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Abstract. In this paper we continue the development of the circles of parti-

tion by introducing a certain geometry of the axes of complex circles of parti-
tion. We use this geometry to verify the condition in the squeeze principle in

special cases with regards to the orientation of the axes of complex circles of

partition.

1. Introduction

In our seminal paper [1], we introduced and developed the method of circles of
partition. This method is underpinned by a combinatorial structure that encodes
certain additive properties of the subsets of the integers and invariably equipped
with a certain geometric structure that allows to view the elements as points in
the plane whose weights are just elements of the underlying subset. We call this
combinatorial structure the circles of partition and is refereed to as the set of points

C(n,M) = {[x] | x, n− x ∈M} .

Each point in this set - except the center point - must have a uniquely distinct
point that are join by a line which we refer to as an axis of the CoP. We denote an
axis of a CoP with L[x],[y] and an axis contained in the CoP as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x + y = n.

The method of circles of partition and their associated structures have been well
advanced in [2], where the corresponding points have complex numbers as their
weights and a line (axis) joining co-axis points. The following structure was con-
sidered as a complex circle of partition

Co(n,CM) = {[z] | z, n− z ∈ CM ,=(z)2 = <(z) (n−<(z))}

where

CM := {z = x + iy | x ∈M, y ∈ R} ⊂ C
with M ⊆ N. We abbreviate this complex additive structure as cCoP. The condition
=(z)2 = <(z)(n − <(z) is referred to as the circle condition and it pretty much
guarantees that all points on the cCoP lie on a circle in the complex. This circle
is the embedding circle of the cCoP Co(n,CM), denoted as Cn. The embedding
circles of cCoPs have the property that they reside fully inside those embedding
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circle with a relatively larger generators, except the origin as a common point [2].
For each axis with the following assignment

L[z1],[z1] ∈̂ C(n,CM) which means [z1], [z2] ∈ C(n,CM) with z1 + z2 = n.

The structure of the complex circles of partition is much more versatile and has
extra structures that are not readily available in the structures of circles of partition.
Most notably, for each axis L[z],[n−z] of a cCoP there exists

L
[z],[n−z]

a conjugate axis, where [z], [n− z]. The space occupied by the embedding circles
of partition and correspondingly outside the embedding circle had turned out to
be very interesting, since this notion can be passed down to studying a certain
ordering principle of the points of two interacting axes of distinct cCoPs. Much
more striking is the fact which comes with ease by virtue of the circle condition
that

|L[z1],[z2]| = n

for any axis L[z1],[z2] ∈ Co(n,CM) = {[z] | z, n− z ∈ CM ,=(z)2 = <(z) (n−<(z))}.
The squeeze principle [3] can be considered as a black box for studying the binary
Goldbach conjecture. A slightly different version of this principle appears in [2].
For the sake of the reader, we provide a brief recap of this elegant principle as below

Lemma 1.1 (The squeeze principle). Let B ⊂ M ⊆ N and Co(n,CM) and Co(n +
t,CM) with t ≥ 4 be non–empty cCoPs with integers n, t, s of the same parity. If
there exist an axis L[v1],[w1] ∈̂ Co(n,CM) with w1 ∈ CB and an axis L[v2],[w2] ∈̂ Co(n+
t,CM) with v2 ∈ CB such that

<(v1) < <(v2) and <(w1) < <(w2) (1.1)

then there exists an axis L[v2],[w1] ∈̂ Co(n + s,CB) with 0 < s < t. Hence also
Co(n + s,CM) is not empty.

Proof. From the existence of an axis L[v1],[w1] ∈̂ Co(n,CM) follows <(w1) = n −
<(v1). With the requirement (1.1) we get

<(w1) > n−<(v2). (1.2)

On the other hand from the existence of an axis L[v2],[w2] ∈̂ Co(n + t,CM) follows
<(w2) = n + t−<(v2) and with the requirement (1.1) and the result (1.2) we get

n−<(v2) < <(w1) < n + t−<(v2) | +<(v2)

n < <(w1) + <(v2) < n + t

n < n + s < n + t.

By virtue of the requirements w1, v2 ∈ CB and n + s = <(w1) + <(v2) there is an
axis L[v2],[w1] ∈̂ Co(n+ s,CB) and hence holds Co(n+ s,CB) 6= ∅. And from B ⊂M
follows immediately CB ⊂ CM and therefore holds also Co(n + s,CM) 6= ∅. This
completes the proof. �

The Lemma 1.1 referred to as the squeeze principle may be regarded as a fun-
damental tool set for investigating the viability of dividing integers of a particular
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parity, utilizing constituent elements originating from a specific subset of the inte-
gers. The mechanism operates by discerning a pair of cCoPs that are both non-
vacuous and share a common base set. Subsequently, supplementary cCoPs that
are non-vacuous and have generators restrained within the interstice of these two
generators are identified. This principle may be applied in a resourceful manner
to investigate the overarching matter of the practicality of divvying up numbers
such that each addend is a member of the identical subset of positive integers.
The squeeze principle tends to provide an impetus to investigate the conditions for
which it holds, by investigating using a particularly innate geometry. This quest is
motivated and driven by the following deep questions:

Question 1. How the are the notion of interiors and exteriors with respect to
cCoPs facilitate proving the squeeze principle?

Question 2. Which role do the imaginary weights of members of cCoPs play?

Question 3. Are the embedding circles of cCoPs the key for proving the BGC?

2. Orientations of axes of Complex circles of partition and related
Geometries

In this section we introduce and study the geometry of the axis of cCoPs. We
launch the following languages as a precursor to our studies. In this section we
consider only axes of distinct cCoPs L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM)
such that <(z1) < <(z2) and <(w1) < <(w2) with <(z1) 6= <(w1) and <(z2) 6=
<(w2).

Definition 2.1. Let M ⊆ N and Co(n,CM) be a non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM). We say it is an axis of positive orientation if the gradient is
positive. On the other hand if the gradient is negative, then we say it is an axis of
the cCoP with a negative orientation. We say the axis of the cCoP is horizontal if
it is parallel to the real axis of the complex plane. We denote the gradient of the
axis L[z1],[z2] ∈̂ Co(n,CM) with

Grad(L[z1],[z2]) =
=(z2)−=(z1)

<(z2)−<(z1)
.

Definition 2.2. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM). We say the axes are of
homogeneous orientation if they point to the same direction. We denote this
relation with L[z1],[z2] || L[w1],[w2]. If they point to different directions, then we say
the axes are of mixed orientation. We denote the axes of distinct orientation that
are perpendicular with the relation L[z1],[z2] ⊥ L[w1],[w2]. If they point to different
directions and do not intersect, then we say the axes L[z1],[z2] and L[w1],[w2] are
skewed.

Proposition 2.3. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z],[z] ∈̂ Co(n,CM) and L[w],[w] ∈̂ Co(m,CM). Then

L[z],[z] || L[w],[w].
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Proof. The claim follows since L[z],[z] ∈̂ Co(n,CM) and L[w],[w] ∈̂ Co(m,CM) are
the degenerate axes of their corresponding cCoPs and each degenerate axis must
be parallel to the imaginary axis. It follows by transitivity that the axes must be
parallel to each other. �

Lemma 2.4. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2) such that the axes are of positive orientation. If L[z1],[z2] || L[w1],[w2],
then <(z1) < <(w1) and <(z2) < <(w2).

Proof. We note that the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n
2 , 0)

and L[w1],[w2] ∈̂ Co(m,CM) also passes through the point (m
2 , 0) with m > n. It

follows that Grad(L[z1],[z2]) = Grad(L[w1],[w2]) so that we can write

=(z2)

<(z2)− n
2

=
=(w2)

<(w2)− m
2

since L[z1],[z2] || L[w1],[w2]. Since m > n, it follows that Int[Co(n,CM)] ⊂ Int[Co(m,CM)].
Since the axes are of positive orientation with L[z1],[z2] || L[w1],[w2] then it implies
that =(z2) < =(w2) so that <(z2)− n

2 < <(w2)− m
2 ⇐⇒ <(z2) < <(w2). Let us

join the point w2 to the point z2 by a straight line, then it is easy to see that the
gradient of this line is given by

=(w2)−=(z2)

<(w2)−<(z2)
> 0.

Similarly, let us join the point z1 to the point z2 by a straight line. We compute
the gradient of this line as

=(z1)−=(w1)

<(z1)−<(w1)
< 0.

Let us suppose that
=(z1)−=(w1)

<(z1)−<(w1)
> 0

then =(z1)−=(w1) > 0 since L[z1],[z2] || L[w1],[w2] with m > n so that <(z1) > <(w1).
It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. �

We obtain a similar result of the natural ordering principle of the real part of
axes of cCoPs in the case where the axes are all of negative orientation.

Lemma 2.5. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) <
<(z2) and <(w1) < <(w2) such that the axes are of negative orientation. If
L[z1],[z2] || L[w1],[w2], then <(z1) < <(w1) and <(z2) < <(w2).
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Proof. We note that the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n
2 , 0)

and L[w1],[w2] ∈̂ Co(m,CM) also passes through the point (m
2 , 0) with m > n. It

follows that Grad(L[z1],[z2]) = Grad(L[w1],[w2]) so that we can write

=(z2)

<(z2)− n
2

=
=(w2)

<(w2)− m
2

since L[z1],[z2] || L[w1],[w2]. Since m > n, it follows that Int[Co(n,CM)] ⊂ Int[Co(m,CM)].
Since the axes are of negative orientation with L[z1],[z2] || L[w1],[w2] then it implies
that =(z1) = −=(z2) < −=(w2) = =(w1) so that we have

−=(z1)

<(z2)− n
2

=
−=(w1)

<(w2)− m
2

⇐⇒ =(z1)

<(z2)− n
2

=
=(w1)

<(w2)− m
2

.

Since =(w1) > =(z1), it follows that <(z2)− n
2 < <(w2)− m

2 ⇐⇒ <(z2) < <(w2)
for m > n. Let us join the point w2 to the point z2 by a straight line, then it is
easy to see that the gradient of this line is given by

=(w2)−=(z2)

<(w2)−<(z2)
< 0

since =(z2) < =(w2). Similarly, let us join the point z1 to the point z2 by a straight
line. We compute the gradient of this line as

=(z1)−=(w1)

<(z1)−<(w1)
> 0.

Let us suppose that
=(z1)−=(w1)

<(z1)−<(w1)
> 0

then =(z1)−=(w1) < 0 since L[z1],[z2] || L[w1],[w2] with m > n so that <(z1) > <(w1).
It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. �

We prove an important fact concerning the relationship between an axis of a
cCoP and other axes of cCoPs with higher generators. It basically purports that
the slope of cCoPs with higher generators must be relatively steeper so long as
these axis intersect. We launch formally the following fact in the lemma below.

Lemma 2.6. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
above the diameter that passes through the origin, then

Grad(L[w1],[w2]) > Grad(L[z1],[z2]).
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Proof. Suppose the axes L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n
with <(z1) < <(z2) and <(w1) < <(w2) intersect at the point v ∈ C. We note that
the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n

2 , 0) and L[w1],[w2] ∈̂ Co(m,CM)
also passes through the point (m

2 , 0) so that we can compute the gradient of the
axes. We obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

Let us suppose that Grad(L[w1],[w2]) ≤ Grad(L[z1],[z2]), then it follows that

=(v)

<(v)− m
2

≤ =(v)

<(v)− n
2

.

Since the axes intersect at a point above the diameter that passes through the
origin, it must be that =(v) > 0 so that we obtain

1

<(v)− m
2

≤ 1

<(v)− n
2

⇐⇒ <(v)− n

2
≤ <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

We obtain an analogous result in the case the axes intersect below the diameter
that passes through the origin.

Lemma 2.7. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
below the diameter that passes through the origin, then

Grad(L[w1],[w2]) < Grad(L[z1],[z2]).

Proof. Suppose the axes L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n
with <(z1) < <(z2) and <(w1) < <(w2) intersect at the point v ∈ C. We note that
the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n

2 , 0) and L[w1],[w2] ∈̂ Co(m,CM)
also passes through the point (m

2 , 0) so that we can compute the gradient of the
axes. We obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

Let us suppose that Grad(L[w1],[w2]) ≥ Grad(L[z1],[z2]), then it follows that

=(v)

<(v)− m
2

≥ =(v)

<(v)− n
2

.

Since the axes intersect at a point below the diameter that passes through the
origin, it must be that =(v) < 0 so that we obtain

1

<(v)− m
2

≤ 1

<(v)− n
2

⇐⇒ <(v)− n

2
≤ <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �
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We obtain a certain characterization of the gradient of axes of two interacting
cCoPs. This is an immediate consequence of Lemma 2.6. It will also serve in many
ways as a guiding principle for our further investigations.

Theorem 2.8. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point above
the diameter that passes through the origin with Grad(L[w1],[w2]) < 0, then

Grad(L[z1],[z2]) < 0.

Proof. Let us assume to the contrary that

Grad(L[z1],[z2]) ≥ 0

then Grad(L[z1],[z2]) > 0, since Grad(L[z1],[z2]) 6= 0. The axis L[z1],[z2] and the axis
L[w1],[w2] intersect at a point above the diameter that passes through the origin so
that

0 > Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0

by virtue of Lemma 2.6, which is absurd. �

Theorem 2.9. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point below
the diameter that passes through the origin with Grad(L[w1],[w2]) > 0, then

Grad(L[z1],[z2]) > 0.

Proof. Let us assume to the contrary that

Grad(L[z1],[z2]) ≤ 0

then Grad(L[z1],[z2]) < 0, since Grad(L[z1],[z2]) 6= 0. The axis L[z1],[z2] and the axis
L[w1],[w2] intersect at a point below the diameter that passes through the origin so
that

0 < Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0

by virtue of Lemma 2.7, which is absurd. �

We obtain variants of Theorem 2.8 and Theorem 2.9 in the sequel.

Theorem 2.10. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
above the diameter that passes through the origin with Grad(L[z1],[z2]) > 0, then

Grad(L[w1],[w2]) > 0.

Proof. The axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point above the diam-
eter that passes through the origin so that

Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0

by virtue of Lemma 2.6, and the claim follows. �



8 T. AGAMA

Theorem 2.11. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
below the diameter that passes through the origin with Grad(L[z1],[z2]) < 0, then

Grad(L[w1],[w2]) < 0.

Proof. The axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point below the diam-
eter that passes through the origin so that

Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0

by virtue of Lemma 2.7, and the claim follows. �

It is worthwhile noting that we have only confirmed the natural ordering principle
of the real parts of the upper axes points of cCoPs in the case the corresponding axes
of distinct cCoPs are parallel. We would like this behaviour to be propagated among
the remaining configuration of the axes of cCoPs that we have not yet exhaust.
It is possible that certain imagined configuration may not hold in this geometry.
In the following sequel, we will examine this naturally exhibiting principle in the
cases where any two axes of distinct non-empty cCoPs are skewed. We launch the
following result.

Lemma 2.12. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] are skewed with
Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0 then <(z1) < <(w1) and <(z2) < <(w2).

Proof. Let axis L[z1],[z2] and the axis L[w1],[w2] be skewed with Grad(L[w1],[w2]) >
Grad(L[z1],[z2]) > 0. Let us join z2 to w2 by a straight line. Then by the em-
bedding Int[Co(n,CM)] ⊂ Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] pass-
ing through the point (n

2 , 0) and (m
2 , 0), respectively with m > n, it follows that

=(w2) > =(z2). Let us suppose that the gradient of this line

=(w2)−=(z2)

<(w2)−<(z2)
< 0.

Then it follows that <(w2) < <(z2) so that the axes L[z1],[z2] and L[w1],[w2] must
intersect at a point since Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0 and L[w1],[w2] passes
through the point (m

2 , 0) with m > n, contradicting the requirement that the axes
L[z1],[z2] and L[w1],[w2] are skewed . Thus we must have <(w2) > <(z2). Similarly
let us join the point z1 to the point w1 by a straight line. Then by the embed-
ding Int[Co(n,CM)] ⊂ Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] passing
through the point (n

2 , 0) and (m
2 , 0), respectively with m > n and Grad(L[w1],[w2]) >

Grad(L[z1],[z2]) > 0, it follows that =(w1) < =(z1) < 0. Let us suppose that the
gradient of this line

=(w1)−=(z1)

<(w1)−<(z1)
> 0

then it implies that <(z1) > <(w1). It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with
|w1 − (

m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.
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Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. �

We obtain an analogous result in the case all the axis are of negative orientation
and slopes down negatively.

Lemma 2.13. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] are skewed with
Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0 then <(z1) < <(w1) and <(z2) < <(w2).

Proof. Let the axis L[z1],[z2] and the axis L[w1],[w2] be skewed with 0 > Grad(L[z1],[z2]) >
Grad(L[w1],[w2]). Let us join z1 to w1 by a straight line. Then by the embed-
ding Int[Co(n,CM)] ⊂ Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] pass-
ing through the point (n

2 , 0) and (m
2 , 0), respectively with m > n, it follows that

=(w1) < =(z1) < 0. Let us suppose that the gradient of this line

=(w1)−=(z1)

<(w1)−<(z1)
< 0

then it follows that <(w1) < <(z1). It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and sim-
ilarly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot
have a common point at the origin. This violates the Big Bang theorem. Similarly,
let us join z2 to w2 by a straight line. Then by the embedding Int[Co(n,CM)] ⊂
Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] passing through the point (n

2 , 0)
and (m

2 , 0), respectively with m > n, it follows that =(w2) < =(z2) < 0. Let us
suppose that the gradient of this line

=(w2)−=(z2)

<(w2)−<(z2)
> 0.

Then it follows that <(w2) < <(z2) so that the axes L[z1],[z2] and L[w1],[w2] must
intersect at a point since Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0 and L[w1],[w2] passes
through the point (m

2 , 0) with m > n, contradicting the requirement that the axes
L[z1],[z2] and L[w1],[w2] are skewed . Thus we must have <(w2) > <(z2). �

We examine the remaining skew case of interacting axes of distinct cCoPs in the
scenario where they have gradient of opposite signs.
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Lemma 2.14. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] are skewed with
Grad(L[w1],[w2]) > 0 and Grad(L[z1],[z2]) < 0 such that

|Grad(L[w1],[w2])| > |Grad(L[z1],[z2])|

then <(z1) < <(w1) and <(z2) < <(w2).

Proof. Under the requirement |Grad(L[w1],[w2])| > |Grad(L[z1],[z2])| with the em-
bedding

Int[Co(n,CM)] ⊂ Int[Co(m,CM)]

it implies that =(z1) > =(w1) and =(z2) < =(w2). Let us join the point z1 to the
point w1 by a straight line and suppose for the gradient of this line

=(z1)−=(w)

<(z1)−<(w1)
> 0.

then it follows that <(w1) < <(z1). It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. Similarly, let
us join z2 to w2 by a straight line and suppose of the gradient of this line

=(z2)−=(w2)

<(z2)−<(w2)
< 0.

Then it implies that <(z2) > <(w2) since =(z2)−=(w2) < 0. Since Grad(L[w1],[w2]) >
0 and the axis L[w1],[w2] must pass through the point (m

2 , 0) with m > n, it follows
that both axes L[z1],[z2] and L[w1],[w2] must intersect at a point. This violates the
requirement that the axes are skewed. �

Thus far we have almost exhausted this naturally inherent ordering behaviour of
the real part of the axes points of interacting cCoPs with distinct generators in the
cases where the axes are parallel and skewed. We are still left with investigating
this property for interacting intersecting axes of distinct cCoPs intersecting. It is
worth noting that one may likely run into a deadlock replicating the same argument
for the cases where the two axes of distinct cCoP intersects. We now examine the
corresponding converse of Lemma 2.6 and 2.7.

Lemma 2.15. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If Grad(L[w1],[w2]) < Grad(L[z1],[z2]), then the axis L[z1],[z2] and
the axis L[w1],[w2] cannot intersect at a point above the diameter passing through the
origin.
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Proof. Suppose the axes L[z1],[z2] and the axis L[w1],[w2] intersect at a point above
the diameter passing through the origin with Grad(L[w1],[w2]) < Grad(L[z1],[z2]).
Now let v ∈ C be their point of intersection, then =(v) > 0 and we obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

It follows that

=(v)

<(v)− m
2

<
=(v)

<(v)− n
2

⇐⇒ <(v)− n

2
< <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

Lemma 2.16. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If Grad(L[w1],[w2]) > Grad(L[z1],[z2]), then the axis L[z1],[z2] and
the axis L[w1],[w2] cannot intersect at a point below the diameter passing through the
origin.

Proof. Suppose the axes L[z1],[z2] and the axis L[w1],[w2] intersect at a point below
the diameter passing through the origin with Grad(L[w1],[w2]) > Grad(L[z1],[z2]).
Now let v ∈ C be their point of intersection, then =(v) < 0 and we obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

It follows that

=(v)

<(v)− m
2

>
=(v)

<(v)− n
2

⇐⇒ <(v)− n

2
< <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

It is worth noting that by piecing Lemma 2.6 with Lemma 2.16 one obtains an
equivalent statement. The same equivalence also hold by piecing together Lemma
2.7 and Lemma 2.15. These equivalence in their own right could serve as benchmark
for proving or disproving such configurations in the geometry. It turns out that
the arguments and the method employed in this paper does not help to analyze
the cases where arbitrary axes of distinct cCoPs intersect. Consequently, we will
analyze these cases in a separate paper using a different method.
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