rise to them. This is the reason in the first place the Quadrature above has 

been so cumbersome. 

One might object to the constructibility of numbers like √2 or 𝜋 [20, 21]. Consider, for instance, √2, which had 

prompted much skepticism on the part of Pythagoreans. If its construction was not possible as a hypotenuse of an 

isosceles right triangle of unit legs, triangle inscribable into semi-circumference, the proposition that an angle inscribed 

in a semicircle is a right angle, would not hold. This proposition and hence, the axiom of parallel lines would be violated. 

It would be impossible to construct the unit per se as the hypotenuse of another isosceles right triangle of legs equal to 

1 √2⁄ . And, the construction of this leg-side in turn, as the hypotenuse of still another isosceles right triangle of legs 

equal to 1 √4⁄ , and so on, since none of these sides-hypotenuses could constitute circle diameter.  

What would ensure that such triangles are right triangles once the axiom of parallel lines is rejected? One might 

replace this axiom by setting some magnitude equal to the unit and prompting subsequently the emergence of number 

√2, too. But, how, construction-wise, if one did not also postulate some axiom analogous to that of parallel lines? The 

fact, yes fact, that √2 is constructible, that it has a beginning and an end, stems if not anything else from the fact also that 

constructible are numbers greater that √2 = 1.41421…, numbers like 1.5. As soon as √2 < 1.5, if their construction 

started from a single point, the construction representing √2 should have an end before the end of the construction 

representing 1.5. And, hence, the number of the decimal digits capturing √2 should have an end as well, even if the 

axiom of parallel lines was disregarded, and we defined instead some magnitude to be our unit. After all, the notion of 

Dedekind cut per se relies on general number constructibility: Cut of the real line in two distinct half-lines. If it were not 

so, where would the cut capturing an irrational number be placed? Unless irrationality captures the cut per se, the abrupt 

disruption of continuity when time is introduced in the discussion.    

But, in so far as space alone is concerned, we have to distinguish between infinite but countable decimal digits and 

infinite uncountable digits accompanying the integer of a decimal number. Toward this end, consider the sequence of 

sides-hypotenuses, 1 √2⁄ , 1 √2⁄ √2,…, 1 √2
𝜅

⁄ , where 𝜅 is an integer. This sequence tends to zero. How could one start 

constructing the unit out of zero? The key to the answer is the word “tends”; zero should be out of reach, never reached, 

because only then, out of something, not out of nothing, one might start constructing the unit. Decimal digits keep 

coming one after the other, impossible practically to calculate their number, but they have to stop at the gate of zero. 

Otherwise, the unit would not be constructible. 

Or, consider the example of the number 𝜋. The infinite division of polygon sides must have an end if the points 

comprising a circle circumference and not thin air, a complete vacuum, is to be produced. Consequently, the decimal 

digits of 𝜋 must have an end. In general, given constructability per se, and the constructibility of a number greater than 

another number with infinite decimal digits, it follows logically that the latter number should be constructible as well. 

Decimal digits must have an end; they are infinite but countably so. The ad infinitum counting must come to a halt to 

allow the construction of a number which is smaller than a greater known to be constructible number. All numbers with 

infinite decimals are countably infinite, because there is always a greater number known to be constructible. There are no 

uncountably infinite decimals. 

What we have, in other words, is infinity in the Aristotelian sense of actual as opposed to potential infinity. Any in 

general irrational number is one with an actualization in nature and hence, with a number of decimal digits in line with 

the Aristotelian notion of actual infinity; with decimals that sooner or later become repeating. It all comes down to the 

fifth axiom of Euclid: “That, if a straight line falling on two straight lines make the interior angles on the same side less 

than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than 

the two right angles.” The first four are: “Let the following be postulated'”: 1. ”To draw a straight line from any point to 

any point.” 2.”To produce [extend] a finite straight line continuously in a straight line.” 3.”To describe a circle with 

any centre and distance [radius].” 4.”That all right angles are equal to one another.” [13, 30, 31] 
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Consider Fig. 4. If the two lines 𝜖 and 𝜂 could not meet at point 𝛢, no circle (𝑂, 𝑂𝐴 = 𝑂𝐵) could be drawn, because no 

line 𝛢𝛤 could be drawn too, in violation of axiom 3, which refers to any circle of any radius. As a matter of fact, no circle 

at all could be drawn, because one must always be able to draw from a point like 𝐴 a line like 𝜖, intersecting a radius like 

𝑂𝐵. But, also, axiom 4 would be violated, because angles 𝑎 and 𝑏 would have to be right angles, and 𝑎 ≠ 𝑏. Axiom 5 

follows from and completes axioms 3 and 4 in fully describing the plane, the two-dimensional space, following axioms 1 

and 2, which fully describe the one-dimensional space. More precisely, axiom 5 ensures continuity in the two-

dimensional space the same way axiom 2 ensures continuity in the one-dimensional space. If lines like 𝜖 could not meet 

the horizontal axis, no circle at all could be drawn; there would be no two-dimensional space, contrary to what axioms 3 

and 4 postulate.  

 

 

 

Fig. 4: The Euclidean Axiom 

This is the reason Euclid formulated axiom 5 the way he did and not as a Playfair or other similar axiom; the wording 

was chosen carefully in serving the purpose of this axiom. But, axiom 5 does much more than completely defining along 

with axioms 3 and 4 the plane. It puts an end to infinity: this “produced indefinitely” has an end, be it one next to the 

origin of axes, 𝑂, or to zillions miles away from it, the end being point 𝐴, the intersection point, because intersection 

takes place in the infinity, after indefinite extension of 𝜖 and 𝜂. If space ended before the intersection, neither axiom 4 

nor axiom 5 would hold; and if space ended after 𝐴, the extension of  𝜖 and 𝜂 would have not been indefinite, because 

intersection at 𝐴 occurs after such an extension. 

The finiteness of the infinity is in the core of geometry, and this is the reason it underlines non-Euclidean geometries as 

well. These geometries replace the John Playfair (1748-1819)-axiom side of axiom 5, but retain the actual infinity side, 

and this is the reason they continue being geometries, i.e. studies of space, each viewing it analytically from its own 

standpoint given that space in reality is only one. Any other axiomatic theoretical construction dismissing axiom 5 

altogether, simply is not geometry. When Aristotle (384-322 B.C. [3, ch. 6]) said: “For generally the infinite has this 

mode of existence: one thing is always being taken after another, and each thing that is taken is always finite, but always 

different”, he said it literally: He did not say that the cosmos is limitless but that the limits are in continuous change, and 

trying to catch up with them is futile. This position is very important analytically, because it implies that statically 

viewed, the cosmos is susceptible to scientific inquiry including the dynamics inside its borders... 
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