
THE EHRHART VOLUME CONJECTURE IS FALSE IN

SUFFICIENTLY HIGHER DIMENSIONS IN Rn

T. AGAMA

Abstract. Using the method of compression, we show that volume V ol(K)
of a ball K in Rn with a single lattice point in it’s interior as center of mass

satisfies the lower bound

V ol(K)�
nn

√
n

thereby disproving the Ehrhart volume conjecture, which claims that the upper
bound must hold

V ol(K) ≤
(n + 1)n

n!

for all convex bodies with the required property.

1. Introduction

The Ehrhart volume conjecture is the assertion that any convex body K in Rn

with a single lattice point in it’s interior as barycenter must have volume satisfying
the upper bound

V ol(K) ≤ (n+ 1)n

n!
.

The conjecture has only been proven for various special cases in very specific set-
tings. For instance, Ehrhart proved the conjecture in the two dimensional case and
for simplices [2]. The conjecture has also been settled for a large class of rational
polytopes [1]. In this paper, we study the Ehrhart volume conjecture. We show that
the claimed inequality fails for some convex bodies, providing a counter example to
the Ehrhart volume conjecture. The main idea that goes into the disprove pertains
to a certain construction of a ball in Rn and the realization that after some little
tweak of the internal structure, the ball satisfies the requirements of the conjecture
but has too much volume, at least a volume beyond that postulated by Ehrhart.
In particular, we prove the following lower bound

Theorem 1.1. Let V ol(K) denotes the volume of a ball in Rn with only one lattice
points in it’s interior as its center of mass. Then V ol(K) satisfies the lower bound

V ol(K)� nn√
n
.
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1.1. Notations and conventions. Through out this paper, we will assume that
r is sufficiently large for the radius of a sphere. We write f(s) � g(s) if there
there exists a constant c > 0 such that f(s) ≥ c|g(s)| for all s sufficiently large.
If the constant depends of some variable, say t, then we denote the inequality by

f(s)�t g(s). We write f(s) = o(g(s)) if the limits holds lim
s−→∞

f(s)
g(s) = 0.

2. Preliminaries and background

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale 1 ≥ m > 0 with Vm : Rn −→ Rn is a
bijective map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
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(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.

Lemma 2.4. The estimate holds∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m > 0.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Definition 2.7. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all 1 ≤ i ≤ n. Then
by the ball induced by (x1, x2, . . . , xn) ∈ Rn under compression of scale m > 0,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].
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A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Remark 2.8. In the geometry of balls under compression of scale m > 0, we will
assume implicitly that 1 ≥ m > 0. The circle induced by points under compression
is the ball induced on points when we take n = 2.

Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.

Lemma 2.9 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 and
xi 6= xj for i 6= j, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 2.10. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] < G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] ≥ G ◦ Vm[~y],

then it follows that ||~y|| ≤ ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] < G ◦ Vm[~y]

then it follows from Proposition 2.3 that ||~z|| < ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �
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Theorem 2.11. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.10 that

G ◦ Vm[~z] ≥ G ◦ Vm[~x].

It follows that

G ◦ Vm[~y] > G ◦ Vm[~z]

≥ G ◦ Vm[~x]

> G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.12. Theorem 2.11 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

2.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.13. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.14. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball.

Theorem 2.15. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.10, we obtain the inequality

G ◦ Vm[~y] ≤ G ◦ Vm[~z] < G ◦ Vm[~x].
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It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point ~y
is an admissible point of the ball B 1

2G◦Vm[~x][~x]. The latter equality follows from

assertion that two balls are indistinguishable. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the indistinguishable balls and must satisfy the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

Remark 2.16. We note that we can replace the set Nn used in our construction
with Rn at the compromise of imposing the restrictions ~x = (x1, . . . , xn) ∈ Rn such
that xi > 1 for all 1 ≤ i ≤ n and xi 6= xj for i 6= j. The following construction in
our next result in the sequel employs this flexibility.

3. The lower bound

Theorem 3.1. Let V ol(K) denotes the volume of a ball in Rn with only one lattice
points in it’s interior as its center of mass. Then V ol(K) satisfies the lower bound

V ol(K)� nn√
n
.

Proof. Pick arbitrarily a point (x1, x2, . . . , xn) = ~x ∈ Rn with xi > 1 for 1 ≤ i ≤ n
and xi 6= xj for i 6= j such that G ◦Vm[~x] = n. This ensures the ball induced under
compression is of radius n

2 . Next we apply the compression of fixed scale m ≤ 1,
given by Vm[~x] and construct the ball induced by the compression given by

K := B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 = n

2 . By appealing to Theorem 2.15 admissible points ~xl ∈
Rk (~xl 6= ~x) of the ball of compression induced must satisfy the condition G ◦
Vm[~xl] = n. Also by appealing to Theorem 2.10 points ~xl ∈ B 1

2G◦Vm[~x][~x] must

satisfy the inequality

G ◦ Vm[~xl] < G ◦ Vm[~x] = n.
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The number of integral points in the largest ball contained in the n × n × · · · ×
n (n times) grid that shares admissible points on both sides with the grid is

Nn(n) =
∑

~xl∈nn⊂Rn

G◦Vm[~xl]≤n

1

≥
∑

~xl∈nn⊂Rn

G ◦ Vm[~xl]

n

�
∑

~xl∈nn⊂Rn

1≤i≤n

√
n inf(xli)

n

=
1

n

∑
~xl∈nn⊂Rn

1≤i≤n

√
n inf(xli)

≥
√
n

n

∑
~xl∈nn⊂Rn

1≤i≤n

min~xl∈nn inf(xli)

� min~xl∈nn inf(xli)
n
i=1 ×

√
n

n

∑
~xl∈nn⊂Rn

1≤i≤n

1

�
√
n

n
× nn.

We note that the number of lattice points Nn(n) in the ball K := B 1
2G◦Vm[~x][~x]

and the volume V ol(K) satisfies the asymptotic relation Nn(n) ∼ V ol(K) so that
by removing all sub-grid of the grid n × n · · · × n (n times) contained in the ball
K := B 1

2G◦Vm[~x][~x] except the sub-grid n
2 ×

n
2 × · · ·

n
2 (n times), we see that we

are left with only one lattice point as the center of the ball. This completes the
construction. �

1.
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