Geometry

1910 Submissions

[6] viXra:1910.0620 [pdf] replaced on 2019-11-30 12:21:43

How and Why to Use my Graphic Method.

Authors: Dante Servi
Comments: 28 Pages.

Update of sheet 8/14. Further reflections related to my article published on viXra.org in the geometry group at number 1910.0086 (revision v3) with the following title: Poligonal spirals with manageable inclination complete version of the discussion. ---- Note: My article to which this refers is found below, at number 1910.0086. As is for my article to which this refers, it is possible that also this article of mine is updated, to be sure to download the latest revision do not click on (pdf) but on (viXra: nnnn.nnnn), it will open the page where all the revisions are, (v1), (v2), (v3), (v...). On this page click on (v...) to download the latest revision.
Category: Geometry

[5] viXra:1910.0602 [pdf] submitted on 2019-10-29 06:56:33

Galilean Transformations of Tenzors Галилеевы преобразования тензоров

Authors: Valery Timin
Comments: timinva@yandex.ru, 14 pages in Russian

This paper deals with the orthonormal transformation of the vectors and tensors of the 4-dimensional Galilean space. Such transformations are transformations of rotation and transition to a moving coordinate system. Formulas and matrices of these transformations are given. The transition from one coordinate system to another, moving relative to the first, did long before the theory of relativity. The natural space for "transitions from one coordinate system to another" is the Galilean space. It is the space of classical mechanics. This paper focuses on the 4-dimensional interpretation of such transformations. В данной работе рассмотрены вопросы ортонормированного преобразования векторов и тензоров 4-мерного галилеева пространства. Такими преобразованиями являются преобразования поворота и перехода в движущуюся систему координат. Даны формулы и матрицы этих преобразований. Переход от одной системы координат к другой, движущейся относительно первой, делали задолго до появления теории относительности. Естественным пространством для "переходов от одной системы координат к другой" является галилеево пространство. Именно оно является пространством классической механики. В данной работе сделан упор на 4-мерной интерпретации таких преобразований.
Category: Geometry

[4] viXra:1910.0185 [pdf] replaced on 2019-10-15 07:04:59

A Moduli Space in Riemannian Geometry

Authors: Antoine Balan
Comments: 2 pages, written in french

In the realm of the riemannian geometry, a moduli space is defined.
Category: Geometry

[3] viXra:1910.0141 [pdf] submitted on 2019-10-09 09:09:54

A Moduli Space in Spinorial Geometry

Authors: Antoine Balan
Comments: 3 pages, written in french

A moduli space is defined over a spin manifold by mean of the Dirac operator, finite dimensionality and compactness are discussed.
Category: Geometry

[2] viXra:1910.0103 [pdf] submitted on 2019-10-07 08:49:06

The Yang-Mills Flow for Connections

Authors: Antoine Balan
Comments: 2 pages, written

For a family of connections in a vector fiber bundle over a riemannian manifold, a Yang-Mills flow is defined with help of the riemannian curvature of the connections.
Category: Geometry

[1] viXra:1910.0086 [pdf] replaced on 2019-10-15 15:44:38

Spirali Poligonali Con Inclinazione Gestibile Versione Completa Della Trattazione

Authors: Dante Servi
Comments: 29 Pages.

Descrizione di un tipo di spirale composto da un insieme di segmenti che con riferimento ad un punto che definisco origine hanno una inclinazione gestibile e volendo costante. Descrizione di metodo grafico e di algoritmi che permettono di realizzarlo. Nel foglio 10/10 descrivo come realizzare una spirale poligonale che ha tutti i vertici in comune con una spirale logaritmica. Nel foglio 10 bis descrivo come calcolare (dopo aver deciso il grado di precisione con cui si vuol seguire il percorso della logaritmica) l'inclinazione da attribuire ai segmenti destinati a realizzare la spirale poligonale. Sempre nel foglio 10 bis affermo che il mio metodo utilizzato al contrario può essere almeno provato per studiare in un modo nuovo una curva sconosciuta. Di seguito provo a confrontare il mio metodo con la spirale di Archimede, ricavando le informazioni utili per realizzare una poligonale che abbia tutti i suoi vertici in comune con essa, sia graficamente che definendo un algoritmo. Description of a type of spiral composed of a set of segments that with a point that I define origin have a manageable inclination and wanting to be constant. Description of graphic method and algorithms that allow to realize it. In sheet 10/10 I describe how to make a polygonal spiral that has all the vertices in common with a logarithmic spiral. In sheet 10 bis I describe how to calculate (after deciding the degree of precision with which we want to follow the path of the logarithmic) the inclination to be attributed to the segments destined to realize the polygonal spiral. Also in sheet 10 bis I state that my method used on the contrary can at least be tried to study an unknown curve in a new way. Next I try to compare my method with the Archimede spiral, obtaining the information useful for creating a polygon that has all its vertices in common with it, both graphically and by defining an algorithm.
Category: Geometry