[2] **viXra:1307.0109 [pdf]**
*submitted on 2013-07-23 02:28:17*

**Authors:** Khrapko R

**Comments:** 9 Pages. Theoretical and Mathematical Physics Volume 65, Issue 3, December 1985 p. 1196

Various path-dependent functions are described in a uniform manner by means of a series expansion of Taylor type. For this, "path integrals" and "path tensors" are introduced. They are systems of multicomponent quantities whose values are defined for an arbitrary path in a coordinated region of space in such a way that they carry sufficient information about the shape of the path. These constructions are regarded as elementary path-dependent functions and are used instead Of the power monomials of an ordinary Taylor series. The coefficients of such expansions are interpreted as partial derivatives, which depend on the order of differentiation, or as nonstandard covariant derivatives, called two-point derivatives. Examples of path-dependent functions are given. We consider the curvature tensor of a space whose geometrical properties are specified by a translator of parallel transport of general type (nontransitive). A covariant operation leading to "extension" of tensor fields is described

**Category:** Geometry

[1] **viXra:1307.0066 [pdf]**
*replaced on 2013-07-31 10:30:23*

**Authors:** Florentin Smarandache

**Comments:** 10 Pages.

Acest articol este o scurtă trecere în revistă a cărţii “SuperMatematica. Fundamente”, Vol. 1 şi Vol. 2, ediţia a II-a, 2012, care constituie un domeniu nou de cercetare şi cu multe aplicaţii, iniţiat de profesorul universitar Mircea Eugen Şelariu. Lucrarea sa este unică în literatura mondială, deoarece combină matematica centrică cu matematica excentrică.

**Category:** Geometry