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ABSTRACT

The Collatz Conjecture is a math puzzle that has stumped experts and beginners for a long time. At
first glance, it seems simple, but looks can be deceiving. It has become one of the most famous
unsolved problems in math. One of the biggest challenges is that there’s nothing quite like it in terms
of comparison. This makes it hard for many to figure out where to start when trying to analyze and
explore the conjecture. However, in my journey to understand this puzzle, I’ve found two exciting
links: one connects the Collatz orbits for odd numbers with a certain type of triangle called a Primitive
Pythagorean Triple, and the other ties it to another famous number called the golden ratio. On the
way to explain these connections, we develop a framework for treating the Collatz Function as a
process that maps integers into a space similar to computer RAM (Randomly Accessible Memory).
Each orbit can be represented as a unique location in "Collatz Memory" which is specified by a tuple
of three numbers: the stopping time, the page, and the offset into the page. This gives us a new way
to investigate the inner structure of Collatz Orbits.

NOTE: Please excuses some of the formatting issues and lack of rigorous proofs. This paper is meant more so to
share these ideas in a relatively structured form.
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1 Introduction

f(n) =

{
n
2 if n is even
3n+ 1 if n is odd

(1)

The Collatz Conjecture, often dubbed the “3n + 1 conjecture”, stands as one of the most notorious unsolved problems
in the realm of mathematics. Originating from the musings of Lothar Collatz in 1937, this seemingly simple problem
has defied solutions and resisted all attempts at a rigorous proof, all the while captivating the imaginations of amateur
and professional mathematicians alike.

The conjecture begins with any positive integer n. If n is even, it is halved (n/2), and if odd, it is multiplied by three
and incremented by one (3n+1). This process is repeated, with each outcome serving as the input for the next iteration.
The conjecture posits that regardless of the starting integer, the sequence will invariably arrive at the number 1, after
which it will enter a perpetual loop of 4 → 2 → 1.

My goal in writing this paper is not to prove the conjecture, but to start building a framework in which we can map the
behaviour of Collatz orbits into some known areas of study. In fact, in most parts of this paper I’ll be assuming the
conjecture is indeed true. My thinking is perhaps we can make connections to other areas of mathematics in which we
might find clues to the reasons as to why it’s true. The areas we’ll be exploring are

• Architecture of Random Access Memory
• Diophantine Equations
• Algebraic Geometry
• Pythagorean Triples
• Harmonic Analysis
• Primes and Permutations

1.1 Outline of Concepts

1. Establish common definitions for well known and lesser known concepts.
2. Understand how we can view the Collatz Function as a mapping from integers into a "Memory Space" similar

to what you would find by looking at modern computer architecture.
3. Understand how we can project this Memory Space as lines on the 2D plane.
4. Investigate how we can relate Stopping Times to solutions to Diophantine Equations
5. Investigate how we can map each orbit to an equation of a circles that appears in Memory Space.
6. Show how each circle equation can be associated with a Pythagorean Triple.
7. Show how the circle with the smallest circumference can be associated with the Golden Ratio and possibly

Penrose Tilings.
8. Speculate on how we might use the ideas from this paper combined with with tools from harmonic analysis

and group theory to study the distribution of the primes.
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2 Common Definitions

Before we jump into the connections mentioned in the introduction, we will need to define some terms. If you are
familiar with the Collatz Conjecture, you might already know these terms. Even so, revisiting them for a refresher
might be beneficial.

Orbitn (orbitn) - The sequence of numbers you get when you follow the Collatz rules from a starting number n until
you reach the number 1.

Total Stopping Timen (Tstopn) - The number of steps or moves needed to get to the number 1 when following the
Collatz rules from a starting number n.

Stopping Timen (stopn) - The number of steps or moves needed to arrive at a number lower than your initial starting
number n when following the Collatz rules.

3 Lesser-Discussed Definitions Explored

The definitions below cover ideas that seem less explored. I’ve found few formal discussions about them outside of my
own research. I will mention the definitions here and expand upon them further when needed. These are not the only
new concepts I will present, but these serve as a good stepping off point.

Stopping Classk (Sclassk) - This term gives us a way to represent stopping times as an object with properties. This
will be useful when we want to compare general invariants of stopping behavior. Stopping Classk contains all numbers
Stopping Time = k

Stopping Orbitn (Sorbitn) - The sequence of numbers you get when you follow the Collatz rules from a starting
number n until you reach a number less than n.

Collatz Memory (Smem) - Collatz Memory is analogous to random access memory in a computer. Through the
Collatz Function, a positive integer can be mapped to a specific location in Collatz Memory. Interestingly, we can
represent this memory as points on a 2D plane. Techincally you can think of Collatz Memory as being similar to R2.

Stopping Destinationn (Sdestn) - The first number we reach in the sequence that is lower than our starting number n.

Stopping Pointn (Spointn) - If a Collatz Orbit has a stopping time, then it also has a stopping point. A stopping point
for a number n is defined as a point (x, y) with the following properties:

x = Sdestn - n
y = Sdestn

The idea of establishing a point to represent the stopping behavior of an orbit is that we can now start to talk about
Collatz orbits in terms of their geometry, which will become important later.

Stopping Modulusk (Smodk) - As we will see, Collatz Stopping Times have some interesting internal structure
that works similar to modular arithmetic. Each Stopping Time k has a maximum number of "offsets" that can be
occupied (similar to a modulus). We call this maximum number of offsets the StoppingModulusk where k is the
Stopping Time. A Stopping Modulus is similar to WORD "size" when dealing with computer memory. Modern
desktop computers have a WORD size of 64-bits. As we’ll see later, each Stopping Time has a property that serves a
similar purpose.

Stopping Pagen (Spagen) - A Stopping Page is analogous to a page of memory in a modern computer. As we’ll see,
we can think of each positive integer as an argument that gets mapped to a point in the 2D plane. Points that have the
same Stopping Pagen tend to be located roughly in the same geometric area of memory.

Stopping Offsetn (Soffsetn) - A Stopping Offset is analogous to a memory offset. Essentially this is the distance
from the lower Stopping Page boundary.

Stopping Signaturen (Ssign) - It is believed that every natural number n (excluding 1) has a finite Stopping Timen.
Many numbers n may share the same Stopping Time as well as the same Stopping Page, therefore I have created a
term called Stopping Signaturen that allows us to uniquely identify an orbit by it’s location in Collatz Memory.The
Stopping Signaturen of an orbit can be uniquely defined by a tuple of three positive integral numbers. These properties
are (StoppingTimen,StoppingPagen,StoppingOffsetn).

(stopn,Spagen,Soffsetn)
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4 Building a Geometric Intuition

In this section we will build methods to speak about Collatz orbits in terms of their geometric properties. We can do this
by investigation of the stopping point Spointn of each orbit that begins with a given number n. We will focus on the
Stopping Classes of odd numbers ≥ 3. Below is table showing the stopping times for the first 16 odd numbers ≥ 3.

n Spointn stopn

3 (-1, 2) 6
5 (-1, 4) 3
7 (-2, 5) 11
9 (-2, 7) 3
11 (-1, 10) 8
13 (-3, 10) 3
15 (-5, 10) 11
17 (-4, 13) 3
19 (-8, 11) 6
21 (-5, 16) 3
23 (-3, 20) 8
25 (-6, 19) 3
27 (-4, 23) 96
29 (-7, 22) 3
31 (-8, 23) 91
33 (-8, 25) 3

Table 1: Stopping locations and stopping times for first 16 odd numbers ≥ 3

Now it’s fair to ask how we determine Spointn. We find this point by iteratively applying the Collatz Function.

1. Calculate the Stopping Orbitn for n by applying the Collatz Function until you reach a number < n. We call
this number the Stopping Destination of n

2. Using the Stopping Destination, compute the Stopping Pointn

The Stopping Destinationn is essentially the end state of applying the Collatz Function for a given positive starting
integer n. To make this concrete, let’s walk through an example using n = 19. You can then apply this to any number
n to compute Spointn.

Sorbit19 = [ 58 29 88 44 22 11 ]

Sdest19 = 11

Spoint19 = (Sdest19 − 19,Sdest19) = (11− 19, 11) = (−8, 11)

The following page shows a plot of the numbers in Table 1.
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4.1 Plot for odd numbers less than or equal to 33

Figure 1: Plot of Spointn for odd numbers ≤ 33.

At first it doesn’t seem that the points Spointn have any type of obvious pattern to them. However, if we we look at
Spointn for a single stopping time k, we do see some linearity to the points. Let’s take the first 8 odd numbers where
stopn = 3, the lowest possible stopping time for odd numbers.
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4.2 Data for Orbits with Stopping Time 3

n Spointn stopn

5 (-1, 4) 3
9 (-2, 7) 3
13 (-3, 10) 3
17 (-4, 13) 3
21 (-5, 16) 3
25 (-6, 19) 3
29 (-7, 22) 3
33 (-8, 25) 3

Table 2: Numbers where stopn = 3

Figure 2: First 8 numbers where stopn = 3. Points are so-
lutions to the equation 3x+ y − 1 = 0 with the restriction
x < 0, y > 0, and |x|+ |y| = n.

We can in fact see that all of these points lie on the on the same line at locations where the coordinates are integers and
satisfy the equation 3x+ y − 1 = 0 x < 0, y > 0, and |x|+ |y| = n. This is an interesting result! This may be a clue
that ties each Stopping Classn to integer solutions of linear Diophantine equations.

Great! We’re starting to see some patterns here! Let’s see if these patterns continue to hold for other values of stopn.
Below are the first 8 numbers for stopn = 6, the next highest allowable stopping time.
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4.3 Data for Orbits with Stopping Time 6

n Spointn stopn

3 (-1, 2) 6
19 (-8, 11) 6
35 (-15, 20) 6
51 (-22, 29) 6
67 (-29, 38) 6
83 (-36, 47) 6
99 (-43, 56) 6

115 (-50, 65) 6

Table 3: Numbers where stopn = 6

Figure 3: First 8 numbers where stopn = 6 . Points are
solutions to the equation 9x+ 7y − 5 = 0 with the restric-
tions x < 0 and y > 0

These points seem to lie on a line as well, this time with slope - 97 . And the points seem to be the integer solutions to
9x+ 7y − 5 = 0 with the restrictions x < 0 and y > 0.
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4.4 Data for Orbits with Stopping Time 8

Let’s take a look at one more example where stopn = 8. This example will serve to motivate our definition of a
Stopping Modulus and a Stopping Signature. Below are the first 8 numbers where stopn = 8.

n Spointn stopn

11 (-1, 10) 8
23 (-3, 20) 8
43 (-6, 37) 8
55 (-8, 47) 8
75 (-11, 64) 8
87 (-13, 74) 8

107 (-16, 91) 8
119 (-18, 101) 8

Table 4: Numbers where stopn = 8

Figure 4: First 8 numbers where stopn = 8.

The points on the graph do appear to fall on the same line, but they actually lie on two separate lines. They also
don’t seem to be evenly spread out. The points tend to "clump" in groups of 2. This is where our definition of
Stopping Modulusk becomes useful. When k = 8, we say Stopping Modulus8 = 2. This is equivalent to stating
Stopping Class8 has Stopping Modulus 2.

Now we can further classify numbers that belong to Stopping Class8 by referencing them by their unique
Stopping Signatures.

n Spointn stopn Spagen Soffsetn Ssign

11 (-1, 10) 8 0 0 (8, 0, 0)
23 (-3, 20) 8 0 1 (8, 0, 1 )
43 (-6, 37) 8 1 0 (8, 1, 0)
55 (-8, 47) 8 1 1 (8, 1, 1)
75 (-11, 64) 8 2 0 (8, 2, 0)
87 (-13, 74) 8 2 1 (8, 2, 1)

107 (-16, 91) 8 3 0 (8, 3, 0)
119 (-18, 101) 8 3 1 (8, 3, 1)

Table 5: Demonstrations of Stopping Signatures8

The Stopping Points of Stopping Class8 actually lie on two separate lines that share the same slope of - 275 :

• 27x+ 5y − 23 = 0 with restrictions x < 0, y > 0, and |x|+ |y| = n when Soffsetn = 0
• 27x+ 5y − 19 = 0 with restrictions x < 0, y > 0, and |x|+ |y| = n when Soffsetn = 1

We’ve now seen how we can map each orbit to a point on a 2D plane (it’s Stopping Point), creating a geometry that we
can study. The addressing of this space resembles the modern day architecture of randomly accessible memory. I call
this the Collatz Memory space.

We’ve also seen how we can start to identify properties of Stopping Classes. In the next section, we’ll get a better sense
of how the properties of Stopping Classes relate to each other by exploring how they map into the Collatz Memory
Space.
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5 Exploring The Collatz Memory Space

We’ve already seen how we can map positive integers n ≥ 3 from Stopping Classk to Stopping Points which
are located on the 2D plane. One valid question we might ask is "Does every positive integer get mapped into
Collatz Memory? I’ve written python code that tests the first 1,000,000 odd numbers n > 1, and every number does
map to a unique Stopping Point.

Every even number also maps to a Stopping Point. Since every integer has Stopping Time = 1, then the following
holds true for all even numbers.

Lemma 1. For all even numbers, StoppingPointn = (−n
2 ,

n
2 )

Moreso, if the Collatz Conjecture is true, I assume the following to be true.

Conjecture 1. Every number n > 1 maps to a unique StoppingPoint

5.1 Infinite Stopping Classes

In section 4 we explored three StoppingClasses: 3, 6, and 8. One might ask the question "How many unique
StoppingClasses exist?" Since there seem to be an infinite amount of StoppingTimes, this leads to my next set
of conjectures. I’m not sure if they are obvious, which is why they’re left as conjectures.
Conjecture 2. There are an infinite number of unique StoppingClasses.

Conjecture 3. StoppingClass1, StoppingClass3, and StoppingClass6 are the only StoppingClasses with
StoppingModulus = 1

Conjecture 4. For every k ≥ 8, StoppingClassk has a unique StoppingModulus ≥ 2.

Conjecture 5. For every j ≥ 8, if k > j then StoppingModulusk > StoppingModulusj .

5.2 Parameterizing Stopping Classes

Empirical evidence seems to indicate that for all positive integers j > 1 having StoppingTimek, all StoppingPoints
in StoppingClassk fall on lines that have the same slope. Below you’ll find a table of information on the first 10
Stopping Classes, including the slopes of the lines passing through all points in StoppingClassk

stopk Smodk Slope

1 1 -1

3 1 -3

6 1 − 9
7

8 2 − 27
5

11 3 − 81
47

13 7 − 243
13

16 12 − 729
295

19 30 − 2187
1909

21 85 − 6561
1631

Table 6: Slopes of lines passing through StoppingPoints belonging to StoppingClassk
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There are few a interesting observations to point out from this table.

1. The stopk column is a well known sequence: A122437. Sticking with our RAM architecture analogy, it
would seem that stopping tim

2. The Smodk column is also a well known sequence: A100982.
3. The numbers appearing in the slope column are a combination of well known sequences.

• The numerators are simply powers of 3 A000244.
• The denominators seem to be the difference between and the next larger or equal power of 3n and 2. from

this series A063003
• All terms in the sequence appear to be negative.

It is pretty well known that the sequences in items 1 and 2 are related to the Collatz Conjecture. However, I have not
come across any literature stating direct connections between the sequence appearing in item 3. This seems to imply
there is some relationship connecting Stopping Classes and the gaps between the powers of 2 and 3 to the Collatz
Conjecutre.

It’s fairly obvious to see how powers of 2 effect the Collatz Conjecture. When a power of two turns up within an orbit,
the orbit falls directly to 1 in log2(n) steps. But powers of 3 show no obvious pattern as far as I’ve explored.

5.3 Descretizing The Slope

Table 6 shows the sequence made from the slopes for the first 10 StoppingClasses. There are well known formulas
for the two sequences, but none that are precise. To avoid any heuristic arguments, we want to avoid having to use
any rounding functions like floor(n) or ceil(n). It turns out, there is a way to compute this sequence discretely in the
following manner.

1. Let l = the number of digits in the base 2 representation of 3n.
2. Then an = 3n − 2l

Remarkably, this generates the sequence of denominators of the slopes. It’s a clue that there may be a deep connection
between the geometry described by StoppingPoints. This could perhaps open the Collatz Conjecture up to being
studied by the beautiful field of algebraic geometry.

In the next section, we’ll explore the upper and lower bounds of this slopes of lines through Stopping Classes
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5.4 Finding an Upper Bound for the value of slopes representing Stopping Classes

According to Lemma 1, we can pretty easily see that all stopping points for even numbers must fall on the line y = −x.
In the figure below, you’ll see the Stopping Points for 2, 4, 6, 8, and 10, and the line y = -x.

Figure 5: Stopping Points for 2, 4, 6, 8, and 10
.

In fact, the slope of the line intersecting the Stopping Points of even numbers must have the maximum slope
allowed for any line representing StoppingClassk. Remember, these points are found by computing the
StoppingDestinationn if it exists, which must be lower than n by definition. The only way to reach a num-
ber lower than n (as per the rules of the Collatz Function), is to divide by two. Since you can only divide by two when
you encounter an even number, this means StoppingDestinationn can only be reached after a "divide by two"
operation. This leads to the following observation:

Lemma 2. The maximum slope for a line representing StoppingClassk is -1 and belongs to the line passing through
the Stopping Points of the even numbers.
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5.5 Finding a Lower Bound for the value of slopes representing Stopping Classes

As n increases, intuitively you can think of the the lines as both getting steeper (having a higher negative magnitude
value for slope) and moving higher up the y-axis (increasing the value of the y intercept). It’s almost like there’s a
translation of slide + rotate occurring. See Figure 6 for the first 3 Stopping Point Lines.

Figure 6: Plot of first 3 StoppingPoints
lines.

If Conjecture 2 turns out to be true and there are indeed an infinite number of Stopping Classes, then it may follow
that there are an infinite number of lines that describe their Stopping Points! As n grows, we should expect these lines
to have decreasing slopes, but higher y-intercepts. As n increases, we’re getting closer and closer to mapping y = −x
onto x = 0 via a rotation about the origin. Perhaps we can employ some tools from calculus or topology to make some
definitive statements about the convergence of these two lines.

In the next section we will turn to investigating the Stopping Points and see an interesting way we can map each
number n to a unique circle on the 2D plane. This is where an unlikely number shows up - the Golden Ratio.
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6 Mapping Orbits to Circles

Table 1 shows StoppingPoints of first 16 odd numbers ≥ n. I found an interesting property that seems to hold
for all StoppingPointn where n ≥ 3. These points all appear to lie on their own unique circles located in
Stopping Memory.

Each circle StoppingCirclen seems to have the following properties.

1. It is centered at point (x,y) where |x|+ |y| = n
2

2. It intersects 4 other points.
(0, 0)

(SpointXn, SpointYn)

(0, SpointYn)

(SpointXn, 0)

3. If you order the sequence of y-intercepts of StoppingClassn by n, you seem to get this sequence: A122437,
which is the sequence built from following the trajectory of 2n+ 1 in the 3n+ 1 problem.

4. The radius of each circle where n is odd seems to be directly related to the hypotenuse of primitive triangles.
A008846. For StoppingCirclen with radius r, it appears that there is a corresponding primitive Pythagorean
triple a2 + b2 = c2 where r2 = c. See the table below for the first 8.

n r2 Index In Ordered List a b c

3 5
4 1 3 4 5

5 17
4 3 8 15 17

7 29
4 5 20 21 29

9 53
4 9 28 45 53

11 101
4 19 20 99 101

13 109
4 20 60 91 109

15 125
4 23 44 117 125

17 185
4 26 57 176 185

Table 7: Slopes of lines passing through StoppingPoints belonging to StoppingClass3
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5. The circles existing in StoppingClassk seem to have a strong relationship amongst each other. To illustrate,
see figure 7 which shows the first 8 circles in StoppingClass3.

Figure 7: Equations of the first 8 Stopping Circles of Stopping Class3 listed in table 8.

n Equation

5 (x+ .5)2 + (y − 2)2 = 4.25

9 (x+ 1)2 + (y − 3.5)2 = 13.25

13 (x+ 1.5)2 + (y − 5)2 = 27.25

17 (x+ 2)2 + (y − 6.5)2 = 46.25

21 (x+ 2.5)2 + (y − 8)2 = 70.25

25 (x+ 3)2 + (y − 9.5)2 = 99.25

29 (x+ 3.5)2 + (y − 11)2 = 133.25

33 (x+ 5)2 + (y − 12.5)2 = 172.25

Table 8: Equations of the circles in figure 7

14



The Geometric Collatz Correspondence

6. If you parameterize the x coordinate of StoppingCircle3, which is the smallest StoppingCircle and first
odd prime value with a Stopping Time, you end up with the equation:

x = −.5 +

√
5

4
× cos(θ)

Figure 8: Parameterization of Stopping Circle3 listed in table 8.

There are a few remarkable facts about this function related to the Golden Ratio ϕ ≈ 1.618... .
(a) The amplitude of the sin wave produce by this function is equal to (2× ϕ)− 1

(b) The sin wave produced by this function oscillates between between a maximum value of ϕ − 1 and a
minimum value of −ϕ.

This is such a beautiful connection between two of the most popularly known transcendental numbers. This
link seems like it would be a very good explanation for some of the behaviors we see in the Collatz Function. I
have my suspicions that we may be able to connect the Collatz Function to Penrose Tilings. Collatz Orbits
seem to traverse the 2D plane without repeating, similarly to the way Penrose Tilings cover the plane without
repeating any patterns.

Figure 9: Example of the pentagonal Penrose tiling (P1)
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7 Conclusion and Follow Up Questions / Topics

In this paper I’ve tried to show how we might be able to examine the Collatz Conjecture from a geometric perspective.
Though most of the ideas in this paper aren’t proven, I’ve empirically tested them up to the first 1 million integers.
I can’t help but think all of the pieces to either prove or disprove the Collatz Conjectre (and maybe even others) are
related to the geometry described by the constructions laid out in this paper. In closing, I will pose a series of speculative
questions about some of the ideas I’ve presented. I look forward to diving into these ideas further!

1. Could we better describe Collatz Memory and the relationship between Stopping Points if we use the com-
plex plane rather than a Cartesian plane? The slide and rotation action we see in the slops of Stopping Lines
makes me think this could be modeled better by complex numbers.

2. Each StoppingPointn appears at a single location in Collatz Memory. This memory space seems to be
addressed almost exactly like memory in the RAM of modern computers. Could we apply the patterns we see
in Collatz to lay out programs more efficiently in memory in an effort to avoid fragmentation?

3. As n increases, the slopes of StoppingLines3 seem to go off to negative infinity. However, they do so in a
pattern intricately described by the Collatz orbits of the integers. Could we use tools from Calculus to study
the behavior we see here?

4. Could the connection between ϕ and StoppingCircle3 indicate there is some kind of relation to the harmonic
series, but closely related to ϕ? The Fibonacci sequence comes to mind.

5. I find the connection to solutions of linear Diophantine equations to be incredibly interesting. Are there tools
from group theory that we can use to study the symmetry of Stopping Classes?

6. I have a hunch that the Stopping Circles may be related to the Riemann Zeta Function. Could some of the
ideas in this paper help us get closer to shedding light on the Riemann Hypothesis? Is there a way in some
sense that we could combine sum of all Stopping Circles in a way similar to the Harmonic Series? If we did,
would we see the same behavior we see in the Riemann Zeta Function on the domain of complex numbers?
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into the mysteries of L functions. The content he produces is amazing, and the community he’s put together is
a lot of fun to be a part of.

• Brady Haran - Numberphile is probably my most watched channel. I can’t tell you how many hours of
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