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Abstract

Because newcomers to GA may have difficulty applying its identities

to real problems, we use those identities to prove the equivalence of two

expressions for rotations of a vector. Rather than simply present the proof,

we first review the relevant GA identities, then formulate and explore

reasonable conjectures that lead, promptly, to a solution.

1 Introduction

A particularly useful feature of GA is its ability to express rotations conveniently.

For example (Fig. 1), the vector v′ that results from the rotation of vector v

through the angle θ about an axis perpendicular to the bivector B̂, and in the

sense of the rotation of B̂ itself, is

v
′ =

[

e−̂Bθ/2
]

v

[

e−̂Bθ/2
]

. (1.1)

Macdonald ([1], p. 89 ) begins the derivation of that formula by expressing

v as the sum of its components parallel and perpendicular to B̂ (v‖ and v⊥,

respectively). Then, Macdonald notes that while the vertical component is

unaffected by the rotation, the parallel component becomes v‖e
B̂θ. Thus, v′ is

also
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Figure 1: Relations between vector v; its components perpendicular and parallel

to B̂; and the rotated vector v′.

v
′ = v⊥ + v‖

[

cos θ + B̂ sin θ
]

︸ ︷︷ ︸

=eB̂θ

= v⊥ + v‖ cos θ + v‖B̂ sin θ. (1.2)

How might we demonstrate that Eqs. (1.1) and (1.2) are equivalent? We

begin by expanding Eq. 1.1 :

v
′ =

[

cos
θ

2
− B̂ sin

θ

2

]

v

[

cos
θ

2
+ B̂ sin

θ

2

]

= v cos2
θ

2
+ vB̂ cos

θ

2
sin

θ

2
− B̂v cos

θ

2
sin

θ

2
− B̂vB̂ sin2

θ

2
. (1.3)

To make further progress, we need to review a bit.

2 From 3D Euclidean GA: some identities that

we will use . . .

For any vector v and any unit bivector B̂,

1. The multiplicative inverse of B̂: B̂
−1

= -B̂

2. B̂ · v = -v · B̂

3. B̂ ∧ v = v ∧ B̂

4. vB̂ = v · B̂+ v ∧ B̂

5. B̂v = B̂ · v + B̂ ∧ v = -v · B̂+ v ∧ B̂
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6. The components of v parallel to and perpendicular to B̂ are:

(a) vq =
(

v · B̂

)

B̂
−1

=
(

v · B̂

)(
-B̂

)

(b) v⊥ =
(

v ∧ B̂

)

B̂
−1

=
(

v ∧ B̂

)(
-B̂

)

7. From 3, 4, and 5 (above),

(a) B̂v = -vB̂+ 2v ∧ B̂

(b) B̂v = vB̂− 2v · B̂

8. The component of v perpendicular to B̂: v⊥ =
(

v ∧ B̂

)(
-B̂

)

9. From trigonometry:

(a) 2 sin
α

2
cos

α

2
= sinα

(b) cos2
α

2
− sin2

α

2
= cosα

3 Demonstration of the Equivalence of Our Two

Expressions for v′

After reviewing the identities in Section 2 , several possible routes might suggest

themselves. For example, we can combine the two cos
θ

2
sin

θ

2
terms in Eq. (1.2)

to obtain

v
′ = v cos2

θ

2
+
(

vB̂− B̂v

)

sin
θ

2
cos

θ

2
− B̂vB̂ sin2

θ

2
.

Now, from point 7b in Section 2 , we see that vB̂− B̂v = 2v · B̂ . Therefore,

v
′ = v cos2

θ

2
+ 2v · B̂ sin

θ

2
cos

θ

2
− B̂vB̂ sin2

θ

2

= v cos2
θ

2
+ v · B̂

[

2 sin
θ

2
cos

θ

2

]

− B̂vB̂ sin2
θ

2

= v cos2
θ

2
+ v · B̂ sin θ − B̂vB̂ sin2

θ

2
. (3.1)

We now have a sin θ term in this expression for v′, just as we do in Eq. (1.2).

We can demonstrate the equality of those terms (i.e., that v‖B̂ = v ·B̂) by noting

that v‖ =
(

v · B̂

)(

B̂
−1

)

, so that v‖B̂ =
(

v · B̂

)(

B̂
−1

)

B̂ = v · B̂

(

B̂
−1

B̂

)

=

v · B̂.

What to do with the factor B̂vB̂ in Eq. (1.3) may not be clear. One idea

is to “reverse” the product B̂v to obtain vB̂, so that the B̂ in that part will
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cancel with the second B̂. We can do this in either of two ways, using items 7a

and 7b :

B̂vB̂ =
[

vB̂+ 2v ∧ B̂

]

B̂

= vB̂B̂+ 2
(

v ∧ B̂

)

B̂

= -v + 2
(

v ∧ B̂

)

B̂,

and

B̂vB̂ =
[

vB̂− 2v · B̂

]

B̂

= vB̂B̂− 2
(

v · B̂

)

B̂

= -v − 2
(

v · B̂

)

B̂.

These approaches will work, but—at least when I attempted them —they turned

out to be tedious, and not at all insightful. So, let’s look for a different idea.

First, let’s note that we’re trying to demonstrate the equivalence between (1) a

relation that’s expressed in terms of the two vectors vq and v⊥ (i.e., Eq. (1.2)),

and (2) a relation that’s expressed in terms of products of v and B̂ (i.e., Eq.

(3.1) ). If we recall the derivations of items 6a and 6b , ([1], p. 119) we can see

that the product B̂vB̂ is indeed a sum or difference of vq and v⊥. Let’s find

out what that specific sum/difference is:

B̂vB̂ =
[

B̂ · v + B̂ ∧ v

]

=
[
-v · B̂+ v ∧ B̂

]

B̂

= -
(

v · B̂

)

B̂+
(

v ∧ B̂

)

B̂

=
(

v · B̂

)(
-B̂

)

−

(

v ∧ B̂

)(
-B̂

)

= v‖ − v⊥.

Substituting this result into Eq. (3.1),

v
′ = v cos2

θ

2
+ v · B̂ sin θ −

(
v‖ − v⊥

)
sin2

θ

2
.

Now we can see that the terms cos2
θ

2
and sin2

θ

2
might be combined per the

double-angle formulas (items 9a and 9b) if we write v as vq + v⊥ in the cos2

term:

v
′ = (vq + v⊥) cos

2
θ

2
+ v · B̂ sin θ −

(
v‖ − v⊥

)
sin2

θ

2
.

The rest is simple:

v
′ = v⊥

(

cos2
θ

2
+ sin2

θ

2

)

+ v‖

(

cos2
θ

2
− sin2

θ

2

)

v · B̂ sin θ

= v⊥ + v‖ cos θ + v · B̂ sin θ . (3.2)
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