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Abstract

To help fill the need for examples of introductory-level problems that

have been solved via Geometric Algebra (GA), we show how to calculate

the angle through which two unit vectors must be rotated in order to be

parallel to each other. Among the ideas that we use are a transformation

of the usual GA formula for rotations, and the use of GA products to

eliminated variables in simultaneous equations. We will show the benefits

of (1) examining an interactive GeoGebra construction before attempting

a solution, and (2) considering a range of implications of given information.
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1 Introduction

As an example of the sort of problems that can be solved by rotating vectors

until they are parallel to each other, consider the three spheres in Fig. 1: the

lines from the spheres’ centers to the respective points of tangency are parallel to

each other, because all three lines are perpendicular to the same plane. In this

document, we will learn to use Geometric Algebra (GA) to rotate two vectors in

3D until they are parallel to each other (Fig. 2).

Figure 1: The lines from the spheres’ centers to the respective points of tangency

are parallel to each other, because all are perpendicular to the same plane.

Figure 2: We want to rotate the vectors u1 and u2 to the positions u′, where

they will be parallel to each other. How can we determine the necessary rotation

angles (i.e., θ1 and θ2)? B̂1 and B̂2 are the unit bivectors of the respective

planes of rotation. There will be two values of θ1 (one for each position), and

two values of θ2 .
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2 Preliminary Observations and Thoughts

There will be two values of θ1
(one for each position), and two

values of θ2 .

From Fig. 2, we can see that there are only two positions at which the rotated

vectors will be parallel. θ1 —the angle through which u1 must be rotated to

reach one of those positions—is unaffected by the initial position of u2. Similarly,

θ2 is unaffected by the initial position of u2. Thus, θ1 and θ2 are independent

of each other. That independence should provide us with clues about how to

solve this problem.

3 Ideas that We will Use

The ideas that we will use include . . .

1. The exponential form of the equation for the vector w′ that results when

the vector w is rotated through the bivector angle B̂ϕ is

w′ =

[
e
−B̂

ϕ

2

]
w

[
e
B̂
ϕ

2

]
.

That equation reduces ([1], p. 89; [2] ) to

w′ = w⊥ +PB̂ (w) cosϕ+PB̂ (w) B̂ sinϕ,

where (Fig. 3) w⊥ is the component of w perpendicular to B̂, and the

vector PB̂ (w) is the projection of w upon B̂. Note that the vector

PB̂ (w) B̂ is the 90◦rotation of PB̂ (w) in the sense of B̂. Thus, PB̂ (w) B̂

is parallel to B̂, and w⊥ is perpendicular to both PB̂ (w) and PB̂ (w) B̂.

2. w⊥ =
(
w ∧ B̂

)
B̂

−1
= -

(
w ∧ B̂

)
B̂,

and PB̂ (w) =
(
w · B̂

)
B̂

−1
= -

(
w · B̂

)
B̂.

3. We can use GA products to eliminate variables in simultaneous equations.

For example, to find the intersection of the parameterized lines

L1 : x1 = a1 + λŵ1,

L2 : x2 = a2 + γŵ2,

we equate x1 and x2, for the specific values of λ and γ that correspond to

the point of intersection:

a1 + λ∗û1 = a2 + γ∗ŵ2.

Then, we eliminate one of the unknowns (λ∗ or γ∗) via the outer product.

To eliminate γ∗, we would take the outer product of both sides with û2:

[a1 + λ∗ŵ1] ∧ ŵ2 = [a2 + γ∗ŵ2] ∧ ŵ2;

a1 ∧ ŵ2 + λ∗ŵ1 ∧ ŵ2 = a2 ∧ ŵ2.
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Figure 3: w⊥ is the component of w perpendicular to B̂, and PB̂ (w) is the

projection of w upon B̂. Note that PB̂ (w) B̂ is the 90◦rotation of PB̂ (w) in

the sense of B̂. Thus, PB̂ (w) B̂ is parallel to B̂, and w⊥ is perpendicular to

both PB̂ (w) and PB̂ (w) B̂.

4 Solution

We start by expressing the rotations of u1 and u2 as

u′
1 = u1⊥ +PB̂1

(u1) cos θ1 +PB̂1
(u1) B̂1 sin θ1;

u′
2 = u2⊥ +PB̂2

(u2) cos θ2 +PB̂2
(u2) B̂2 sin θ2.

Next, we equate vectors u′
1 and u′

2:

u1⊥ +PB̂1
(u1) cos θ1 +PB̂1

(u1) B̂1 sin θ1

= u2⊥ +PB̂2
(u2) cos θ2 +PB̂2

(u2) B̂2 sin θ2 . (1)

The independence of θ1 and θ2 should make us look for a way to eliminate

one or the other of those angles from Eq. (1). Is there a way to eliminate (for

example) both of the θ2 terms via a geometric product? We can’t do so via the

outer product, because there is no vector that is parallel to both of the vectors

PB̂2
(u2) and PB̂2

(u2) B̂2. To use the inner (dot) product, we would need to

identify some vector that is parallel to both of those vectors. Is there such a

vector? Yes: it’s u2⊥. Thus, we “dot” both sides of Eq. (1) with u2⊥. After

simplifying, we obtain{
u2⊥ ·PB̂1

(u1)
}
cos θ1 +

{
u2⊥ ·

[
PB̂1

(u1) B̂1

]}
sin θ1 = u2⊥ · [u2⊥ − u1⊥] . (2)

We now have several options. The route that is perhaps most satisfactory

(Ref. [3]) begins by recognizing that only the component of u2⊥ that is parallel

to B̂1 contributes to u2⊥ ·PB̂1
and u2⊥ ·

[
PB̂1

(u1) B̂1

]
. Thus, Eq. (2) becomes{

PB̂1
(u2⊥) ·PB̂1

(u1)
}
cos θ1 +

{
PB̂1

(u2⊥) ·
[
PB̂1

(u1) B̂1

]}
sin θ1

= u2⊥ · [u2⊥ − u1⊥] .
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Again following [3], we recognize that the coefficients of the trigonometric

functions of θ1 can be transformed into the sine and cosine of an angle that we

shall call α1. First, we divide both sides by the product ∥PB̂1
(u2⊥) ∥∥PB̂1

(u1) ∥:{
PB̂1

(u2⊥) ·PB̂1
(u1)

}
∥PB̂1

(u2⊥) ∥∥PB̂1
(u1) ∥

cos θ1 +
PB̂1

(u2⊥) ·
[
PB̂1

(u1) B̂1

]
∥PB̂1

(u2⊥) ∥∥PB̂1
(u1) ∥

sin θ1

=
u2⊥ · [u2⊥ − u1⊥]

∥PB̂1
(u2⊥) ∥∥PB̂1

(u1) ∥
.

Now, we recognize that ∥PB̂1
(u1) B̂1∥ = ∥PB̂1

(u1) ∥. We also recognize that

we may define

cosα1 =

{
PB̂1

(u2⊥) ·PB̂1
(u1)

}
∥PB̂1

(u2⊥) ∥∥PB̂1
(u1) ∥

,

and

sinα1 =
PB̂1

(u2⊥) ·
[
PB̂1

(u1) B̂1

]
∥PB̂1

(u2⊥) ∥∥PB̂1
(u1) ∥

.

Thus,

A trigonometric identity:

cos (γ − β)

= cos γ cosβ + sin γ sinβ .

cos θ1 cosα1 + sin θ1 sinα1 =
u2⊥ · [u2⊥ − u1⊥]

∥PB̂1
(u2⊥) ∥∥PB̂1

(u1) ∥
;

cos (θ1 − α1) =
u2⊥ · [u2⊥ − u1⊥]

∥PB̂1
(u2⊥) ∥∥PB̂1

(u1) ∥
;

and

θ1 = α1 ± cos−1

{
u2⊥ · [u2⊥ − u1⊥]

∥PB̂1
(u2⊥) ∥∥PB̂1

(u1) ∥

}
. (3)

We’ve now identified the angles(s) θ1. To find the two values of θ2, we

would “dot” both sides of Eq. (1) with û1⊥ to eliminate the θ1 terms, thereby

obtaining{
u1⊥ ·PB̂2

(u2)
}
cos θ2 +

{
u1⊥ ·

[
PB̂2

(u2) B̂2

]}
sin θ2 = u1⊥ · [u1⊥ − u2⊥] . (4)

We recognize that only the component of u1⊥ that is parallel to B̂2 contributes

to u1⊥ ·PB̂2
and u1⊥ ·

[
PB̂2

(u2) B̂2

]
. Thus, Eq. 4 becomes{

PB̂2
(u1⊥) ·PB̂2

(u2)
}
cos θ2 +

{
PB̂2

(u1⊥) ·
[
PB̂2

(u2) B̂2

]}
sin θ2 = u1⊥ · [u1⊥ − u2⊥] .

We also recognize that ∥PB̂2
(u2) B̂2∥ = ∥PB̂2

(u2) ∥, and proceed as we did in

finding θ1.{
PB̂2

(u1⊥) ·PB̂2
(u2)

}
∥PB̂2

(u1⊥) ∥∥PB̂2
(u2) ∥

cos θ1 +
PB̂1

(u1⊥) ·
[
PB̂2

(u2) B̂1

]
∥PB̂2

(u1⊥) ∥∥PB̂2
(u2) ∥

sin θ2

=
u1⊥ · [u1⊥ − u2⊥]

∥PB̂2
(u1⊥) ∥∥PB̂2

(u2) ∥
.
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Now, we define

cosα2 =

{
PB̂2

(u1⊥) ·PB̂2
(u2)

}
∥PB̂2

(u1⊥) ∥∥PB̂2
(u2) ∥

,

and

sinα2 =
PB̂2

(u1⊥) ·
[
PB̂2

(u2) B̂2

]
∥PB̂2

(u1⊥) ∥∥PB̂2
(u2) ∥

.

Thus,

cos θ2 cosα2 + sin θ2 sinα2 =
u1⊥ · [u1⊥ − u2⊥]

∥PB̂2
(u1⊥) ∥∥PB̂2

(u2) ∥
;

cos (θ2 − α2) =
u1⊥ · [u1⊥ − u2⊥]

∥PB̂2
(u1⊥) ∥∥PB̂2

(u2) ∥
;

and

θ2 = α2 ± cos−1

{
u1⊥ · [u1⊥ − u2⊥]

∥PB̂2
(u1⊥) ∥∥PB̂2

(u2) ∥

}
. (5)

5 Discussion

5.1 Observations and Lessons

This study has shown the benefits of constructing and exploring interactive

visual representations of a problem before attempting a solution. For example,

our examination of the GeoGebra construction that was used for Fig. 2 revealed

the independence of θ1 and θ2. We also saw the benefits of considering a range

of implications of given information. For example, we solved the problem readily

when we equated the “expanded” versions of the rotations (Eq. (1)), but would

have had much more difficulty making use of u′
1 ∧ u′

2 = 0.

5.2 Questions for Further Explanation

1. In Fig. 4, the vectors u1 and u2 cannot be made parallel. How would that

situation be reflected in Eqs. (3) and (5)?

2. (Fig. 5) How can we use our solution to find the rotation needed to make

u1 parallel to M̂?
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Figure 4: In the case shown here, the vectors u1 and u2 cannot be made

parallel. How would that situation be reflected in Eqs. (3) and (5)?

Figure 5: How can we use our solution to find the rotation needed to make u1

parallel to M̂?
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