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Abstract. In this paper, using the method of compression, we prove a stronger

upper bound for the Erdős unit distance problem in the plane by showing that

#

{
|| ~xj − ~xt|| : ~xt, ~xj ∈ E ⊂ R2, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
�2 n1+o(1).

1. Introduction

Erdős posed in 1946 the problem of counting the number of unit distances that
can be determined by a set of n points in the plane. It is known (see [1]) that the
number of unit distances that can be determined by n points in the plane is lower
bounded by

n1+
c

log log n .

Erdős asks if the upper bound for the number of unit distances that can be deter-
mined by n points in the plane can also be a function of this form. In other words,
the problem asks if the lower bound of Erdős is the best possible. What is known
currently is the upper bound (see [2]) of the form

n
4
3

due to Spencer, Szemerdi and Trotter.
In this paper we improve on this upper bound by showing that

Theorem 1.1. The upper bound holds

#

{
|| ~xj − ~xt|| : ~xt, ~xj ∈ E ⊂ R2, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
�2 n

1+o(1).

2. Preliminary results

In this section we launch the notion of compression of points in space. We study
the mass of compression and its accompanied estimates. These estimates turn out
to be useful for estimating the gap of compression, which we will launch in the
sequel.

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
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for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws lattice points away from the origin close to the origin.

Proposition 2.1. A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective
map. In particular the compression Vm : Rn −→ Rn is a bijective map of order 2.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition
of the map. Thus the map is bijective. The latter claim follows by noting that
V2

m[~x] = ~x. �

2.1. The mass of compression estimates. In this section we study the mass of
a compression in a given scale. We use the upper and lower estimates of the mass of
compression to establish corresponding estimates for the gap of compression. These
estimates will form an essential tool for establishing the main result of this paper.

Definition 2.3. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Lemma 2.4. The estimate holds∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 2.2 (The mass of compression estimates). Let (x1, x2, . . . , xn) ∈ Nn

with xi 6= xj for 1 ≤ i, j ≤ n with i 6= j, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k
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and the upper estimate follows by the estimate for this sum by appealing to Lemma
2.4. The lower estimate also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.

2.2. Compression gap estimates. In this section we recall the notion of the gap
of compression and its various estimates. We prove upper and lower bounding the
gap of a point under compression of any scale.

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
.

Proposition 2.3 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
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than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] ≤ G ◦ Vm[~y]

if and only if ||~x|| ≤ ||~y|| for ~x, ~y ∈ Nn. This important transference principle will
be mostly put to use in obtaining our results.

Lemma 2.7 (Compression gap estimates). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Proof. The estimates follows by leveraging the estimates in Proposition 2.2 and
noting that

nInf(x2j )�M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
� nsup(x2j ).

�

Definition 2.8. Let (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then by the ball induced by (x1, x2, . . . , xn) ∈ Nn under compression of scale m,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ ≤ 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Theorem 2.9. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows that ||~y|| < ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 2.3 that ||~z|| ≤ ||~y|| and sup(zj) ≤ sup(yj) by
Lemma 2.7. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �
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Theorem 2.10. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.9 that

G ◦ Vm[~z] > G ◦ Vm[~x].

It follows that

G ◦ Vm[~y] ≥ G ◦ Vm[~z]

> G ◦ Vm[~x]

≥ G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.11. Theorem 2.10 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

2.3. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.12. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.13. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.

Theorem 2.14. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.9, we obtain the inequality

G ◦ Vm[~y] < G ◦ Vm[~z] ≤ G ◦ Vm[~x].
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It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point
~y ∈ B 1

2G◦Vm[~x][~x] is an admissible point.. This contradicts the fact that the point

~y ∈ B 1
2G◦Vm[~x][~x] is an admissible point. Now we notice that ~y ∈ B 1

2G◦Vm[~x][~x]

certainly implies G ◦ Vm[~y] ≤ G ◦ Vm[~x]. Conversely we notice as well that ~x ∈
B 1

2G◦Vm[~y][~y], which certainly implies G ◦Vm[~x] ≤ G ◦Vm[~y] by Theorem 2.9. Thus

the conclusion follows. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y must satisfy the
inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x]

and ~y is indeed admissible, thereby ending the proof. �

Definition 2.15 (Translation of balls). Let ~x ∈ Rk and B 1
2G◦Vm[~x][~x] be the ball

induced under compression. Then we denote the map

T~v : B 1
2G◦Vm[~x][~x] −→ B~v1

2G◦Vm[~x][~x]

as the translation of the ball by the vector ~v ∈ Rk, so that for any ~y ∈ B 1
2G◦Vm[~x][~x]

then

~y + ~v ∈ B~v1
2G◦Vm[~x][~x].

3. Main theorem

In this section we leverage the estimate of the gap of compression to study the
problem of determining the number of unit distances that can be formed from n
points in the plane.

Theorem 3.1. Let E ⊂ R2 be a set of n points in general position and I ={
|| ~xj − ~xt|| : ~xt, ~xj ∈ E ⊂ R2, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
, then we have

#I �2 n
1+o(1).

Proof. First pick a point ~xj ∈ R2, set G ◦V1[~xj ] = 1 and apply the compression V1

on ~xj . Next construct the ball induced under compression

B 1
2G◦V1[~xj ][~xj ].
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We remark that the ball so constructed is a ball of radius 1
2G ◦V1[~xj ] = 1

2 , so that
for any admissible point ~xk 6= ~xj with ~xk ∈ B 1

2G◦V1[~xj ][~xj ] there must exists the

admissible point V1[~xk] such that

||~xk − V1[~xk]|| = 1

so that any such n
2 pairs of admissible points determines at least n

2 unit distances.
Now for any n such admissible points on the ball and by virtue of the restriction

G ◦ V1[~xj ] = 1(3.1)

we make the optimal assignment

max1≤j≤nsup1≤s≤2(xjs) = no(1),

since points ~xl far away from the origin with xls for 1 ≤ s ≤ 2 must have large
compression gaps by virtue of Lemma 2.7. In particular, the point ~xl must be
such that xls = 1 + ε with 1 ≤ s ≤ 2 for any small ε > 0 in order to satisfy the
requirement in (3.1). The number of unit distances induced by n admissible points
on the ball so constructed is at most∑

1≤j≤n
2

G◦V1[~xj ]=1

1 =
∑

1≤j≤n
2

B 1
2
G◦V1[~xj ]

[~xj ]∩R2

max1≤j≤nsup1≤s≤2(xjs )=no(1)

G ◦ V1[~xj ]

�2

∑
1≤j≤n

2

max1≤j≤nsup1≤s≤2(xjs )=no(1)

sup1≤s≤2(xjs)

�2

∑
1≤j≤n

2

max1≤j≤nsup1≤s≤2(xjs )=no(1)

max1≤j≤nsup1≤s≤2(xjs)

= no(1)
∑

1≤j≤n
2

1

�2 n
1+o(1).

Now for any set of n points in general position in the plane R2, let us apply the
translation with a fixed vector ~v ∈ R2

T~v : B 1
2G◦V1[~xj ][~xj ] −→ B

~v
1
2G◦V1[~xj ]

[~xj ]

so that the new ball B~v1
2G◦V1[~xj ]

[~xj ] now lives in the smallest region containing all

the n points in general position. We remark that this new ball is still of radius
1
2 but contains points - including admissible points - all of which are translates of

points in the previous ball B 1
2G◦V1[~xj ][~xj ] by a fixed vector ~v ∈ R2. We remark that

the unit distances are all preserved so that the number of unit distances determined
by the n points in general position is upper bounded by

�2 n
1+o(1)

thereby ending the proof. �

1.

1

.
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