One Piece

VOLKER WILHELM THÜREY

Bremen, Germany *
June 27, 2023

MSC-2020: 51
Keywords: Tiling; plane

Abstract

At first we tile the plane by 8 -gons. Then we present a way to tile the plane by k-gons for a every fixed k for all natural numbers k larger than two. We use an infinite number of equal tiles to cover the plane.

1 Introduction

It is a widespread opinion that one can tile the plane \mathbb{R}^{2} only with triangles, squares and regular 6 -gons. This is wrong. Here we show another possibility.

Proposition 1. There is a tiling of the plane by 8 -gons.
Proof. Instead of a written proof we prerfer to show a picture. See Figure 1.

Figure 1:
We see four equal 8 -gons.
With infinite many of these tiles
we can cover the plane.

We think that it is useful to repeat the definition of a simple polygon.
A simple polygon with k vertices consists of k points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right)$ called vertices, and the straight lines between the vertices, where $k>2$. It is homeomorphic to a circle. We demand that there are no three consecutive collinear points

[^0]$\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right),\left(x_{i+2}, y_{i+2}\right)$ for $1 \leq i \leq k-2$. Also we demand that the three points $\left(x_{k}, y_{k}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right),\left(x_{1}, y_{1}\right)$ are not collinear.
We call this just described simple polygon a k-gon.
Definition 1. We call a polygon a piece if and only if it is one half of a regular 6-gon and it has 5 vertices. Please see the picture Figure 2.
We use the word doublepiece as a synonym for a regular 6-gon. See Figure 2, too.
Definition 2. Let t be any natural number.
We call a simple polygon a t row piece, if and only if t pieces are put in a row. Two pieces are joined together at a common edge.
We call a simple polygon a t row doublepiece, if and only if t doublepieces are put in a row. We call a simple polygon a t shift square, if and only if t squares are put upon the other, where the squares have sidelength 1 and each square is shifted by $\frac{1}{2}$. (Every number between 0 and 1 also works.)

See the example in Figure 3. There we show a 2 row piece and a 3 row doublepiece. See also the 3 shift square in Figure 4.
Note that a 1 row piece is just a piece, and a 1 row doublepiece is a doublepiece and also a regular 6 -gon and a 1 shift square is a square.

Proposition 2. One can tile the plane with infinite copies of a t row piece for all natural numbers t; also we can tile the plane with infinite copies of a t row doublepiece for all t. Also we can tile the plane with infinite copies of a t shift square for all t.

Proof. Nearly trivial.
Proposition 3. A t row piece has $5+2 \cdot(\mathrm{t}-1)$ vertices. A t row doublepiece has $2+4 \cdot \mathrm{t}$ vertices. A t shift square has $4 \cdot t$ vertices.

Proof. Easy. The proofs are by induction.

2 Tiling

Theorem 1. There exists for all natural numbers k larger than 2 a tiling of \mathbb{R}^{2} with k-gons, where infinite copies of a single tile are used.

Proof. For $k=3$ and $k=4$ and $k=6$ the theorem is well-known. For $k=5$ please see Figure 2. We use one piece and Proposition 2.
Now let k be a natural number larger than 6 .

Lemma 1. It holds $k \equiv p \bmod 4$, where $p \in\{0,1,2,3\}$.
Proof. Well-known.

One Piece

We discuss the four possibilities.

- Possibility 1: $p=0$. In this case we get a suitable t from the equation $k=4 \cdot \mathrm{t}$ and we take a t shift square as a k-gon. Please see Figure 3.
The sequence of the numbers of k is $8,12,16, \ldots$.
- Possibility 2: $p=1$. These numbers are odd. Note that the set $\{5+2 \cdot(\mathrm{t}-1) \mid \mathrm{t} \in \mathbb{N}\}$ contains all odd numbers larger than 3. See Proposition 3. We take a suitable t row piece as a k-gon. We get t from the equation $k=4 \cdot \mathrm{t}+1$.
The sequence of the numbers of k is $9,13,17, \ldots$.
- Possibility 3: $p=2$. We get t from $k=4 \cdot \mathrm{t}+2$. We take a suitable t row doublepiece as a k-gon.
The sequence of the numbers of k is $10,14,18, \ldots$.
- Possibility 4: $p=3$. These numbers also are odd.

The sequence of the numbers of k is $7,11,15,19, \ldots$.

The theorem is proven.

It follows some figures.

Figure 2:
On the right
we see a piece
and a doublepiece

Figure 3:
On the right side

we see a 2 row piece
and a 3 row doublepiece

One Piece

Figure 4:
On the right side
we see a
3 shift square

[^0]: *49 (0)421591777, volker@thuerey.de

