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Abstract. In this paper we study the global electrostatic energy behaviour

of mutually repelling charged electrons on the surface of a unit-radius sphere.
Using the method of compression, we show that the total electrostatic energy

Uk(N) of N mutually repelling particles on a sphere of unit radius in Rk
satisfies the lower bound

Uk(N)�ε
N2

√
k
.

1. Introduction

According to Coulomb’s law the electrostatic potential energy between any two
pair electrons with equal charges e = ei = ej on the surface of a sphere with
respective position vectors ~ri and ~rj is given as

Uij = Ke
eiej
~rij

where Ke is Coulomb’s constant and ~rij = ||~ri − ~rj || is the distance between the
pair of charged electron. By making the assignment e = ei = ej = 1 and Ke = 1,
it can be seen that the electrostatic potential energy reduces to

Uij =
1

~rij
.

To this end, the total electrostatic energy interaction among N charged electrons
is given by the sum

U(N) =
∑

1≤i<j≤N

1

||~ri − ~rj ||
.

The Thompson Problem is a conundrum that asks for the arrangement of any num-
ber of electrons on the surface of a unit-radius sphere with the lowest possible global
electrostatic potential energy. In other words, when the lowest total electrostatic
potential energy exists between pairs of electrons on the sphere’s surface, the prob-
lem will be solved. In order to do this, it is worthwhile to examine and minimize
the overall behavior of the total energy for sufficiently large number of electrons.
Only a few particular cases of the problem have been addressed, and the actual
problem has not made much progress. Since a single electron is not affected by any
external forces, the case of a single electron presents a trivial problem. The best
solution for the two electron scenario is to arrange the electrons on the sphere so
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that they are both antipodal, or that the line connecting them runs through the
center of the sphere. This results in a minimum total electrostatic potential energy
of U(2) = 1

2 . When there are more than three electrons present, the situation
ceases to be trivial. Electrons forming an equilateral triangle on a great circle
of a sphere have been shown to be the best way to solve the Thompson issue for
the case of three electrons [2]. On the other hand, it is known that the vertices of
a regular tetrahedron contain the four electron case. Massive computation was
used to rigorously arrive at the best answer for the five electron scenario (see [5]),
where it is demonstrated that the vertices of a triangular dipyramid must hold the
electrons. The discovery that the six electron case exists on an octahedron can
be found in [7], and that the twelve electron case holds for electrons resting on the
vertices of an icosahedron in [1]. There are many more known special situations,
but it has not yet been possible to arrange all sufficiently large N electrons on a
surface of a sphere in a way that has the lowest possible overall electrostatic po-
tential energy. The primary way of attack for the Thompson problem has been the
use of algorithmic and local optimization techniques to the energy function U(N)
[3], [4],[8]. The issue with the general total energy function of the form∑

i<j

f(||~ri − ~rj ||)

where f is a decreasing real-valued function, can also be taken into consideration.
The problem can also be studied for spheres in higher dimensions Rk for k ≥ 3. It
is an unsolved and a related problem to find the minimum Coulomb potential

U(N) =
∑

i<j≤N

1

||~ri − ~rj ||
.

In this paper, we apply the method of compression [6] to study the global electro-
static potential energy behaviour of all sufficiently large number of charged electrons
repelling each other on the surface of a sphere; in particular, we obtain the result

Theorem 1.1. Let Uk(N) denotes the total electrostatic energy of N mutually
repelling particles on a sphere of unit radius in Rk. Then we have

Uk(N)�ε
N2

√
k
.

1.1. Notations and conventions. Through out this paper, we will assume that
N is sufficiently large. We write f(s)� g(s) if there there exists a constant c > 0
such that f(s) ≥ c|g(s)| for all s sufficiently large. If the constant depends of
some variable, say t, then we denote the inequality by f(s) �t g(s). We write

f(s) = o(g(s)) if the limits holds lim
s−→∞

f(s)
g(s) = 0.

2. Preliminaries and background

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.
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Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale 1 ≥ m > 0 with Vm : Rn −→ Rn is a
bijective map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.

Lemma 2.4. The estimate holds∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m > 0.
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Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Definition 2.7. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all 1 ≤ i ≤ n. Then
by the ball induced by (x1, x2, . . . , xn) ∈ Rn under compression of scale m > 0,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Remark 2.8. In the geometry of balls under compression of scale m > 0, we will
assume implicitly that 1 ≥ m > 0. The circle induced by points under compression
is the ball induced on points when we take n = 2.

Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.
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In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.

Lemma 2.9 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 and
xi 6= xj for i 6= j, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 2.10. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] < G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] ≥ G ◦ Vm[~y],

then it follows that ||~y|| ≤ ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] < G ◦ Vm[~y]

then it follows from Proposition 2.3 that ||~z|| < ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 2.11. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.10 that

G ◦ Vm[~z] ≥ G ◦ Vm[~x].
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It follows that

G ◦ Vm[~y] > G ◦ Vm[~z]

≥ G ◦ Vm[~x]

> G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.12. Theorem 2.11 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

2.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.13. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.14. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball.

Theorem 2.15. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.10, we obtain the inequality

G ◦ Vm[~y] ≤ G ◦ Vm[~z] < G ◦ Vm[~x].

It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point ~y
is an admissible point of the ball B 1

2G◦Vm[~x][~x]. The latter equality follows from

assertion that two balls are indistinguishable. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]
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and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the indistinguishable balls and must satisfy the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

Remark 2.16. We note that we can replace the set Nn used in our construction
with Rn at the compromise of imposing the restrictions ~x = (x1, . . . , xn) ∈ Rn such
that xi > 1 for all 1 ≤ i ≤ n and xi 6= xj for i 6= j. The following construction in
our next result in the sequel employs this flexibility.

3. The lower bound

Theorem 3.1. Let Uk(N) denotes the total electrostatic energy of N mutually
repelling particles on a sphere of unit radius in Rk. Then we have

Uk(N)�ε
N2

√
k
.

Proof. Pick arbitrarily a point (x1, x2, . . . , xk) = ~xj ∈ Rk with xi > 1 for 1 ≤ i ≤ k
and xi 6= xl for i 6= l such that G ◦Vm[~xj ] = 2. This is achieved by choosing points
~xj with the property that

max1≤j≤N
2

sup(xji)
k
i=1 = 2 + ε

for some small ε > 0. This ensures the ball induced under compression is of radius

r =
G ◦ Vm[~xj ]

2
= 1

and of center the midpoint of the compression line, joining the points ~x and Vm[~x].
It is easy to see that the origin is not the center of the ball and points in the ball are
not symmetric to the origin. The ball can always be translated so that the origin
is at the center of the ball. Next we apply the compression of fixed scale m ≤ 1,
given by Vm[~xj ] and construct the ball induced by the compression given by

K := B 1
2G◦Vm[~x][~xj ]

with radius
(G◦Vm[~xj ])

2 = 1. Now we choose N
2 admissible points ~xj including

their corresponding N
2 image points which are also admissible points of the ball

B 1
2G◦Vm[~xj ][~xj ] constructed. Let us denotes the set of all admissible points of the
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ball - points on the surface of the sphere - with Kadmissible. It follows that the total
electrostatic energy of any mutually repelling particles on the sphere is given by

Uk(N) =
∑

(~xt,~xj)
~xi,~xj∈Kadmissible

1≤t<j≤N

1

||~xt − ~xj ||

≥
∑

(~xt,~xj)
~xj∈Kadmissible

1≤j≤N
2

Vm[~xj ]=~xt

1

G ◦ Vm[~xj ]
+

∑
(~xt,~xj)

~xi,~xj∈Kadmissible

1≤t<j≤N
2

Vm[~xj ] 6=~xt

1

||~xt − ~xj ||

>
∑

(~xt,~xj)
~xj∈Kadmissible

1≤j≤N
2

Vm[~xj ]=~xt

1

G ◦ Vm[~xj ]
+

∑
(~xt,~xj)

~xi,~xj∈Kadmissible

1≤t<j≤N
2

Vm[~xj ] 6=~xt

1

G ◦ Vm[~xj ]

�
∑

(~xt,~xj)
~xi,~xj∈Kadmissible

1≤t<j≤N
2

Vm[~xj ] 6=~xt

1

G ◦ Vm[~xj ]

�
∑

(~xt,~xj)

max
1≤j≤N

2
sup(xji

)ki=1=2+ε

1≤i<j≤N
2

1

sup(xji)
k
i=1

√
k

�
∑

(~xi,~xj)

max
1≤j≤N

2
sup(xji

)ki=1=2+ε

1≤i<j≤N
2

1

max1≤j≤N
2

sup(xji)
k
i=1

√
k

=
1

(2 + ε)
√
k

∑
(~xi,~xj)

1≤i<j≤N
2

1

=
1

(2 + ε)
√
k
×
(N

2

2

)
� 1

(2 + ε)
√
k
×N2

and the lower bound follows. �

1.
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