One Piece

VOLKER WILHELM THÜREY Bremen, Germany *

June 27, 2023

MSC-2020: 51

Keywords: Tiling; plane

Abstract

At first we tile the plane by 8-gons. Then we present a way to tile the plane by k-gons for a every fixed k for all natural numbers k larger than two. We use an infinite number of equal tiles to cover the plane.

1 Introduction

It is a widespread opinion that one can tile the plane \mathbb{R}^2 only with triangles, squares and regular 6-gons. This is wrong. Here we show another possibility.

Proposition 1. There is a tiling of the plane by 8-gons.

Proof. Instead of a written proof we prefer to show a picture. See Figure 1. \Box

Figure 1:

We think that it is useful to repeat the definition of a *simple polygon*.

A simple polygon with k vertices consists of k points $(x_1, y_1), (x_2, y_2), \dots, (x_{k-1}, y_{k-1}), (x_k, y_k)$ called *vertices*, and the straight lines between the vertices, where k > 2. It is homeomorphic to a circle. We demand that there are no three consecutive collinear points

^{*49 (0)421 591777,} volker@thuerey.de

One Piece

 $(x_i, y_i), (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2})$ for $1 \le i \le k-2$. Also we demand that the three points $(x_k, y_k), (x_1, y_1), (x_2, y_2)$ and $(x_{k-1}, y_{k-1}), (x_k, y_k), (x_1, y_1)$ are not collinear. We call this just described simple polygon a *k*-gon.

Definition 1. We call a polygon a *piece* if and only if it is one half of a regular 6-gon and it has 5 vertices. Please see the picture Figure 2.

We use the word *doublepiece* as a synonym for a regular 6-gon. See Figure 2, too.

Definition 2. Let t be any natural number.

We call a simple polygon a t row piece, if and only if t pieces are put in a row. Two pieces are joined together at a common edge.

We call a simple polygon a t row doublepiece, if and only if t doublepieces are put in a row. We call a simple polygon a t shift square, if and only if t squares are put upon the other, where the squares have sidelength 1 and each square is shifted by $\frac{1}{2}$. (Every number between 0 and 1 also works.)

See the example in Figure 3. There we show a 2 row piece and a 3 row doublepiece. See also the 3 shift square in Figure 4.

Note that a 1 row piece is just a piece, and a 1 row doublepiece is a doublepiece and also a regular 6-gon and a 1 shift square is a square.

Proposition 2. One can tile the plane with infinite copies of a t row piece for all natural numbers t; also we can tile the plane with infinite copies of a t row doublepiece for all t. Also we can tile the plane with infinite copies of a t shift square for all t.

Proof. Nearly trivial.

Proposition 3. A t row piece has $5+2 \cdot (t-1)$ vertices. A t row doublepiece has $2+4 \cdot t$ vertices. A t shift square has $4 \cdot t$ vertices.

Proof. Easy. The proofs are by induction.

2 Tiling

Theorem 1. There exists for all natural numbers k larger than 2 a tiling of \mathbb{R}^2 with k-gons, where infinite copies of a single tile are used.

Proof. For k = 3 and k = 4 and k = 6 the theorem is well-known. For k = 5 please see Figure 2. We use one piece and Proposition 2. Now let *k* be a natural number larger than 6.

Lemma 1. It holds $k \equiv p \mod 4$, where $p \in \{0, 1, 2, 3\}$.

Proof. Well-known.

We discuss the four possibilities.

• Possibility 1: p = 0. In this case we get a suitable t from the equation $k = 4 \cdot t$ and we take a t shift square as a k-gon. Please see Figure 3. The sequence of the numbers of k is $8, 12, 16, \ldots$

• Possibility 2: p = 1. These numbers are odd. Note that the set $\{5 + 2 \cdot (t - 1) \mid t \in \mathbb{N}\}$ contains all odd numbers larger than 3. See Proposition 3. We take a suitable t row piece as a *k*-gon. We get t from the equation $k = 4 \cdot t + 1$. The sequence of the numbers of *k* is 9, 13, 17,

• Possibility 3: p = 2. We get t from $k = 4 \cdot t + 2$. We take a suitable t row doublepiece as a *k*-gon. The sequence of the numbers of *k* is 10, 14, 18,

• Possibility 4: p = 3. These numbers also are odd. The sequence of the numbers of k is 7, 11, 15, 19,

The theorem is proven.

It follows some figures.

Figure 2: On the right we see a piece and a doublepiece

Figure 3:

On the right side

we see a 2 row piece

and a 3 row doublepiece

