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1. Introduction

The lack of division by zero has been a serious glaring omission in our mathe-
matics. While recent publications [3], [7], [8], [22], [29] have offered a final solution
to this [3]:

(1)
z

0
= 0 for any element z in a field.

In this article we show several results in plane geometry obtained from division
by zero given by (1) and division by zero calculus, which is a generalization of
division by zero.

For a meromorphic function W = f(z), we consider the Laurent expansion of
f around z = a:

W = f(z) =
n=−1∑
n=−∞

Cn(z − a)n + C0 +
∞∑
n=1

Cn(z − a)n.

Then we define f(a) = C0. This is a generalization of (1) called division by zero
calculus [29]. Now we can consider the value f(a) = C0 at an isolated singular
point a.

We consider some families of circles in the plane, each of the members is
represented by a Cartesian equation fz(x, y) = 0 with parameter z ∈ R. Here, we
assume that if x and y are fixed, fz(x, y) is a meromorphic function in z. Then,
for the Laurent expansion of the function fz(x, y) at z = a for fixed x, y, the
corresponding coefficient Cn(a;x, y) is depending on also x and y.

In this setting we will see some mysterious relation with the equation

fz(x, y) = 0

and the equations
Cn(a;x, y) = 0,

for fixed a. However we will see that the equation Cn(a;x, y) = 0 implies some
meaningful things even for an integer n ̸= 0 also in the case in which division
by zero does not occur for z = a. Moreover we will show that the equation
Cn(a;x, y) = 0 gives some notable and meaningful figures, which have never been
considered before. On the other hand, we have no idea why the coefficients of the
Laurent expansion show such meaningful and marvelous facts at the present time
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of writing. Therefore we can only show such results with little explanations in
this paper.

For lines and circles, (1) gives a totally new insight, which are essential to our
paper. The results are stated as follows:

Proposition 1 ([8],[29]). The following statements are true.
(i) We can regard a line as a circle with its radius 0, when we consider a line as
a special case of a circle.
(ii) We can consider that orthogonal figures touch to each other, in a natural
interpretation.

Proof. Any circle in the plane has an equation

e(x2 + y2) + 2fx+ 2gy + h = 0,

and has radius

(2)

√
f 2 + g2 − eh

e2
.

While the equation represents a line in the case e = 0, and (2) equals 0 in this
case by (1). This proves (i). For tangential figures, their angle θ of two tangential
lines at the common point is zero and tan(θ) = 0. However tan(π/2) = 0, by (1)
and by the division by zero calculus and so in this sense, we can say (ii). □

2. Triangle with parallel sides

Let us consider a triangle ABC in the plane with a = |BC|, b = |CA| and
c = |AB|. Let θa (resp. θb) be the angle between

−→
BA and

−→
AC (resp.

−−→
BC) (see

Figure 1). We fix the points A andB and the angle θb, and consider the side length,
the circumradius and so forth of the triangle ABC in the case θa = θb by the
definition of division by zero (1) (see Figure 2). We use a rectangular coordinate
system such that A and B have coordinates (p, 0) and (q, 0), respectively such
that p− q = c, where we assume that the point C lies on the region y > 0.

B(q, 0) A(p, 0)
cθb

C

ba

θa
Figure 1. B A

cθb

ba

θa=θb
Figure 2.

2.1. Side length and area. The lines AC and BC have equations y cos θa =
(x − p) sin θa and y cos θb = (x − q) sin θb, respectively. Therefore the point C,
which is the point of intersection of the two line, has coordinates

(3) (xc, yc) =

(
p sin θa cos θb − q cos θa sin θb

sin(θa − θb)
,
c sin θa sin θb
sin(θa − θb)

)
.



3

Therefore from a =
√

(xc − q)2 + y2c and b =
√

(xc − p)2 + y2c , we get

(4) a =
c sin θa

sin(θa − θb)
, b =

c sin θb
sin(θa − θb)

.

If θa = θb, then sin(θa − θb) = 0, and we get a = b = 0 by (1). The y-coordinate
in (3) shows that the height corresponding to the base AB equals 0 if θa = θb.
Therefore we have:

Theorem 1. The side length of the parallel sides of a triangle equals 0. Also the
area of a triangle with parallel sides equals 0.

Also (3) shows that the point C coincides with the origin (0, 0) if θa = θb.

2.2. Circumradius. Let R be the circumradius of the triangle ABC.

Theorem 2. The circumradius of a triangle with parallel sides equals 0.

Proof. We use the identity

R =
abc√

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)
.

Substituting (4), in the above equation, we have

R =
c

2 sin(θa − θb)
.

Therefore we get R = 0 if θa = θb. □

Let r be the inradius of ABC. We consider the following identity:

R =
r

cosA+ cosB + cosC − 1
.

The identity is true in the case θa = θb, because the left side equals R = 0 by
Theorem 2, and the denominator of the right side equals cosA+cosB+cosC−1 =
cos(π − θb) + cos θb + cos 0− 1 = 0. Therefore the right side also equals 0 by (1).

2.3. Excircle. We consider the excircle of the triangle ABC touching CA from
the side opposite to B (see Figure 3).

Theorem 3 ([11]). If θa = θb, then the radius of the excircle of the triangle ABC
touching CA from the side opposite to B equals 0.

Proof. The center of the excircle coincides with the point of intersection of the
lines represented by y = tan θa

2
(x− p) and y = tan θb

2
(x− q), and has coordinates(

p tan θa
2
− q tan θb

2

tan θa
2
− tan θb

2

, c
sin θa

2
sin θb

2

sin θa−θb
2

)
,

where the y-coordinate gives the exradius. While the y-coordinate equals 0 if
θa = θb. The proof is complete. □
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θa
A(p, 0)

θb
B(q, 0)

x

C

y = tan θa
2 (x− p)

y = tan θb
2 (x− q)

Figure 3.

Notice that the center of the excircle coincides with the origin if θa = θb.

Remark. The essential fact of this section is that the point of intersection of two
parallel lines coincides with the origin [8], [29].

3. Pompe’s theorem

Generalizing a problem in Wasan geometry (Japanese old geometry), W.
Pompe gives the following theorem [6] (see Figure 4):

A B

C

P
Q

D

r1 r2
π
6

π
6

α β

Figure 4.

Theorem 4 ([28]). For an equilateral triangle ABC, let D be a point on the side
AB. For points P and Q lying on the sides AC and BC, respectively, satisfying
∠PDC = ∠QDC = π/6, let α = ∠ADP and β = ∠BDQ. If r1 and r2 are the
inradii of the triangles ADP and BDQ, respectively, then we have

(5)
r1
r2

=
sin 2α

sin 2β
.

In this section we consider the case β = π/2 in the sense of division by
zero and division by zero calculus. In this case the point D coincides with B,
then the triangle BQD degenerates to the point B, i.e., r2 = 0 (see Figure 5).
In this case the left side of (5) equals r1/0 = 0. Also the right side equals
sin 2α/ sin 2π = sin 2α/0 = 0. Therefore (5) holds by (1).
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On the other hand the right side of (5) is a function of β; sin 2(2π/3 −
β)/ sin 2β. By the Laurent expansion of this about β = π/2:

sin 2(2π/3− β)

sin 2β
= · · · −

√
3

4

(
β − π

2

)−1

+
1

2
+

1√
3

(
β − π

2

)
+ · · · , 1

we get

r1
r2

=
sin 2α

sin 2β
=

1

2

in the case β = π/2. The large circle in Figure 6 has radius r2 = 2r1 and center
B = Q. It is orthogonal to the lines AB, BC and the perpendicular to AB at
B. Therefore the circle still touches the three lines by Proposition 1, i.e., it is the
circle of radius 2r1 touching the lines AB, BC and the perpendicular to AB at B.

C

A

P

B=D=Q

r1 π
6

π
6

α β

Figure 5.

r2

C

A

P

B=D=Q

r1 π
6

π
6

α β

Figure 6.

4. A circle touching a circle and its tangent

For a circle α of radius a, let O be a point lying on α. We use a rectangular
coordinate system with origin O such that the center of α has coordinates (0, a).

Let β be a fixed circle of radius b touching α and the x-axis in the first quadrant
for a positive real number b (see Figure 7). Let γ be another circle of radius r
touching α and the x-axis in the first quadrant. We consider the case γ has radius
b by division by zero calculus. The circle γ is represented by the equation

(6) γ(x, y) = (x− 2
√
ar)2 + (y − r)2 − r2 = 0.

We now consider the Laurent expansion of γ(x, y) about r = b:

γ(x, y) =
∞∑

n=−∞

Cn(r − b)n.

1There are typos in the expansion in [6].
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2
√
ab

α

O

β

γ

(0, a)

Figure 7.

4.1. The case b ̸= 0 by division by zero calculus. We assume b ̸= 0. Then
we get2

(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x− 2
√
ab)2 + (y − b)2 − b2,

(iii) C1 = −4a

(
x

2
√
ab

+
y

2a
− 1

)
,

(iv) Cn =
2
√
ab
(
−1

b

)n (1
2

)
n−1

Γ(n+ 1)
x for n = 2, 3, 4, · · · , where (x)n is the Pochhammer

symbol, i.e., (x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1).

Therefore the equation C0 = 0 represents the circle β. The equation C1 = 0
represents the line joining the farthest point on α from the x-axis and the point of
tangency of β and the x-axis. Let s0 be this line. The equation Cn = 0 represents
the y-axis for n = 2, 3, 4, · · · . The figures represented by C0 = 0, C1 = 0, Cn = 0
(n = 2, 3, 4, · · · ) are denoted in Figure 8 in red.

For a circle δ of radius r and a line l whose distance from the center of δ equals
d, we call d/r the cosine of the angle formed by δ and l and denote by cos(l, δ):

(7) cos(l, δ) =
d

r
.

If they intersect, it is actually the cosine of the angle between them.

The line s0 passes through the point of tangency of α and β, because α and
β are similar and the internal center of similitude coincides with the point of
tangency of α and β, while the farthest point on α from the x-axis and the point
of tangency of β and the x-axis are corresponding by the similarly. The circle
β and the y-axis touch α and the x-axis by Proposition 1, but the line s0 does
not, but makes the same angle with them, where the cosine of the angle equals√
b/(a+ b).

2We use Wolfram Mathematica to get Cn, but it does not behave properly sometimes.
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2
√
ab

α

O

C2=0

C0=0

C1=0

β

s0

Figure 8.

4.2. The case b = 0 by division by zero. We consider the case b = 0 by
division by zero. The equation (6) is arranged as follows in three ways;

(x2 + y2)− 4
√
arx+ 2r(2a− y) = 0,

x2 + y2√
r

− 4
√
ax+ 2

√
r(2a− y) = 0,

x2 + y2

r
− 4

√
a

r
x+ 2(2a− y) = 0.

Therefore in the case r = 0, we have x2 + y2 = 0, x = 0, y = 2a by (1), which
represent the origin O, the y-axis and the tangent of α at the farthest point on α
from the x-axis. The three figures are described in Figure 9 in red.

α

O
Figure 9: b = 0.

The line s0 in the previous subsection corresponds to the tangent of α at the
farthest point from the x-axis. For the line s0 is represented by the equation
x/(2

√
ab) + y/(2a) = 1, and by (1) it coincides with y/(2a) = 1 when b = 0. Or

simply consider the line represented by x/p+ y/q = 1 in the case p = 0.

5. A circle touching a circle and its secant

Let ε be a circle of diameter AU and center O, where |AO| = a, and let t
be a secant of ε meeting in points T and U . We use a rectangular coordinate
system with origin O such that A has coordinates (a, 0), and T lies in the region
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y > 0. For a point Z of coordinates (z, 0) on the line AU , let F be the foot of
perpendicular from Z to t. We assume that δz is the circle touching t at F and
the minor arc of ε cut by t if Z lies between A and U , otherwise δz is the circle
touching ε externally and the line t at F from the side opposite to the minor arc of
ε (see Figures 10 and 11). We consider the circle δa, i.e., we would like to consider
the case in which the point F coincides with the point T . A similar situation is
considered in [23].

Oθ
A:(a, 0)Z :(z, 0)

F

U

T
δzε

t

Figure 10.

AU

F

Z

ε

O

T

θ

t

Figure 11.

Let θ be the angle between the line t and the x-axis and m = tan θ. Then t
has an equation t(x, y) = (x + a)m − y = 0 and ZF has an equation zF (x, y) =
(x − z) +my = 0. Assume that δz has radius r and center of coordinates (p, q).
Firstly assume Z lying between A and U . If q′ is the y-coordinate of the point of
intersection of t and the perpendicular from the center of δz to the x-axis, then
there is a positive real number k such that q = q′+k. Then t(p, q) = t(p, q′)−k =
−k < 0. Therefore we have

(8) t(p, q)/
√
1 +m2 = −r, zF (p, q) = 0 and p2 + q2 = (a− r)2.

Let

v =
a2 − z2

2a
√
1 +m2

and w =
(a+ z)2

2a(1 +m2)
.
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Solving (8) for p, q and r, we have

(9) (p, q) =

(
w −mv − a2 + z2

2a
, v +mw

)
, and r = −mv +

a2 − z2

2a
.

If Z does not lie between A and U , we have t(p, q)/
√
1 +m2 = r, zF (p, q) = 0

and p2 + q2 = (a + r)2, which are obtained from (8) by changing the signs of
r. Therefore the solutions of these three equations are also obtained from (9) by
changing the sign of r.

Therefore in any case, the circle δz is represented by the following equation
using (9) with parameter z:

δz(x, y) = (x− p)2 + (y − q)2 − r2.

We now consider the Laurent expansion of δz(x, y) about z = a:

δz(x, y) =
∞∑

n=−∞

Cn(z − a)n.

Then we get
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x− a cos 2θ)2 + (y − a sin 2θ)2,
(iii) C1 = 2(−(cos 2θ + sin θ)x+ (cos θ − sin 2θ)y + (1− sin θ)a),
(iv) C2 = (x sin θ − y cos θ − a)(sin θ − 1)/a,
(v) C3 = C4 = C5 = · · · = 0.

Therefore the equation C0 = 0 represents the point T . The equation C1 = 0
represents the line TV , where V is the midpoint of the major arc of ε cut by
t, whose coordinates are (a sin θ,−a cos θ). The equation C2 = 0 represents the
tangent of the circle ε at the point V . The figures obtained by Cn = 0 (n = 0, 1, 2)
are described in Figure 12 in red.

The line TV forms the same angle with ε and t, which equals θ + ϕ, where
ϕ = ∠TV O. While 2ϕ+ θ = π/2, i.e., ϕ = (π/2− θ)/2. Therefore the same angle
equals π/4 + θ/2. We can consider that the point T and the tangent of ε at V
touch both ε and t, but the line TV does not. However it forms the same angle
π/4 + θ/2 with ε and t.
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t

AU θ 2θ
O

V

ε

C1=0

T :C0=0

C2=0ϕ

θ

Figure 12.

6. Arbelos

For a point C on the segment AB such that |BC| = 2a, |CA| = 2b and
|AB| = 2c, let α, β and γ be circles of diameters BC, CA and AB, respectively.
Each of the two congruent figures surrounded by the three circles is called an
arbelos in a narrow sense and the radical axis of α and β is called the axis. Notice
that c = a + b. We use a rectangular coordinate system with origin C such that
A has coordinates (−2b, 0) (see Figure 13).

γ

A(−2b, 0) B(2a, 0)C(0, 0)

α
β

Figure 13.

If a circle touches one of given two circles internally and the other externally,
we say that the circle touches the two circles in the opposite sense, otherwise
in the same sense. The two circles touching α and γ in the opposite sense and
the axis from the side opposite to A are congruent to the two circles touching β
and γ in the opposite sense and the axis from the side opposite to B, and have
common radius rA = ab/c. It is believed that the congruent circles were studied
by Archimedes and circles of radius rA are said to be Archimedean.

6.1. The twin circles of Archimedes. Usually the arbelos is described by three
semicircle as the upper half part of the figure as in Figure 13. In this case the
two Archimedean circles touching γ and one of α and β in the opposite sense are
called the twin circles of Archimedes. The circle of center of coordinates (ma, 0)
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(resp. (−nb, 0)) and passing through the point C is denoted by αm (resp. βn) for
real numbers m and n. A circle touching γ internally and touching αm and βn in
the region y ≥ 0 is said to touch the three circles appropriately if the points of
tangency of this circle and each of αm, γ and βn lie counterclockwise (see Figure
14). We consider the next theorem.

α

β

γ

αm

A C B
(ma, 0)(−nb, 0)

βn

Figure 14.

Theorem 5 ([27]). Assume (m,n) ̸= (0, 1), (1, 0). A circle touching αm, βn and
γ appropriately is Archimedean if and only if

(10)
1

m
+

1

n
= 1.

The theorem characterizes the Archimedean circles touching γ internally, but
the twin circles of Archimedes are excluded. In this subsection, we show that the
twin circles can be included in the theorem by division by zero. We consider the
case (m,n) = (1, 0). The circle βn has an equation (x+ nb)2 + y2 = (nb)2 or

(11) x2 + y2 + 2nbx = 0.

Therefore we get x2 + y2 = 0 if n = 0, i.e., β0 coincides with the origin. On the
other hand (11) implies

x2 + y2

n
+ 2bx = 0.

Therefore we get x = 0 if n = 0 by (1). Therefore n = 0 implies that β0 is the
origin or the y-axis. Since the origin is a part of the y-axis, we can consider that β0

is the y-axis. While α1 coincides with the circle α. Hence (m,n) = (1, 0) satisfies
(10) and we get one of the twin circles of Archimedes touching α. Similarly in the
case (m,n) = (0, 1) we get the other Archimedean circle touching β1 = β and the
axis.

6.2. Parametric representation. Let d =
√
ab/c. We use the next theorem.

Theorem 6. The following statements hold.
(i) A circle touches the circles α and β in the same sense if and only if its has
radius rγz and center of coordinates (xγ

z , y
γ
z ) given by

qγz =
abc

c2z2 − ab
, rγz = |qγz | and (xγ

z , y
γ
z ) =

(
b− a

c
qγz , 2zq

γ
z

)
for a real number z ̸= ±d.
(ii) A circle touches the circles β and γ in the opposite sense if and only if it has
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radius rαz and center of coordinates (xα
z , y

α
z ) given by

rαz =
abc

a2z2 + bc
and (xα

z , y
α
z ) =

(
−2b+

b+ c

a
rαz , 2zr

α
z

)
for a real number z.
(iii) A circle touches the circles γ and α in the opposite sense if and only if it has
radius rβz and center of coordinates (xβ

z , y
β
z ) given by

rβz =
abc

b2z2 + ca
and (xβ

z , y
β
z ) =

(
2a− c+ a

b
rβz , 2zr

β
z

)
for a real number z.

Proof. Let γz be the circle of radius and center described in (i). Then we have
(xγ

z − a)2 + (yγz )
2 = (a + qγz )

2. Therefore γz and α touch internally or externally
according as qγz < 0 or qγz > 0. Similarly γz and β touch internally or externally
according as qγz < 0 or qγz > 0. Hence γz touches α and β in the same sense.
Conversely we assume that a circle γ′ of radius r > 0 touches α and β in the
same sense. Then there is a real numbers z such that rγ±z = r. Therefore we
have γ′ = γz or γ′ = γ−z. This proves (i). The rest of the theorem can be proved
similarly. □

Essentially the same formulas as Theorem 6 can be found in [30], not so simple
though. Simpler expression in the case z being an integer can be found in [4, 5].
We denote the circle of radius rαz and center of coordinates (xα

z , y
α
z ) by αz. Also

the equation representing the circle αz is denoted by αz(x, y) = 0, where

(12) αz(x, y) = (x− xα
z )

2 + (y − yαz )
2 − (rαz )

2.

The circles βz and γz and the equations βz(x, y) = 0 and γz(x, y) = 0 are defined
similarly, respectively. The circles α0, β0 and γ0 coincide with the circles α, β and
γ, respectively. While α1 = β1 = γ1 (resp. α−1 = β−1 = γ−1) is the incircle of the
arbelos in the region y ≥ 0 (resp. y ≤ 0). The Archimedean circles touching α
and γ in the opposite sense coincide with the circles β±

√
c
b
. Also the Archimedean

circles touching β and γ in the opposite sense coincide with the circles α±
√

c
a
.

The circle γz touches α and β internally (resp. externally) if and only if |z| < d
(resp. |z| > d), which is also equivalent to qγz < 0 (resp. qγz > 0). The external
common tangents of α and β are also denoted by γ±d and have the following
equations [25, 26]:

(13) γ±d(x, y) = (a− b)x∓ 2
√
aby + 2ab = 0.

Theorem 7. The following statements hold.
(i) Circles or a circle and a line γz and γw touch if and only if |z − w| = 1.
(ii) Circles αz and αw touch if and only if |z − w| = 1.
(iii) Circles βz and βw touch if and only if |z − w| = 1.

Proof. If γz and γw are circles, then the part (i) follows from

(xγ
z − xγ

w)
2 + (yγz − yγw)

2 − (qγz + qγw)
2 =

4a2b2c2((z − w)2 − 1)

(c2z2 − ab)(c2w2 − ab)
.

We consider the case in which γz touches γd. In this case γz touches γd from
the same side as the point C and touches α and β externally and qγz > 0 (see
Figure 15). Let p be the y-coordinate of the point of intersection of γd and the



13

perpendicular from the center of γz to the x-axis. Then there is a real number
k > 0 such that p = yγz + k. Hence we have

γd(x
γ
z , y

γ
z ) = γd(x

γ
z , p− k) = γd(x

γ
z , p) + 2

√
abk = 2

√
abk > 0

by (13). Therefore γz touches γd if and only if γd(x
γ
z , y

γ
z )/c = qγz . While we have

γd(x
γ
z , y

γ
z )

c
− qγz =

2abc(z − (d+ 1))(z − (d− 1))

(c2z2 − ab)
.

Therefore γz touches γd if and only if z = d ± 1. The case γz touching γ−d is
proved similarly. This proves (i). The circles αz and αw touch if and only if they
touch externally. Therefore the part (ii) follows from

(xα
z − xα

w)
2 + (yαz − yαw)

2 − (rαz + rαw)
2 =

4a2b2c2((z − w)2 − 1)

(a2z2 + bc)(a2w2 + bc)
.

The part (iii) is proved similarly. □

γdα
β

C

γ

Figure 15.

6.3. Center of similitude of two circles. In this subsection we demonstrate
fundamental results on the centers of similitude of two of the three circles α, β
and γ, which have been getting little concern on the study of the arbelos. The
results were discovered from the consideration of circles touching the two circles
using the parametric representation stated in the previous subsection by division
by zero calculus. We omit the proofs since they are straightforward.

Let Sa (resp. Sb) be the internal center of similitude of the circles β (resp. α)
and γ, and let Sc be the external center of similitude of the circles α and β. The
points have coordinates

(14) Sa :

(
−2b2

b+ c
, 0

)
, Sb :

(
2a2

c+ a
, 0

)
, Sc :

(
2ab

b− a
, 0

)
.

The perpendiculars to AB at the three points are denoted by sa, sb and sc,
respectively. If a = b, Sc and sc coincide with the origin and the axis, respectively
by (1). Recall (7).

Theorem 8. The following relations hold.

(i) cos(sa, β) = cos(sa, γ) =
a

b+ c
. (ii) cos(sb, γ) = cos(sb, α) =

b

c+ a
.

(iii) cos(sc, α) = cos(sc, β) =
c

|b− a|
if a ̸= b.
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sa sb

α
β

σbσa

σc=sc γ

A C B

Figure 16: a = b.

Let σa be the circle of center Sa passing through the point A. Similarly
the circles σb and σc are defined. The circle σc is represented by the equation
4abx/(a − b) + x2 + y2 = 0 or 4abx + (a − b)(x2 + y2) = 0. This implies that
x2 + y2 = 0 or x = 0 if a = b, i.e., σc coincides with the y-axis if a = b. Some
results on the point Sc and the circle σc can be found in [18, 19]. For two circles
δ1 and δ2 of radii r1 and r2, we define the cosine of the angle made by the two
circles by

(15) cos(δ1, δ2) =
r21 + r22 − d2

2r1r2
,

where d is the distance between the centers of the two circles.

Theorem 9. The following statements hold.
(i) The circle σa (resp. σb, σc) is orthogonal to the circle αz (resp. βz, γz) for any
real number z.

(ii) cos(σa, σb) = | cos(σb, σc)| = | cos(σc, σa)| =
1

2
.

Notice that Theorem 9(ii) holds in the case a = b (see Figure 16). By Theorem
9(i), the circles αz and αw (z ≠ w) are fixed by the inversion in the circle σa.
Therefore their radical axis is also fixed, i.e., it passes through the point Sa. We
get the next theorem, where recall Theorem 7 (see Figure 17).

sa

A C
Sa

σa

γ

β

α

αz

αz+1

B
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Figure 17.

Theorem 10. The radical axis of αz and αw passes through the point Sa for real
numbers z and w (z ̸= w). In particular, the point of tangency of αz and αz+1 lies
on the circle σa and the common tangent at the point passes through Sa. Similar
statements hold for Sb and σb and also for Sc and σc.

γdα

β

C

F

G

γ

σc

γd+1

Sc

γd−1

Figure 18: Archimedean circles related to the circles γd±1.

Theorem 11. The circles σa, σb and σc belong to the same pencil of circles and
pass through the points of coordinates given by

(16) Σ+ :

(
ab(b− a)

c2 − ab
,

√
3abc

c2 − ab

)
, Σ− :

(
ab(b− a)

c2 − ab
,−

√
3abc

c2 − ab

)
.

In this paragraph we consider some new Archimedean circles without division
by zero and division by zero calculus. Assume a ̸= b. The circle γd−1 meets the
axis in two points, and the closer point to C is denoted by F . Assume σc meets
γ in a point G in the region y < 0. Recall rA = ab/c. The following statements
hold, where some of the statements can be found in [9] (see Figure 18):
(i) The distance from the point of tangency of γd and γd±1 to AB equals 2rA.
(ii) |CF | = 2rA,
(iii) |FG| = 2rA and the Archimedean circle of diameter FG touches γ at G.
(iv) There are two Archimedean circles whose center coincide with one of the
closest points on γd±1 to AB such that they touch the lines γd and AB.

7. Circles touching two given circles forming the arbelos

In this section we consider the circles αz and γz by division be zero calculus.
The highlight of this section is that the line sa (resp. sc) is derived by considering
αz (resp. γz) by division by zero calculus.

7.1. The circle αz. We consider the circle αz represented by the equation (12).
If we consider αz(x, y) as a function of z, there is no singular case. We firstly
consider the Laurent expansion of αz(x, y) about z = 0:

αz(x, y) =
∞∑

n=−∞

Cnz
n.
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Then we get
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x− a)2 + y2 − a2,

(iii) C2n−1 = (−1)n
4a2n−1

(bc)n−1
y for n = 1, 2, 3, · · · ,

(iv) C2n = (−1)n−12a
2n(b+ c)

(bc)n

(
x+

2b2

b+ c

)
for n = 1, 2, 3, · · · .

We consider the figures represented by the equation Cn = 0. Then C0 = 0
implies the equation (x − a)2 + y2 = a2, which represents the circle α. The
equations C1 = C3 = C5 = · · · = 0 imply y = 0, which represents the line AB.
And the equations C2 = C4 = C6 = · · · = 0 represent the line sa by (14). The
three figures represented by Cn = 0 are described in Figure 19 in red. Notice that
the circle α can be obtained in the usual way from the equation (12), but the lines
sa and AB can not.

The line AB is orthogonal to β and γ. Hence we can consider it touches the
two circles by Proposition 1, i.e., AB is eligible to be a figure touching β and
γ. However the line sa does not touch the two circles, but intersects at the same
angle by Theorem 8.

A BC

α: C0=0
β

γ
sa:C2=C4=C6=· · ·=0

x=− 2b2

b+c

C1=C3=C5=· · ·=0Sa

Figure 19.

Let w = 1/z and αw(x, y) = αz(x, y). We consider the Laurent expansion of αw

about w = 0:

αw(x, y) =
∞∑

n=−∞

Cnw
n.

Then we have:
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x+ 2b)2 + y2,

(iii) C2n−1 = (−1)n
4(bc)n

a2n−1
y for n = 1, 2, 3, · · · ,

(iv) C2n = (−1)n
2(bc)n(b+ c)

a2n

(
x+

2b2

b+ c

)
for n = 1, 2, 3, · · · .

Therefore the equation C0 = 0 represents the point A instead of the circle α, and
C2n−1 = 0 represents the line AB for n = 1, 2, 3, · · · , and C2n = 0 represents the
line sa for n = 1, 2, 3, · · · . The three figures obtained from Cn = 0 are described
in Figure 20 in red.
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A:C0=0

α
β

sa :C2=C4=C6=· · ·=0

C1=C3=C5=· · ·=0Sa C B

Figure 20.

7.2. The circle γz in the case z = 0. The circle γz has an equation

γz(x, y) = (x− xγ
z )

2 + (y − yγz )
2 − (rγz )

2 = 0

for a real number z ̸= ±d by Theorem 6. We consider the Laurent expansion of
γz(x, y) about z = 0:

γz(x, y) =
∞∑

n=−∞

Cnz
n.

Then we get
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x− 2a)(x+ 2b) + y2,

(iii) C2n−1 =
4c2n−1

(ab)n−1
y for n = 1, 2, 3, · · · ,

(iv) For n = 1, 2, 3, · · · , we have

C2n = −2c2n(a− b)

(ab)n

(
x− 2ab

b− a

)
if a ̸= b,

C2n = −4n+1a2 if a = b.

αβ

γ :C0=0

C

C2=C4=C6=· · ·=0:sc

C1=C3=C5=· · ·=0 Sc

γ b
cγ− a

c

A B

σc

Figure 21: a < b.

The equation C0 = 0 represents the circle γ. The equations C1 = C3 = C5 =
· · · = 0 represent the line AB. The equations C2 = C4 = C6 = · · · = 0 represent
the line sc if a ̸= b. If a = b, they represent no figure. Notice that sc does not
touch α and β but we have cos(sc, α) = cos(sc, β) by Theorem 8.

Assume a ̸= b. The three figures obtained from Cn = 0 in this case are
described in Figure 21 in red. The circles γ∓a/c and γ±b/c touch by Theorem



18

7. The points of tangency coincide with the points of intersection of sc and
σc. Therefore each of the points of tangency, Sc and C form three vertices of a
square. The three center of the circles γ±b/c and α lie on a perpendicular to AB
by Theorem 6. Also the centers of the circles γ±a/c and β lie on a perpendicular
to AB. If a = b, then d = 1/2 and γ±b/c = γ±a/c = γ±1/2 are the external common
tangents of α and β parallel to AB.

7.3. w = 1/z and γw(x, y) = γz(x, y) in the case w = 0. Let w = 1/z and
γw(x, y) = γz(x, y). We consider the case w = 0 using the Laurent expansion of
γw(x, y) about w = 0:

γw(x, y) =
∞∑

n=−∞

Cnw
n.

Then we get
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = x2 + y2,

(iii) C2n−1 = −4anbn

c2n−1
y for n = 1, 2, 3 · · · ,

(iv) For n = 1, 2, 3, · · · , we have

C2n =
2(ab)n(a− b)

c2n

(
x− 2ab

b− a

)
if a ̸= b,

C2n = 41−na2 if a = b.

Therefore C0 = 0 does not represent the circle γ but the origin. The others
are the same as those in subsection 7.2. The figures represented by Cn = 0 in the
case a ̸= b are denoted in Figure 22 in red .

γ

A BC0=0
α

β

Sc
C1=C3=C5=· · ·=0

0=· · ·=C6=C4=C2 :sc

Figure 22.

7.4. The circles γb/c and γ−a/c in the case a = b. We have seen that the circles
γb/c and γ−a/c touch the line sc if a ̸= b in subsection 7.2. We now consider the
relation between γb/c, γ−a/c and sc in the case a = b. If a = b, then γb/c = γ1/2 = γd
and γ−a/c = γ−1/2 = γ−d. In this subsection we firstly assume a = b and consider
the circles γ1/2 and γ−1/2. Secondly we drop the assumption a = b and consider
γb/c(x, y) and γ−a/c in the case a = b.

It seems that the figures obtained by the Laurent expansion of γz(x, y) about
z = ±1/2 in the case a = b can be obtained if we consider the Laurent expansion
of γz(x, y) about z = ±d in the case a ̸= b then consider the resulting figure in
the case a = b. We will see this result in subsection 7.5.
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Assume a = b. We consider the Laurent expansion of γz(x, y) about z = 1/2:

γz(x, y) =
∞∑

n=−∞

Cn

(
z − 1

2

)n

.

Then we get
(i) · · · = C−4 = C−3 = C−2 = 0, (ii) C−1 = a(a− y),

(iii) C0 = x2 +
(
y − a

2

)2
−

(√
5a

2

)2

, (iv) Cn = (−1)n+1(a+ y) for n = 1, 2, · · · .

αβ

γ

C−1=0

C1=C2=C3=· · ·=0

C0=0

Sc=C

sc

γd

γ−d

Figure 23.

Hence C−1 = 0 represents the line γd = γ1/2. The equation C0 = 0 represents

the circle of radius
√
5a/2 and center of coordinates (0, a/2). The circle passes

through the point of tangency of γd and each of α and β. The radical center of
this circle and α and β coincides with the point of intersection of the axis and γ−d.
Since the point Sc coincides with the origin C and sc coincides with the axis, the
circle touches the line sc by Proposition 1. The equations C1 = C2 = C3 = · · · = 0
represent γ−d. The three figures obtained by Cn = 0 touch the line sc and are
described in Figure 23 in red. Considering the Laurent expansion of γz(x, y) about
z = −1/2, we get the figures which are the reflection of the three figures in the
line AB.

We now drop the assumption a = b and consider γb/c(x, y) as a function of b
and its Laurent expansion about b = a:

γb/c(x, y) =
∞∑

n=−∞

Cn(b− a)n.

Then we get
(i) · · · = C−4 = C−3 = C−2 = 0, (ii) C−1 = 4a2(a− y),
(iii) C0 = (x− a)2 + (y − 2a)2 − a2, (iv) C1 = C2 = C3 = · · · = 0.
Therefore C−1 = 0 represents γd. The equation C0 = 0 represents the circle of
radius a and center of coordinates (a, 2a). The two figures obtained by C−1 = 0
and C0 = 0 touch the line sc and are described in Figure 24 in red.
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We consider γ−a/c(x, y) as a function of b and its Laurent expansion about
b = a:

γ−a/c(x, y) =
∞∑

n=−∞

Cn(b− a)n.

Then we get
(i) · · · = C−4 = C−3 = C−2 = 0, (ii) C−1 = −4a2(a+ y),
(iii) C0 = (x+ a)2 + (y − 2a)2 − (

√
13a)2, (iv) C1 = 2(x− 2a).

(v) C2 = C3 = C4 = · · · = 0.
Therefore C−1 = 0 represents γ−d. The equation C0 = 0 represents the circle of
radius

√
13a and the center of coordinates (−a, 2a). The circle passes through the

point B and the point of tangency of α and γ−d. The equation C1 = 0 represents
the tangent of α and γ at B. The three figures obtained by C−1 = 0, C0 = 0
and C1 = 0 are described in Figure 24 in green. The circle represented by C0 = 0
does not touch the line sc, while the other two lines touch. The circle intersects γ,
γ−d, α and the tangents of γ at B at the same angle, whose cosine equals 3/

√
13,

where recall (7) and (15).

αβ

γ

sc

C−1=0

C−1=0

C1=0

C0=0

C0=0
B

γd

γ−d

Sc

Figure 24: γb/c (red) and γ−a/c (green) in the case b = a.

7.5. The circle γz in the case z = d. We consider the circle γz in the singular
case z = d =

√
ab/c and consider the Laurent expansion of γz(x, y) about z = d:

γz(x, y) =
∞∑

n=−∞

Cn(z − d)n.

Then we get
(i) · · · = C−4 = C−3 = C−2 = 0, (ii) C−1 = d((a− b)x− 2

√
aby + 2ab),

(iii) C0 =

(
x− a− b

4

)2

+

(
y −

√
ab

2

)2

−

(√
a2 + 18ab+ b2

4

)2

,

(iv) Cn = −1

2

(
−1

2d

)n

((a− b)x+ 2
√
aby + 2ab) for n = 1, 2, 3, · · · .
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Therefore the equation C−1 = 0 represents the line γd given by (13). The
equation C0 = 0 represents a circle. The radius and the coordinates of its center
are given by

(17)

√
a2 + 18ab+ b2

4
,

(
a− b

4
,

√
ab

2

)
.

We denote this circle by γ and consider in detail in the next subsection. The
equations C1 = C2 = C3 = · · · = 0 represent the line γ−d. The figures obtained by
Cn = 0 are described in Figure 25 in red. It is obvious that the circle γ coincides
with the circle obtained in 7.4 if a = b (see Figure 23).

γ :C0=0

Sc

α

β

γ

γd :C−1=0

γ−d :C1=C2=C3=· · ·=0

Figure 25.

7.6. The circle γ. We consider the circle γ given in (17) in detail. Let Ii be

the point of coordinates (0, i
√
ab) for an integer i. We use the next theorem (see

Figure 25).

Theorem 12 ([25]). The following statements are true.
(i) The point of tangency of γd and each of α and β lies on γ.
(ii) The radical center of the three circles α, β and γ coincides with the point I−1.

The y-axis meets the circle γ and the lines γ±d in the points I±2 and I±1,
respectively. While the radical axis of γ and γ passes through the point I3. Hence
we have the next theorem (see Figure 26).

Theorem 13. The six points, where the y-axis meets γ, γ±d, the line AB, the
radical axis of γ and γ, are evenly spaced.
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BA

γ
D

α

β

γ

Sc

I2

I1

I3
σc

γd

γ−d

M
C

Figure 26.

The six points are described in Figure 26 in magenta. Let D be the center of
the circle γ, and let M be the midpoint of the segment joining C and the center
of γ. It is well-known that the circle of diameter CI2 passes through the point of
tangency of γd and each of α and β and each of the two points lie on the segments
AI2 and BI2. We have the next theorem, where recall (15) for the part (vii). The
proofs are straightforward and are omitted.

Theorem 14. The following statements are true.
(i) The circle σc is orthogonal to γ and the circle of diameter CI2. Hence the
radical axis of γ and γz passes through Sc for any real number z.
(ii) The circle of radius c/4 and center D passes though the points C, I1 and M ,
and touches the line γd at I1.
(iii) The lines CD and γ−d are perpendicular.
(iv) The points D, I1 and M are collinear.
(v) The line ScI2, the circle of diameter CI2 and the circle γ meet in a point.
(vi) The line DI1, the tangent of γ at the point of tangency of γd and each of α
and β, and the circle of diameter I1I3 meet in a point.
(vii) The circle γ intersects α and β at the same angle, whose cosine equals

c√
a2 + 18ab+ b2

.

The circle γ is an iconic figure which shows how essential and interest things
division by zero calculus brings us, and used in both the front and the back covers
of the book [29].
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7.7. Another parametric representation. We consider the circles touching α
and β in the same sense using another parametric equation:

Theorem 15 ([26]). A circle touching α and β in the same sense if and only if
it is represented by the equation

(18) ζz(x, y) =

(
x− b− a

z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

−
(

c

z2 − 1

)2

= 0

for a real number z ̸= ±1.

We denote the circle by ζz.

7.7.1. Case 1. We firstly consider the circle ζz in the case z = 0 using the Laurent
expansion of ζz(x, y) about z = 0:

ζz(x, y) =
∞∑

n=−∞

Cnz
n.

Then we get
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x− 2a)(x+ 2b) + y2,

(iii) C2n−1 = 4
√
aby for n = 1, 2, 3, · · · ,

(iv) C2n = 2 ((b− a)x− 2ab) for n = 1, 2, 3, · · · .
Therefore the figures represented by Cn = 0 coincide with the figures repre-

sented by Cn = 0 in 7.2.

7.7.2. Case 2. Let w = 1/z and ζw(x, y) = ζz(x, y). We consider the case w = 0
with the Laurent expansion of ζw about w = 0:

ζw(w) =
∞∑

n=−∞

Cnw
n.

Then we have
(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = x2 + y2,

(iii) C2n−1 = −4
√
aby for n = 1, 2, 3, · · · .

(iv) C2n = −2((b− a)x− 2ab) for n = 1, 2, 3, · · · .
Therefore the figures represented by Cn = 0 coincide with the figures repre-

sented by Cn = 0 in 7.3.

7.7.3. Case 3. We now consider the singular case z = 1 using the Laurent expan-
sion of ζz(x, y) about z = 1:

ζz(x, y) =
∞∑

n=−∞

Cn(z − 1)n.

Then we get
(i) · · · = C−4 = C−3 = C−2 = 0, (ii) C−1 = (a− b)x− 2

√
aby + 2ab,

(iii) C0 =

(
x− a− b

4

)2

+

(
y −

√
ab

2

)2

−

(√
a2 + 18ab+ b2

4

)2

,

(iv) Cn =

(
−1

2

)n+1

((a− b)x+ 2
√
aby + 2ab) for n = 1, 2, 3, · · · .

Therefore the figures represented by Cn = 0 also coincide with the figures repre-
sented by Cn = 0 in subsection 7.5. This case was considered in [25].
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8. Skewed arbelos

We fix the two circles α and β and consider the valuable circle ζz touching α
and β in the same sense represented by (18). The lines γ±d are denoted by ζ±1.
In this section we consider two special circles in the case z = ±1 by division by
zero and division by zero calculus. However for the sake of simplicity, we confine
ourself to the case |z| ≤ 1, and consider the special circles in the case z = 1. See
[21] for the case |z| > 1.

ζz

ηa

ηb

β

α

Bz

Az

A B
C

Figure 27.

Let Bz be the point of tangency of the circles α and ζz (see Figure 27). Let
ηa be the circle touching α internally and the tangents of β from Bz. The point
Az and the circle ηb are defined similarly. The circles ηa and ηb are congruent and
have common radius

(19) rη = |1− z2|rA

and have centers of coordinates

(20)

(
(1 + z2)rA, 2zrA

√
a

b

)
and

(
−(1 + z2)rA, 2zrA

√
b

a

)
,

respectively [21], where recall rA = ab/c.

Let rζ be the radius of the circles ζz. Since rζ = c/|z2 − 1| by (18), we have

rηrζ = ab if z ̸= ±1.

If z = 1, then the circle ζz coincides with the line ζ1, and the circles ηa and ηb and
the points Bz and Az coincide with the points B1 and A1, respectively. Therefore
we get rζ = rη = 0 by Proposition 1 (see Figure 28). We also have the same
relation in the case z = −1. Therefore in any case we have:
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α

β
B1=ηa

A1=ηb
ζ1

Figure 28: z = 1.

Theorem 16. rη =
ab

rζ
holds for any real number z.

We now consider the circle ηa in the case z = 1 by division by zero calculus.
By (19) and (20), the circle is represented by the equation

ηa(x, y) =
(
x− (1 + z2)rA

)2
+

(
y − 2zrA

√
a

b

)2

−
(
(1− z2)rA

)2
= 0.

We consider the Laurent expansion of ηa(x, y) about z = 1:

ηa(x, y) =
∞∑

n=−∞

Cn(z − 1)n.

Then we have

(i) · · · = C−3 = C−2 = C−1 = 0, (ii) C0 = (x− 2rA)
2 +

(
y − 2rA

√
a/b
)2
,

(iii) C1 = −4rA((x− 2a) +
√
a/by), (iv) C2 = −2rA(x− 2a),

(v) C3 = C4 = C5 = · · · = 0.

Therefore C0 = 0 represents the point of coordinates (2rA, 2rA
√

a/b), which co-
incides with the point B1 (see Figure 29). C1 = 0 represents the line BB1. And
C2 = 0 represents the tangent of α at B. The three figures obtained by Cn = 0
(n = 0, 1, 2) are described in Figure 29 in red.

The line BB1 passes through the point of intersection of the axis and the
circle ζ0 = γ, and the line meets the tangent of α at B, α, ζ0, ζ1 and the axis
at the same angle, whose cosine equals

√
b/c. Similar results are also obtained

by considering the circle ηb, and the resulting figures are described in Figure 29
in yellow. Since each of the three figures coincides with a line or a point, we get
rη = 0. Therefore Theorem 16 is also true.
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B1:C0=0

C1=0

C2=0

α

β

ζ0

A BC

ζ1

Figure 29: ηa and ηb are denoted by red and yellow, respectively.

9. The arbelos with overhang

In this section we consider another generalized arbelos called the arbelos with
overhang [20]. Let Ah (resp. Bh) be a point on the half line CA (resp. CB)
with initial point C such that |AhC| = 2(b + h) (resp. |BhC| = 2(a + h)) for a
real number h satisfying −min(a, b) < h. In [20] we have considered a generalized
arbelos consisting of the three semicircles αh, βh and γ of diameters BhC, AhC and
AB, respectively, constructed on the same side of AB. The figure is denoted by
(αh, βh, γ) and is called the arbelos with overhang h (see Figures 30 and 31). The
usual arbelos is obtained from (αh, βh, γ) if h = 0. The semicircles of diameters
BC and AC constructed on the same side of AB as γ are denoted by α and β,
respectively. We use a rectangular coordinate system with origin C such that the
farthest point on α from AB has coordinates (a, a).

Assume h ≥ 0, i.e., γ has a point in common with αh and βh. We define several
touching circles for (αh, βh, γ) (see Figure 32): The incircle of the curvilinear
triangle made by α, γ and the axis is denote by εa, i.e., εa is one of the twin
circles of Archimedes of the arbelos formed by α, β and γ. The incircle of the
curvilinear triangle made by αh, γ and the axis is denote by εa0. The incircle of the
curvilinear triangle made by α, αh and the radical axis of αh and γ is denote by
εa1. The incircle of the curvilinear triangle made by α, αh and γ is denoted by εa2.
The circle touching both α and γ externally and the axis from the side opposite
to B is denote by εa3. The circles εb and εbi (i = 0, 1, 2, 3) are defined similarly.
Recall rA = ab/c.
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BA BhAh

γ

βh

αh

C

Figure 30: h < 0.
BA BhAh

γ

βh αh

C

Figure 31: 0 < h.
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Figure 32.

Theorem 17 ([20]). The following statements hold.
(i) The circles εa0 and εb0 have the same radius

e0 =
ab

a+ b+ h
.

(ii) The circles εa1 and εb1 have the same radius

e1 =

(
1

a
+

1

b
+

h

ab
+

1

h

)−1

=

(
1

e0
+

1

h

)−1

.

(iii) The circles εa2 and εb2 have the same radius

e2 =

(
1

a
+

1

b
+

1

h

)−1

=

(
1

rA
+

1

h

)−1

.

(iv) The circles εa3 and εb3 have the same radius

e3 =
ab

h
.

9.1. Division by zero. We consider the case h = 0 for the three pairs of congru-
ent circles εai and εbi (i = 1, 2, 3) and εa and εb by division by zero. By Theorem
17, we get

(21) e−1
1 = e−1

2 + e−1
3 .

If h = 0, then Bh and B coincide, and εa1 and εa2 also coincide with B, while
εa3 coincides with the tangent of γ at B (see Figure 33). Similarly, εb1 and εb2
coincide with A, and εb3 coincides with the tangent of γ at A. Hence we have
e1 = e2 = e3 = 0 by Proposition 1. Hence (21) holds in this case.
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We also get the following relation by Theorem 17:

(22) e−1
3 + r−1

A = e−1
0 .

Assume h = 0. Then we get e3 = 0 as just we have seen. While the circles εa and
εb coincide with the circles εa0 and εb0, respectively (see Figure 33). Hence we get
e3 = 0, while rA = e0. Therefore (22) is true in this case.

A=Ah=εb1=εb2 B=Bh=εa1=εa2C

γ

β α

εa=εa0
εb=εb0

εa3εb3

Figure 33: The case h = 0

9.2. The circles εa1 and εb1 by division by zero calculus. We consider the
circles εai and εbi (i = 1, 2) in the case h = 0 by division by zero calculus. Firstly
we consider the circles εa1 and εb1. Let (xa

1, y
a
1) be the coordinates of the center

of εa1. The radical axis of αh and γ has the equation x = ax = 2ab/(b + h) and
xa
1 = ax − e1 holds. With this relation and (xa

1 − a)2 + (ya1)
2 = (e1 + a)2 and

Theorem 17(ii), we get

(xa
1, y

a
1) =

(
ab(2a+ h)

(a+ h)(b+ h)
,

2a

b+ h

√
bh(c+ h)

a+ h

)
.

Therefore we get the equation εa1(x, y) = (x− xa
1)

2 + (y − ya1)
2 − (e1)

2 = 0 repre-
senting the circle εa1 in terms of a, b and h. Then we have

εa1(x, y) =
∞∑

n=−∞

Cnh
n = ((x− 2a)2 + y2)+

∞∑
n=1

(−1)n2(2an+1 − (an + (an + an−1b+ an−2b2 + · · ·+ bn))x)

an−1bn
hn.

sbsa

SbSa

b11 b12 b1∞ a1∞ a11a12

· · ·=b23=b22=b21 a21=a22=a23=· · ·

β

α

CA=b10=b20 a20=a10=B

Figure 34: a < b.
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We denote the figure represented by Cn = 0 by a1n. Then a10 = B. For
n = 1, 2, · · · , the figure a1n coincides with the line represented by the equation

x =
2a

n+ 2
if a = b,

x =
2a(a− b)

2a− (1 + (b/a)n)b
if a ̸= b.

From the last two equations, we see that a11 coincides with the line sb. If a ≤ b
(resp. b < a), the line a1n approaches to the axis (resp. the line represented by
x = 2a(a− b)/(2a− b), when n increases, which is denoted by a1∞ (see Figure 34).

For the circle εb1, we get the equation εb1(x, y) = (x−xb
1)

2+(y−yb1)
2−(e1)

2 = 0
representing the circle εb1 in a similar way, where

(xb
1, y

b
1) =

(
− ab(2b+ h)

(a+ h)(b+ h)
,

2b

a+ h

√
ah(c+ h)

b+ h

)
.

Therefore we get

εb1(x, y) =
∞∑

n=−∞

Cnh
n = ((x+ 2b)2 + y2)+

∞∑
n=1

(−1)n2(2bn+1 + (bn + (bn + bn−1a+ bn−2a2 + · · ·+ an))n)

anbn−1
hn.

We denote the figure represented by Cn = 0 by b1n. Then b10 = A, and b1n coincides
with the line represented by the equation

x = − 2b

n+ 2
if a = b,

x = − 2b(b− a)

2b− (1 + (a/b)n)a
if a ̸= b

for n = 1, 2, · · · . From the two equations with (14), we see that the line b11
coincides with the line sa. If b ≤ a (resp. a < b), the line b1n approaches to the
axis (resp. the line represented by the equation x = −2b(b − a)/(2b − a)), when
n increases, which is denoted by b1∞. The figures a1n, b

1
n, a

1
∞ and b1∞ are described

in Figure 34 in red, where a2n and b2n will be explained later.

9.3. The circles εa2 and εb2 by division by zero calculus. We consider the
circles εa2 and εb2. Let (xa

2, y
a
2) be the coordinates of the center of εa2. Solving the

equations (xa
2 − a)2 + (ya2)

2 = (a+ e2)
2 and (xa

2 − (a+ h))2 + (ya2)
2 = (a+ h− e2)

2

for xa
2 and ya2 with Theorem 17(iii), we have

(xa
2, y

a
2) =

(
ab(2a+ h)

ab+ ch
,
2a
√

bch(a+ h)

ab+ ch

)
.

Therefore we get the equation εa2(x, y) = (x− xa
2)

2 + (y − ya2)
2 − (e2)

2 = 0 repre-
senting the circle εa2. Considering εa2(x, y) as a function of h, we have

εa2(x, y) =
∞∑

n=−∞

Cnh
n = ((x− 2a)2 + y2) +

∞∑
n=1

(−1)n
2cn−1(2a2 − (c+ a)x)

an−1bn
hn.

We denote the figure represented by Cn = 0 by a2n. Then a20 = B and a21 = a22 = · · ·
coincides with the line sb by (14), which coincides with the line a11.
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For the circle εb2, we similarly get the equation εb2(x, y) = (x − xb
2)

2 + (y −
yb2)

2 − (e2)
2 = 0 representing the circle εb2, where

(xb
2, y

b
2) =

(
−ab(2b+ h)

ab+ ch
,
2b
√
ach(b+ h)

ab+ ch

)
.

Therefore we get

εb2(x, y) =
∞∑

n=−∞

Cnh
n = ((x+ 2b)2 + y2) +

∞∑
n=1

(−1)n
2cn−1(2b2 + (b+ c)x)

anbn−1
hn.

We denote the figure represented by Cn = 0 by b2n. Then b20 = A, and b21 = b22 =
b23 = · · · coincides with the line sa by (14), which also coincides with the line b11.
The figures a2n and b2n are described in green in Figure 34.

10. Centers of similitude of two circles revisited

Considering the unexpected figures derived from division by zero calculus
for the arbelos, we see the importances of the centers of similitude of two circles
forming the arbelos, some of which are demonstrated in subsection 6.3 and sections
7 and 9. However we do not consider the points Sa and Sb and the lines sa and
sb in detail, while it seems that they have never been considered before on the
study of the arbelos. In this section we consider Sa and sa in detail. The proofs
are straightforward with algebraic manipulation and are omitted.

Recall that αz is the circle touching β and γ in the opposite sense represented
by (12). The coordinates of the center of the circle α√

bc/a and its radius are given

by ((a − 2b)/2,
√
bc) and a/2 by Theorem 6. Let K be the point of tangency of

α and the Archimedean circle touching α and γ in the opposite sense, which is
denoted by β√

c/b
as stated after the proof of Theorem 6. We assume that the

circle α√
bc/a touches β and γ at points L and M , respectively (see Figure 35).

The points K, L and M have the following coordinates

K :

(
2ab

b+ c
,
2a

√
bc

b+ c

)
, L :

(
− 2b2

b+ c
,
2b
√
bc

b+ c

)
, M :

(
− 2b2

b+ c
,
2c
√
bc

b+ c

)
.

Let N be the point of intersection of the lines AL and BM . Then N has
coordinates (a− b,

√
bc). The line joining the farthest point on β from AB in the

region y < 0 and the farthest point on γ from AB in the region y > 0 passes
through the point Sa. We denote this line by va. Recall that σa is the circle of
center Sa passing through A. The next theorem shows that the point Sa and the
line sa has many notable properties (see Figure 35 for the statements from (i) to
(v) and see Figure 36 for the statements from (vi) to (viii)).
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γ
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β√ c
b

A BC

α
β

sa

Sa

α− c
a

α− b
a

N
α√

bc
a

M

L
K

va

Figure 35.

Theorem 18. The following statements are true.
(i) The line sa passes through the points L and M .
(ii) The circumcircle of the triangle LMN coincides with the circle α√

bc/a and
touches the perpendicular to AB at the center of γ at the point N .
(iii) The points B, K, M and N are collinear.
(iv) The circles α±b/a and α±c/a and sa touch at one of the farthest points on σa

from AB.
(v) The perpendicular to AB at the center of β (resp. γ) passes through the center
of α±c/a (resp. α±b/a) and touches α±

√
bc/a.

(vi) The perpendicular from K to AB touches the circle σa at the point of inter-
section of σa and AB.
(vii) If v =

√
(b2 + c2)/(2a2), then the circles α±v have center on the line sa and

the line va coincides with one of the internal common tangents of the two circles.
(viii) The circle touching σa internally at the point of intersection of α and σa in
the region y > 0 and touching AB is Archimedean and touches AB at the point
C. The radical axis of this circle and the circle β√ c

b
passes through the point B.
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γ

A BC
Sa

σa

α

αv

α−v
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Figure 36.

The Archimedean circle described in (viii) is the Bankoff triplet circle [1].
Recall that Σ± are the points of intersection of the circles σa, σb and σc, whose
coordinates are given by (16) (see Figure 37). The next theorem shows that the
circle αz touching the Bankoff triplet circle is uniquely determined independently
of a and b for a positive or negative real number z.

Theorem 19. The following statements are true.
(i) The circles α 1+

√
3

2

and β 1+
√
3

2

touch the Bankoff triplet circle externally and

their points of intersection lie on the circle σc, one of which coincides with Σ+.
(ii) The circles α 1−

√
3

2

and β 1−
√
3

2

touch the Bankoff triplet circle externally and

their points of intersection lie on the circle σc, one of which coincides with Σ−.

The coordinates of the remaining point of intersection of α 1+
√
3

2

and β 1+
√
3

2

are( (
6
√
3 + 11

)
ab(b− a)

13a2 + 3
(
5− 2

√
3
)
ab+ 13b2

,

(
9
√
3 + 10

)
abc

13a2 + 3
(
5− 2

√
3
)
ab+ 13b2

)
.

The coordinates of the remaining point of intersection of α 1−
√
3

2

and β 1−
√
3

2

are( (
6
√
3− 11

)
ab(a− b)

13a2 + 3
(
5 + 2

√
3
)
ab+ 13b2

,−
(
9
√
3− 10

)
abc

13a2 + 3
(
5 + 2

√
3
)
ab+ 13b2

)
.

Since γ and the Bankoff triplet circle are orthogonal to σc, they are fixed
by the inversion in σc. This implies that the two circles α 1+

√
3

2

and β 1+
√
3

2

are

interchanged by the inversion. Therefore the two circles are the inverse to each
other by the inversion in σc. Similarly the circles α 1−

√
3

2

and β 1−
√
3

2

are the inverse

to each other by the inversion in σc.
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√
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2
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3
2

Figure 37.

11. Conclusion

We have shown that division by zero calculus gives us interesting and mean-
ingful results in both singular case and non-singular case. We have seen that the
unexpected figures such as the circle γ and the line sa are one of the most impor-
tant and essential ones for the study on the arbelos, but those figures have finally
got attention through the study using division by zero calculus.

Mathematicians usually may think that Laurent expansion belongs to analysis,
but it seems that division by zero calculus using Laurent expansion is a very
powerful tool even for the study of geometry. However we have no idea why we
can get such notable figures by division by zero calculus at this time of writing.
Thereby we hope that many mathematicians will join the study of division by zero
calculus and will get the reason for this and also find huge number of marvelous
things derived from division by zero calculus.

For more results brought by division by zero and division by zero calculus
in geometry see [2], [10], [11], [12], [13], [14], [15], [16], [17], [22], [23], [24], [25],
where all the papers except [14], [24] and [25] are considering problems in Wasan
geometry (Japanese geometry) or related to this geometry.

Acknowledgment. The author wishes to acknowledge Saburou Saitoh, professor
emeritus at Gunma University, for his kind help to improve this paper.
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