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Abstract

Critical points of a function subject to a constraint can be either de-
tected by restricting the function to the constraint or by looking for critical
points of the Lagrange multiplier functional. Although the critical points
of the two functionals, namely the restriction and the Lagrange multiplier
functional are in natural one-to-one correspondence this does not need to
be true for their gradient flow lines. We consider a singular deformation
of the metric and show by an adiabatic limit argument that close to the
singularity we have a one-to-one correspondence between gradient flow
lines connecting critical points of Morse index difference one. We present
a general overview of the adiabatic limit technique in the article [FW22b].

The proof of the correspondence is carried out in two parts. The
current part I deals with linear methods leading to a singular version of the
implicit function theorem. We also discuss possible infinite dimensional
generalizations in Rabinowitz-Floer homology. In part II [FW22a] we
apply non-linear methods and prove, in particular, a compactness result
and uniform exponential decay independent of the deformation parameter.
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1 Introduction

In 1806 it was the observation of Joseph Louis de Lagrange [dL06] that criti-
cal points of a function F (x) subject to a constraint H(x) = 0 correspond to
critical points of the unconstrained function FH(x, τ) = F (x) + τH(x) which
also depends on a Lagrange multiplier τ . More precisely, suppose that M is
a finite dimensional manifold, not necessarily symplectic, but equipped with a
Riemannian metric G. Let F and H be smooth functions on M such that zero
is a regular value of H. Thus Σ := H−1(0) is a smooth level hypersurface.
Under these assumptions there is a bijection between the critical point sets of
the following two functions, namely the Lagrange multiplier functional

FH : M × R→ R, (u, τ) 7→ F (u) + τH(u),

and the restriction function of F to the constraint Σ = H−1(0), in symbols

f : Σ→ R, q 7→ F (q).

The natural bijection is by forgetting the first factor, in symbols

CritFH → Critf, (x, τ) 7→ x. (1.1)

The Morse indices differ by 1, namely

indFH (x, τ) = indf (x) + 1.

In particular, the difference of the Morse indices at two critical points is inde-
pendent of the choice of function FH or f .

Under local properness conditions it was shown in [Fra06] that the Morse
homologies of the two functions coincide up to an index shift by 1, namely
HM∗(FH) ' HM∗+1(f). Therefore the Lagrange multiplier function computes
the homology of Σ up to a grading shift by 1. The proof of this fact in [Fra06]
uses normal deformations of the function F and is hard to generalize to infinite
dimensions. Therefore we focus in the present paper on a completely different
approach to this homology equivalence which, as well, is much stronger since
it gives an isomorphism on chain level and not just on homology level. This
approach is based on the adiabatic limit technique developed by Dostoglou and
Salamon [DS94] in their proof of a special case of the Atiyah-Floer conjecture.
The technique was successfully used and developed further in the context of
symplectic vortex equations [Gai99,GS05] and the heat flow [Web99,SW06].

In the context of Lagrange multipliers this adiabatic limit technique works
as follows. Pick a parameter ε ∈ (0, 1]. Then the gradient flow equation of FH
with respect to the product metric G⊕ ε2 on M × R is given by

∂s(u, τ) +∇εFH(u, τ) =

(
∂su+∇F |u + τ∇H|u

τ ′ + ε−2H ◦ u

)
=

(
0
0

)
. (1.2)

for smooth maps (u, τ) : R → M × R and where ∇ε is the gradient in the
Riemannian manifold (M × R, G⊕ ε2) and ∇ is the gradient in (M,G).
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Letting ε formally go to zero one obtains the pair of equations(
∂su+∇F |u + τ∇H|u

H ◦ u

)
=

(
0
0

)
. (1.3)

Equation two tells that u actually takes values in Σ = H−1(0). In this case
equation one is the downward gradient equation on Σ of the restriction f of F
and with respect to the Riemannian metric g given by restrictingG (Lemma 3.1).

The main result of part I is the following theorem. Suppose that x∓ ∈ Critf
are critical points of Morse index difference one. Then for each ε ∈ (0, ε0] we
construct a time shift invariant map T ε : M0

x−,x+ → Mε
x−,x+ between moduli

spaces of gradient flow trajectories q : R→ Σ and (u, τ) : R→M × R which at
∓∞ converge to the critical points x∓, respectively to (x∓, τ∓) ∈ CritFH .

Theorem A. Assume (f, g) is Morse-Smale. Then there is a constant ε0 ∈
(0, 1], such that for every ε ∈ (0, ε0] and every pair x∓ ∈ Critf of index differ-
ence one, the map T ε : M0

x−,x+ →Mε
x−,x+ is injective.

Remark 1.1. Under the assumption that the ambient manifold M is compact
Theorem A was first proved by Stephen Schecter and Guangbo Xu [SX14].

To prove Theorem A we associate to q ∈M0
x−,x+ a suitable pair (q, τ) which

almost solves the ε-equation (1.2). Then we use the Newton method to find a
unique true solution nearby. This is the content of part I (this article).

In part II [FW22a] we shall prove surjectivity by contradiction. If T ε is not
surjective for ε > 0 small, there is a sequence of positive reals εi → 0 and a
sequence (ui, τi) ∈Mεi

x−,x+ not in the image of T εi . We show that the maps ui
take values near Σ and that they naturally project to maps qi : R → Σ which
are almost solutions of the base equation (1.3). We identify true solutions
qi : R → Σ nearby and show that after suitable time shift σi ∈ R we have
(ui, τi) = T εi(qi(σi + ·)). This contradiction proves surjectivity.

Convention 1.2 (Notation).
a) Tangent and normal bundle of Σ in M are denoted by TΣ ⊕ NΣ = TΣM .
Tangent vectors to M based at Σ decompose X = ξ + ν = tanX + norX. The
dimension of Σ is n, hence n+ 1 = dimM .
b) Arguments of maps H(u) are likewise denoted by H|u.
c) For u : R→M , q : R→ Σ, τ : R→ R we often de-parenthesify and write

us := u(s), qs := q(s), τs := τ(s),

and
∂su := d

dsu, ∂sq := d
dsq, but τ ′ := d

dsτ .

d) The symbol |·|, applied to real numbers means absolute value, applied to
vectors it means vector norm, for example |∂su| := |∂su|G on (M,G) and |∂sq| :=
|∂sq|g on (Σ, g). Throughout ‖·‖ denotes L2-norm.
e) Inner products are denoted by 〈·, ·〉. Depending on context 〈·, ·〉 abbreviates
〈·, ·〉g on TΣ, 〈·, ·〉G on TM , 〈·, ·〉2 on an L2 space, or other inner products.

Acknowledgements. UF acknowledges support by DFG grant FR 2637/2-2.
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1.1 Outline

Let (M,G) be a Riemannian manifold. Let F and H be smooth functions on M .
The Lagrange multiplier function is defined by

FH : M × R→ R, (x, τ) 7→ F (x) + τH(x).

Hypothesis 1.3. (i) Zero is a regular value of H. (ii) Local properness:
There exists a constant κ > 0 such that Σκ := H−1[−κ, κ] ⊂M is compact.
(iii) The Riemannian metric G on M is geodesically complete.

By (i) and (ii) the zero level Σ := H−1(0) is a smooth compact hypersur-
face in M , we assume without boundary. By (iii) closed and bounded is equiv-
alent to compact (Theorem of Hopf-Rinow; see e.g. [O’N83, Ch. 5 Thm. 21]).
Local properness excludes that H tends to zero at infinity.

Section 2 “Lagrange multiplier function and restriction”. The map

ι : Σ = H−1(0) ↪→M, q 7→ q = ι(q),

given by inclusion induces on Σ the Riemannian metric g := ι∗G and the func-
tion f := ι∗F , both given by restriction. Let ∇be the Levi-Civita connection of
(M,G) and ∇ the one of (Σ, g). In Section 2.1 we briefly recall some Rieman-
nian hypersurface geometry of (Σ, g,∇) in (M,G,∇). Since 0 is a regular value
of H, along Σ = H−1(0) there is an orthogonal decomposition

TΣM = TΣ
⊥
⊕ R∇H, X = ξ + ν.

Let tan and nor be the corresponding orthogonal projections. The function

χ := −〈∇F, V 〉, V := ∇H
|∇H|2 , along Mreg := {p ∈M | dH(p) 6= 0} ⊃ Σ

has the fundamental significance that at each point of Σ the value of χ is the
unique real that makes the linear combination

∇F (q) + χ(q)∇H(q) ∈ TqΣ, q ∈ Σ

of the two TqM -valued vectors ∇F |q and ∇H|q be tangent to Σ. The function χ
plays a crucial role throughout this article, as hinted at by the gradient identities

tan∇F = ∇f, nor∇F = −χ∇H, ∇f = ∇F + χ∇H,

along Σ. The last identity translates the gradient flow of f on the base Σ to the
terminology of the ambience M . The local flow {ϕr : Σ → Mreg} generated
by V near Σ transforms H to the normal form H(ϕrq) = r in (2.13). Further
important roles play the graph map of χ, called the canonical embedding

i : Σ→M × R, q 7→ (q, χ(q)) = (ι(q), χ(ι(q))),
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and the derivative Iqξ := di(q)ξ = (ξ, dχ(q)ξ) for q ∈ Σ. We show that the
critical point sets i (Critf) = CritFH are in bijection through the canonical
embedding i, the inverse of the forgetful map (1.1). Then we show the Morse
index identity indFH (x, τ) = indf (x) + 1 for critical points.

Section 3 “Downward gradient flows”. We introduce the downward
gradient flow (1.3) on the base (Σ, g), whose solutions q are called 0-solutions.
We introduce the downward gradient flow (1.2) on the product (M ×R, G⊕ ε2)
where the metric is deformed by a parameter ε > 0 and whose solutions z =
(u, τ) of (1.2) are called ε-solutions.
We define the base energy E0(q) and the ε-energy Eε(u, τ) for smooth maps
q : R → Σ and (u, τ) : R → M × R and show the uniform energy estimates

E0(q) = ‖∂sq‖2 ≤ oscf for base flow trajectories q, but for ε-flow trajectories

Eε(u, τ) <∞ ⇒ Eε(u, τ) = ‖∂su‖2 + ε2‖τ ′‖2 ≤ oscf := max f −min f.

Two critical points x∓ of f : Σ→ R are called asymptotic boundary condi-
tions of a smooth map q : R→ Σ if lims→∓∞ q(s) = x∓ and of a pair of smooth
maps (u, τ) : R→M × R if

lim
s→∓∞

(u(s), τ(s)) =
(
x∓, χ(x∓)

)
.

Observe that (x∓, χ(x∓)) ∈ CritFH . With gradient equations and asymptotic
boundary conditions in place there are the usual energy identities

E0(q) = f(x−)− f(x+), Eε(u, τ) = f(x−)− f(x+) =: c∗,

for base flow trajectories q, respectively for ε-flow trajectories (u, τ).

“A priori estimates”. The following theorem, proved in part II [FW22a],
provides uniform a priori bounds for ε-solutions (u, τ) and all derivatives. The
theorem is fundamental for all subsequent sections and it is also rather surprising
in view of the factor ε−2 in the deformed equations (1.2). The theorem assumes
only finite energy of the ε-solutions.

Theorem 1.4 (Uniform a priori bounds for finite energy trajectories). Assume
Hypothesis 1.3 with constant κ. Then there are, a compact subset K ⊂M , and
constants c0, c1, c2, c3 > 0, with the following significance. Assume (u, τ) : R→
M × R solves the ε-equations (1.2) and is of finite energy Eε(u, τ) <∞.

(i) If ε ∈ (0, 1], then the component u takes values in K and there are bounds

|τ(s)| ≤ c0, |∂su(s)|+ |τ ′(s)| ≤ c1,
∣∣∇s∂su(s)

∣∣+ |τ ′′(s)| ≤ c2,

and
∣∣∇s∇s∂su(s)

∣∣ ≤ c3 at every instant s ∈ R.

In part II [FW22a] there is actually a part (ii) of the theorem which gener-
alizes the fact that along the compact set Σ the gradient |∇H| is bounded away
from zero to, roughly speaking, neighborhoods of Σ.
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Section 4 “Linearized operators”. Fix x∓ ∈ Critf . Let Qx−,x+ be the
Hilbert manifold of W 1,2 paths q : R→ Σ with asymptotics x∓. The formula

F0(q) := ∂sq +∇f |q = ∂sq +∇F (q) + χ(q) · ∇H(q)

defines a section of the Hilbert bundle L → Qx−,x+ whose fiber Lq over q consists
of the TΣ-valued L2 vector fields along q. The zero set M0

x−,x+ := (F0)−1(0)
is called base moduli space, the zeroes q connecting base trajectories.
Linearize F0 at a zero q to get a linear operator W 1,2(R, q∗TΣ)→ L2 given by

D0
qξ = ∇sξ −∇ξ∇f |q = ∇sξ +∇ξ

(
∇F |q + χ|q∇H|q

)
.

A pair (f, g) is said Morse-Smale if D0
q : W 1,2 → L2 is surjective for all q ∈

M0
x−,x+ and x∓ ∈ Critf . The trivialization of F0 at q ∈ Qx−,x+ is the map

F0
q : W 1,2(R, q∗TΣ)→ L2(R, q∗TΣ), F0

q (ξ) := φ(q, ξ)−1F0(expq ξ)

defined for every ξ of norm smaller than the injectivity radius of (Σ, g), cf. (4.57).
Here φ = φ(q, ξ) : TqΣ → Texpq(ξ)

Σ is parallel transport, pointwise for s ∈ R,

along the geodesic r 7→ expq(s)(rξ(s)) defined in terms of the exponential map

of (Σ, g). The above formula for D0
qξ makes sense for general q ∈ Qx−,x+ ,

indeed we shall see that dF0
q (0)ξ = D0

qξ. In the formula for the formal L2

adjoint (D0
q)
∗, see (4.43), the term ∇sξ changes sign, as is well known, but

it is an interesting little detail that in the ambient formulation a new term II
appears twice with the same sign, whereas in D0

q the two signs were opposite.
The operators D0

q and (D0
q)
∗ are bounded, see (4.44). If the asymptotics x∓ are

non-degenerate, then both operators are Fredholm and the Fredholm index is
the Morse index difference of the asymptotics, see Proposition 4.4.

Let Zx−,x+ be the Hilbert manifold of W 1,2 paths z = (u, τ) : R → M × R
with asymptotics z∓ = (x∓, χ(x∓)). For ε > 0 the formula

Fε(u, τ)
(3.30)
:=

(
∂su+∇F |u + τ∇H|u

τ ′ + ε−2H ◦ u

)
defines a section of the Hilbert bundle L → Qx−,x+ whose fiber Lu,τ over (u, τ)
consists of the L2 vector fields along (u, τ). The zero set Mε

x−,x+ := (Fε)−1(0)

is called ε-moduli space, the zeroes (u, τ) connecting ε-trajectories. Lin-
earize Fε at a zero to get a linear map W 1,2(R, u∗TM ⊕ R)→ L2 of the form

Dε
u,τ

(
X
`

)
=

(
∇sX +∇X∇F |u + τ∇X∇H|u + `∇H|u

`′ + ε−2dH|uX

)
.

For general maps (u, τ) ∈ Zx−,x+ define Dε
u,τ by the right hand side. We use

the exponential map Exp of (M,G) to define, about any map (u, τ) ∈ Zx−,x+ ,
a trivialization Fεu,τ , see (4.48), and in (4.49) we show that dFεu,τ (0) = Dε

u,τ .

To get uniform estimates with constants independent of ε > 0 small, we
must work with ε-dependent norms suggested on L2 by the ε-energy identity
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Eε(u, τ) = ‖∂su‖2 + ε2‖τ ′‖2 and on W 1,2 by the ambient linear estimate below.
For ε > 0 define

‖Z‖20,2,ε : = ‖X‖2 + ε2‖`‖2

‖Z‖21,2,ε : = ‖X‖2 + ε2‖`‖2 + ε2‖∇sX‖2 + ε4‖`′‖2

‖Z‖0,∞,ε : = ‖X‖∞ + ε‖`‖∞ ≤ 3ε−1/2‖Z‖1,2,ε

where Z = (X, `); cf. (4.55). The formal adjoint (Dε
u,τ )∗ is defined via the asso-

ciated (0, 2, ε) inner product and given by formula (4.51). For non-degenerate
boundary conditions x∓ both operators Dε

u,τ and (Dε
u,τ )∗ are Fredholm (4.54).

This article, part I, focusses on pairs (u, τ) = (q, χ(q)) with q ∈ M0
x−,x+ .

We abbreviate (for the formulas see (6.97) and (5.71))

Fεq := Fεq,χ(q), Dε
q := Dε

q,χ(q), (Dε
q)
∗ := (Dε

q,χ(q))
∗.

One of two most important linear estimates in adiabatic limit analysis is the
ambient linear estimate

ε−1‖dHqX‖+ ‖`‖+ ‖∇sX‖+ ε‖`′‖ ≤ C
(
‖Dε

qZ‖0,2,ε + ‖X‖
)

for every Z = (X, `) ∈W 1,2(R, q∗TM ⊕ R), see (4.60).

Section 5 “Linear estimates”. The canonical embedding extends via
pointwise evaluation to a map i : Qx−,x+ → Zx−,x+ , q 7→ (q, χ(q)), between
Hilbert manifolds. The linearization Iq = di(q) : TqQx−,x+ → Ti(q)i(Qx−,x+) is
the map ξ 7→ (ξ, dχ|qξ). To prepare Section 6, where we view q ∈ Qx−,x+ as
an approximate zero i(q) of Fε, see (1.4), Section 5 provides estimates for the
linear operators along the image of i. For pairs (q, χ(q)) we have nice control of
the τ = χ(q) component, because q takes values in Σ and Σ is compact.

We need to show that if the base flow is Morse-Smale, then so is the ambient
ε-flow for all ε > 0 small. Let x∓ ∈ Critf be non-degenerate and q ∈ M0

x−,x+

a connecting base trajectory. Theorem 5.8 provides the key estimates for Dε
q

along the image of (Dε
q)
∗. So the operator

Rεq := (Dε
q)
∗ (Dε

q(D
ε
q)
∗)−1

: L2 (...)−1

−→ W 2,2
(Dεq)∗

−→ W 1,2

is a right inverse of the linearization Dε
q and uniformly bounded in ε > 0 small.

Uniformity of the bound is crucial for the Newton iteration to work in Section 6,
it triggers the need for weighted Sobolev norms, as mentioned above.

To carry out this program one needs to compare the, by Morse-Smale, surjec-
tive base operator D0

q with the ambient operator Dε
q . To this end we introduce

the orthogonal projection

Π⊥ε : Ti(q)Zx−,x+

π⊥ε−→ TqQx−,x+

Iq−→ Ti(q)i(Qx−,x+) ⊂ Ti(q)Zx−,x+

onto the image of Iq = di(q) and we show that the linear map π⊥ε is given by

πε(X, `) =
(
1l + εαµ2 P

)−1 (
tanX + εβ`∇χ|q

)
8



with α = β = 2 and where by definition P (q(s)) : Tq(s)Σ → R∇χ(q(s)) is the
orthogonal projection, at each s ∈ R, see (5.64). In (5.66) we show that ‖(1l +
εαµ2 P )−1‖ ≤ 1. The linearizations are compared in the form D0

qπε − πεDε
q .

The resulting key estimates are of the form

‖Z∗‖1,2,ε ≤ c1
(
ε‖Dε

qZ
∗‖0,2,ε + ‖πε(Dε

qZ
∗)‖
)

‖dH|qX∗‖+ ε‖`∗‖ ≤ c1ε‖Dε
qZ
∗‖0,2,ε.

for every pair Z∗ := (X∗, `∗) ∈ im (Dε
q)
∗|W 2,2 ⊂ W 1,2(R, q∗TM ⊕ R). In this

article the analysis works for α ∈ [1, 2] and β = 2, so the orthogonal projection
works. This is in sharp contrast to the PDE adiabatic limit [SW06, (139)] where
the analysis did work for the non-orthogonal projection where α = 1 and β = 2.

In [SW06] there was no analogue of the second of the above key estimates.
That second estimate plays a crucial role to prove the uniqueness Theorem 6.2,
see estimate after (6.105). We arrived at this new twist in the uniqueness proof
by following the philosophy of Arnol′d that mathematics reveals itself through
simple non-trivial examples, in our case [FW22b].

Section 6 “Implicit function theorem I – Ambience”. Suppose (f, g)
is Morse-Smale and pick a base connecting trajectory q ∈ M0

x−.x+ . To find an
ε-solution near q we utilize Newton’s iteration method which requires a map,
say Fεq , defined on a Banach space, so it can be iterated, and whose zeroes are
in bijection with the zeroes of Fε. Qualitatively, three conditions need to be
met. One needs, firstly, a good starting point Z0 in the sense that its value
Fεq (Z0) is almost zero, secondly, the derivative dFεq (Z0) must be ’steep enough’
in the sense it must admit a right inverse bounded uniformly in ε small and,
thirdly, the derivative must not oscillate too wildly near Z0 which is guaranteed
via suitable quadratic estimates.

We are in good shape: The trivialized ambient section Fεq at the initial point
Z0 := (0, 0) of the Newton iteration has a vanishing first component

Fεq (0, 0) = Fε(q, χ(q)) :=

(
∂sq +∇F (q) + χ(q)∇H(q)

(χ(q))′ + ε−2H(q)

)
=

(
0

dχ|q∂sq

)
(1.4)

since −∂sq = ∇f(q) = ∇F (u) +χ(q)∇H(u). So ‖Fε(q, χ(q))‖0,2,ε = ε ‖dχ|q∂sq‖
is small for ε small. Use the right inverse to define the initial correction term

ζ0 := −Dε
q
∗ (Dε

qD
ε
q
∗)−1 Fεq (0) = −RεqFεq (0).

Thus Dε
qζ0 = −Fεq (0) = (0,−dχ|q∂sq) and so by key estimate one we get

‖ζ0‖1,2,ε ≤ c1
(
ε‖(0, dχ|q∂sq)‖0,2,ε + ‖(1l + ε2µ2P )−1

(
0 + ε2(dχ|q∂sq)∇χ

)
‖
)

≤ const · ε2.

Now define Z1 := Z0 + ζ0 and add zero in the form −Fεq (0)−Dε
uζ0 to get

‖Fεq (Z1)‖0,2,ε = ‖Fεq (ζ0)−Fεq (0)−Dε
uζ‖0,2,ε ≤ const · ε5/2

9



where the inequality uses the quadratic estimate (6.91). To the next correction
term ζ1 := −RεqFεq (Z1) apply the key estimate observing that Dε

qζ1 = −Fεq (Z1).
Iteration provides a Cauchy sequence Zν whose limit Zε corresponds to a zero
of Fεq and ‖Zε‖1,2,ε ≤ const · ε2. For the precise statement see the existence
Theorem 6.1. The zero is unique in the sense of the uniqueness Theorem 6.2.
These two theorems allow to define the map T ε and the short argument in
Lemma 6.4 then completes the proof of Theorem A.

1.2 Motivation and general perspective

Let (M,ω) be an exact symplectic manifold where ω = dλ. On the free loop
space LM := C∞(S1,M) consider the negative area functional given by

A : LM → R, v 7→ −
∫ 1

0

v∗λ.

A smooth function H : M → R, called Hamiltonian, induces on the loop space
the corresponding mean value functional

H = HH : LM → R, v 7→
∫ 1

0

H ◦ v(t) dt.

On loop space there is the time reversal involution defined by

T : LM → LM, v 7→ v−, v−(t) := v(−t).

There are the following relations

A ◦ T = −A, H ◦ T = H. (1.5)

The Rabinowitz action functional is defined by

AH : LM × R→ R, (v, τ) 7→ A(v) + τH(v).

The extended time reversal involution is defined by

T̃ : LM × R→ LM × R, (v, τ) 7→ (v−,−τ).

From (1.5) it follows the anti-invariance of the Rabinowitz action functional
under extended time reversal involution, in symbols

AH ◦ T̃ = −AH.

This has the consequence that the extended time reversal involution also acts
involutive on the critical point set, in symbols

(v, τ) ∈ CritAH ⇔ T̃ (v, τ) = (v−,−τ) ∈ CritAH.

A critical point (v, τ) for τ positive corresponds to a periodic orbit of the
Hamiltonian vector field of H of energy zero and period τ . The critical point

10



T̃ (v, τ) = (v−,−τ) corresponds to this orbit traversed backward in time. The

fixed point set Fix T̃ |CritAH are pairs (x, 0) where x is a point on the energy
hypersurface Σ := H−1(0) interpreted as a constant loop.

There is no analogue of the time reversal anti-invariance of the Rabinowitz
action functional AH in symplectic homology or symplectic field theory where
periodic orbits are always traversed in forward time.

From a physical perspective the time reversal anti-invariance is reminiscent
of the Feynman-Stueckelberg interpretation [Stu41, Fey48] of a positron as an
electron going backward in time.

From a mathematical perspective the time reversal anti-invariance of the Ra-
binowitz action functional has strong connections to Tate cohomology, Poincaré-
duality, and Frobenius algebras. It led to the discovery by Cieliebak and
Oancea [Cie] of the structure of a topological quantum field theory (TQFT)
on Rabinowitz-Floer homology. However, the topological quantum field theory
structure of Cieliebak and Oancea is not defined on Rabinowitz-Floer homol-
ogy directly, but on V -shaped symplectic homology. The latter is known to be
isomorphic to Rabinowitz-Floer homology as shown by Cieliebak, Frauenfelder,
and Oancea [CFO10]. The difficulty to define the TQFT structure directly
on Rabinowitz-Floer homology is that, in general, the Rabinowitz action func-
tional does not behave additively with respect to concatenation of loops. For
that reason, to our knowledge, nobody defined product structures directly on
Rabinowitz-Floer homology. Instead of that, product structures were defined on
homologies isomorphic to Rabinowitz-Floer homology, namely, V -shaped sym-
plectic homology by Cieliebak and Oancea [CO18], respectively, on extended
phase space by Abbondandolo and Merry [AM18].

For the following reasons we would like to see TQFT structure on
Rabinowitz-Floer homology directly.

1. Time reversal anti-invariance for the functional gets lost when going over
to V -shaped symplectic homology, respectively, to extended phase space
homology. Therefore Poincaré-duality only holds on homology level and
not on chain level, as in the case of Rabinowitz action functional.

2. In contrast to symplectic homology the Rabinowitz gradient flow equation
is not a PDE but a delay equation. Although the critical points of the
Rabinowitz action functional are still solutions of an ODE, the Rabinowitz
action functional can easily be generalized to delay equations. In fact, the
functional H not necessarily has to be the mean value of a Hamiltonian on
the underlying manifold, but can be a more interesting functional on the
free loop space. In particular, in this way one can model interacting par-
ticles whose interaction is not necessarily instantaneous, but can happen
with some delay [Fra20]. This is in particular of interest in a semi-classical
treatment of Helium [CFV21].

As mentioned above the major difficulty to define a TQFT structure on
Rabinowitz-Floer homology directly is the complicated behavior of the Rabi-
nowitz action functional on the concatenation of loops. To remedy this situation
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it was proposed in [Fra22] to take advantage of the following elementary fact.
Critical points of a Lagrange multiplier functional are in 1-1 correspondence
with critical points of the restriction of the first function to the constraint given
by the vanishing of the second function. In the case of the Rabinowitz action
functional it means the following. One restricts the negative area functional A
to the constraint H−1(0), namely the hypersurface in the free loop space con-
sisting of loops whose mean value vanishes. Note that concatenating two loops
of mean value zero leads to another loop of mean value zero. Therefore the
hypersurface H−1(0) is invariant under concatenation. Moreover, note that the
area functional is additive with respect to concatenation. Therefore the restric-
tion of the area functional to H−1(0) has the potential of leading to a TQFT
for which Poincaré-duality holds on chain level and which should also lead to
topological quantum field theories for Hamiltonian delay equations.

In view of the above remarks it is of major interest to understand how the
semi-infinite dimensional Morse homology in the sense of Floer of the Rabinowitz
action functional AH is related to the one of the restriction of the area functional
A to H−1(0). Motivated by the general perspective we treat in this article the
finite dimensional analogue of this question which already has its own interest.

2 Lagrange multiplier function and restriction

Suppose that on a Riemannian manifold (M,G) are given two smooth functions

F,H : M → R

such that 0 is a regular value of H, in symbols H t 0. The function H plays the
role of providing a constraint, namely the smooth Riemannian hypersurface

Σ := H−1(0)
ι
↪→M, g := ι∗G, f := F |Σ := F ◦ ι : Σ→ R, (2.6)

equipped with the restriction of F and were ι is the inclusion map. Throughout
we assume that Σ is compact and without boundary. We call Σ the base of the
adiabatic limit construction. Now add to F the constraint function H times a
parameter τ to define the Lagrange multiplier function

FH : M × R→ R, (x, τ) 7→ F (x) + τH(x). (2.7)

The restriction FH |Σ = f is equal to the restriction of F . The function FH has
the significance that its critical points are in bijection with the critical points x
of the restriction f via their so-called Lagrange multipliers χ(x), see Lemma 2.5.

2.1 Hypersurface geometry

As a preparation we recall relevant facts about the geometry of Riemannian
submanifolds following the excellent presentation of O’Neill [O’N83, Chap. 4].
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Let (M,G) be a smooth Riemannian manifold and H : M → R a smooth1

function with regular value 0. The level set (2.6) endowed with the restriction
metric is a smooth Riemannian hypersurface (Σ, g) of (M,G). Let X (M) be
the smooth vector fields along M and X (Σ) those along Σ. Let X (Σ) be the
restrictions to Σ of vector fields along M , equivalently, the sections of the pull-
back bundle ι∗TM → Σ. On (M,G) and (Σ, g), respectively, we denote the
Levi-Civita connections by ∇and ∇ and the exponential maps by Exp and exp.

Gradients are orthogonal to level sets. By definition of regular value and
codimension 1 the gradient of H is nowhere zero along the hypersurface Σ =
H−1(0). Thus ∇H generates the normal bundle NΣ = R∇H of Σ and

TΣM = TΣ
⊥
⊕ NΣ, X = ξ + ν,

is an orthogonal direct sum along Σ. Hence for any and X ∈ TΣM there are
unique vectors ξ ∈ TΣ and ν ∈ NΣ such that X = ξ + ν. This defines two
orthogonal projections tan and nor, see (2.10) and (2.11).

We denote vectors of TM and vector fields taking values in TM by capital
letters such as X,Y and, in contrast, vectors of TΣ and vector fields taking
values in TΣ be greek letters such as ξ, η. By ν we denote elements of NΣ. See
Convention 1.2 for notation of norms and inner products. Here and throughout
we silently identify q ∈ Σ with ι(q) ∈M and ξ ∈ TΣ with Tι(ξ) ∈ TM .

2.1.1 Orthogonal splitting of TM along a neighborhood of Σ

For p ∈M the gradient ∇H(p) is determined by dH(p)X = 〈∇H(p), X〉 ∀X ∈
TpM . An open neighborhood of Σ is provided by the set of regular points

Σ ⊂Mreg := {p ∈M | dH(p) 6= 0} ⊂M.

Since ∇H(p) 6= 0 for p ∈Mreg, there are the canonical vector fields

U :=
∇H
|∇H|

, V :=
∇H
|∇H|2

, along Mreg.

The smooth function defined by

χ := − 〈∇F,∇H〉|∇H|2 along Mreg (2.8)

provides the coefficient of the orthogonal projection of∇F onto −∇H; see (2.10).
Since 〈∇H, ξ〉 = dH ξ = 0 for ξ ∈ TΣ, the sum TΣM = TΣ + R · ∇H is direct
and orthogonal. Thus the line bundle NΣ := R∇H is the normal bundle of Σ.
There are the associated orthogonal projections

tan: TqM → TqΣ, nor : TqM → RUq, tan +nor = IdTqM . (2.9)

The vectors of RUq are said normal to Σ. A vector field Z ∈ X (Σ) is called
normal to Σ if each vector Z(q) is. Let X (Σ)⊥ be the vector fields normal to Σ,

1throughout smooth means C∞ smooth
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that is the sections of the line bundle R∇H → Σ. There is the orthogonal vector
bundle sum X (Σ) = X (Σ)⊕X (Σ)⊥. The resulting orthogonal projections

nor : X (Σ)→ X (Σ)⊥, tan: X (Σ)→ X (Σ),

X 7→ 〈X,U〉U = 〈X,∇H〉
|∇H|2 ∇H. X 7→ X − norX,

(2.10)

are C∞(Σ)-linear and there is the identity X (Σ) 3 X = tanX + norX.

Lemma 2.1 (Gradients and orthogonal decomposition). It holds that

tan∇F = ∇f nor∇F = −χ∇H ∇F = ∇f − χ∇H

norX = (dH)X

|∇H|2 ∇H |norX| ≤ |(dH)X|
mH

mH : = min
Σ

∣∣∇H∣∣ > 0
(2.11)

pointwise at q ∈ Σ and for every tangent vector X ∈ TqM .

Proof. To identify ∇f with the tangential part, pick ξ ∈ X (Σ). Then

〈∇f, ξ〉g = df(ξ) = dF |ι dι(ξ) = 〈∇F |ι, dι(ξ)〉G = 〈∇F |ι − nor∇F |ι, dι(ξ)〉G
= 〈tan∇F |ι, ξ〉g.

We subtracted the normal since its inner product with the tangent dι(ξ) is zero.
As the difference is tangent, we change G to g. Next write nor(∇F ) = α∇H for
some α ∈ C∞(Σ). Then the identity ∇F = ∇f + α∇H is the splitting (2.9).
Scalar multiply the identity by the normal ∇H to get that

〈∇F,∇H〉 = 0 + α|∇H|2.

Hence α = −χ by (2.8). The term norX is obvious.

2.1.2 Normal form of H near Σ

Let κ > 0 be the constant from the local properness Hypothesis 1.3. The vector
field V := ∇H/|∇H|2 along the open neighborhood Mreg := {dH 6= 0} of M of
Σ in M generates a local flow {ϕr} on Mreg. Since Σ is compact for δ ∈ (0, κ)
small enough the following map is a diffeomorphism onto its image

ϕ : Σ× (−δ, δ)→ UΣ = UΣ(δ) := imϕ ⊂M, (q.r) 7→ ϕrq.

(The map ϕ provides a retraction ρ = ρ2 : UΣ → UΣ.2) The identities

H(ϕ0q) = 0, d
drH(ϕrq) = dH|ϕrq d

drϕrq =
〈
∇H|ϕrq, V |ϕrq

〉
= 1,

show that
H(ϕrq) = r (2.12)

for every (q, r) ∈ Σ × (−δ, δ). Thus, for every map u : R → M that takes
values in the image of the flow diffeomorphism ϕ, there are maps q : R→ Σ and
r : R→ (−δ, δ), namely (q, r) := ϕ−1(u) pointwise, such that

u = ϕr(q), r = H(u), (2.13)

pointwise at s ∈ R.

2 To match the abstract approach [FW22b] define, for each t ∈ [0, 1], a map ρt : UΣ → UΣ,
p = ϕrq 7→ ϕ−trp. Then ρ0 = idUΣ

, ρ1 : UΣ → Σ, ρt|Σ = idΣ ∀t ∈ [0, 1]. So ρ := ρ1 = ρ2.

14



2.1.3 Induced connection

The Levi-Civita connections associated to (M,G) and (Σ, g) are maps

∇ : X (M)×X (M)→ X (M), ∇ : X (Σ)×X (Σ)→ X (Σ).

Via vector field extension from the domain Σ to M the connection ∇ gives rise
to a map, independent of the chosen extensions ξ,X, the induced connection

∇ : X (Σ)×X (Σ)→ X (Σ), (ξ,X) 7→ ∇ξX := ∇ξX,

still denoted by the same symbol ∇.

Lemma 2.2. The induced connection satisfies the five axioms that characterize
the Levi-Civita connection on the tangent bundle of a Riemannian manifold:

(i) C∞(Σ)-linear in ξ ∇fξX = f∇ξX
(ii) R-linear in X ∇ξ(αX) = α∇ξX
(iii) Leibniz rule ∇ξ(fX) = (ξf)X + f∇ξX
(iv) torsion free [ξ, η] := ξη − ηξ = ∇ξη −∇ηξ
(v) metric ξ〈X,Y 〉 = 〈∇ξX,Y 〉+ 〈X,∇ξY 〉

for all α ∈ R, f ∈ C∞(Σ), ξ, η ∈ X (Σ), and X,Y ∈ X (Σ), and where ξf is a
convenient shorter way to write df(ξ).

Remark 2.3. If both vector fields ξ, η take values in TΣ, by torsion freeness the
difference ∇ξη−∇ηξ takes values in TΣ as well – the commutator does. This is in
general not true for the individual terms. Via the orthogonal projections (2.10)
one decomposes the vector field ∇ξη ∈ X (Σ) into a tangent and a normal part

∇ξη = ∇ξη + II(ξ, η) (2.14)

whenever ξ, η ∈ X (Σ) and where

∇ξη = tan∇ξη ∈ X (Σ), II(ξ, η) := nor∇ξη ∈ X (Σ)⊥. (2.15)

The second fundamental form tensor II of the Riemannian submanifold
Σ ofM is C∞(Σ)-bilinear and symmetric. In our codimension 1 case U generates
X (Σ)⊥, so II(ξ, η) is a C∞(Σ)-multiple of U . Multiply (2.14) by U to get

II(ξ, η) = µ(ξ, η) · U =
〈∇ξη,∇H〉
|∇H|2 ∇H, µ(ξ, η) = 〈∇ξη, U〉. (2.16)

The tensor II appears in the formal adjoint operator (D0
q)
∗, see (4.43). The

second fundamental form B and the shape operator S, both associated
to the unit normal vector field U , so determined up to sign, are defined by

B(ξ, η) := 〈Sξ, η〉 def. S
= 〈II(ξ, η), U〉 (2.16)

= 〈∇ξη, U〉

for all ξ, η ∈ X (Σ). But 0 = ξ〈η, U〉 = 〈∇ξη, U〉+ 〈η,∇ξU〉. Therefore the shape
operator at q ∈ Σ is the symmetric linear map

S : TqΣ→ TqΣ, ξ 7→ −∇ξU.

Implicitly this tells that ∇ξU is tangent to Σ (alternatively hit 〈U,U〉 = 1 by ξ).
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2.2 Critical points are in canonical bijection

Critical points of f = F |Σ satisfy x ∈ Σ and

0 = ∇f(x)
(2.11)

=
(
∇F + χ∇H

)
(x) ⇔

(
dF + χdH

)
(x) = 0. (2.17)

A point (p, τ) ∈ M × R is critical for the function FH(p, τ) = F (p) + τH(p) iff
the derivative vanishes

dFH(p, τ)

(
X
`

)
= dF (p)X + τ · dH(p)X + ` ·H(p) = 0 (2.18)

for all X ∈ TpM and ` ∈ R. Fix X = 0 to obtain H(p) = 0, that is p ∈ Σ. Now
fix ` = 0 and set x := p to obtain that (x, τ) is a critical point of FH iff

dF (x) + τ · dH(x) = 0, x ∈ Σ.

2.2.1 Canonical embedding

Definition 2.4 (Canonical embedding). The graph map of χ : Σ→ R, cf. (2.8),

i : Σ→M × R, q 7→ (q, χ(q)) = (ι(q), χ(ι(q))), (2.19)

is called the canonical embedding. The derivative is denoted and given by

Iq := di(q) : TqΣ→ TqM × R, ξ 7→ (ξ, dχ(q)ξ) . (2.20)

For simplicity of notation we usually abbreviate ι(q) by q and dι(q)ξ by
ξ. Graph maps of smooth functions are embeddings. The Lagrange function
FH(p, τ) = F (p) + τH(p) coincides along the image of i with the restriction
f = F |Σ to the zero level Σ of H, in symbols

FH ◦ i = f.

Lemma 2.5. The critical points of FH and f are in bijection, more precisely

CritFH = i(Critf)

= {(x, χ(x)) ∈ Σ× R | dF (x) + χ(x) · dH(x) = 0}.
(2.21)

In particular, along critical points x both functions coincide f(x) = FH(x, χ(x)).

Proof. Compare (2.17) and (2.21) where dH(x) 6= 0 implies τ = χ(x).

2.2.2 Hessians and Morse indices

Suppose x ∈ Σ is a non-degenerate critical point of f , that is 0 is not an
eigenvalue of the Hessian operator, the covariant derivative of ∇f at x, namely

A0
x : TxΣ→ TxΣ, ξ 7→ D∇f(x)ξ = ∇ξ∇f(x).
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This linear map is symmetric; see identity 2 and 3 in (4.40) further below. In
local coordinates A0

x is represented by the Hessian matrix of second derivatives
afx = (∂i∂jf(x))

n
i,j=1. This matriz is symmetric, hence admits n real eigenvalues,

counted with multiplicities. While the Hessian matrix depends on the choice
of coordinates, the number of negative eigenvalues does not. The number k
of negative eigenvalues, counted with multiplicity, of the Hessian operator A0

x

or, equivalently, of any Hessian matrix afx is called the Morse index of x, in
symbols indf (x) = k.

In the transition from f to FH , in terms of critical points from x ∈ Σ to
(x, χ(x)) ∈M×R, two new eigenvalues appear, one is positive and the other one
is negative. This result is due to the first author [Fra06] where the proof is in
local coordinates. It is easy to obtain such coordinates in our scenario: for the
submanifold H−1(0) ↪→M use submanifold coordinates and for the orthogonal
complement use the local flow generated by the gradient of H suitably rescaled.

Lemma 2.6 (Morse index increases by 1). If x ∈ Crit f is non-degenerate, then
so is (x, χ(x)) ∈ CritFH and the Morse index increases by one, in symbols

indFH (x, χ(x)) = indf (x) + 1.

Remark 2.7. By Lemma 2.5 and 2.6, if f is Morse, so is FH . Let f be Morse.
Since the dimension difference dimM − dim Σ = 2 is two, there always arises
together with the negative Hessian eigenvalue exactly one positive eigenvalue.
Consequently the Hessian of FH at a critical point is never negative (positive3)
definite. Hence critical points of FH are not minima (maxima), hence not de-
tectable by direct methods using minimization (maximization).

Proof. Given F,G : M → R with G t 0, let Σ := H−1(0) ⊂ M . Pick a critical
point x of f = F |Σ : Σ → R. Choose a local coordinate chart between open
subsets

φ : M ⊃ V → U ⊂ Rn, p 7→ φ(p) = (z1, . . . , zn, r) = (z, r),

which takes x to the origin of Rn and has the following properties:

a) the part of Σ in V corresponds to the part of Rn × 0 in U ;

b) in local coordinates H is given by (z, r) 7→ r. H(z, r) = r

Such coordinates exist: By compactness of Σ there is a constant δ > 0 such
that the vector field V = ∇H/|∇H|2 along Mreg generates a local flow, notation
ϕ : Σ× (−δ, δ)→M , (q, r) 7→ ϕrq. The identities

H(ϕ0q) = 0, d
drH(ϕrq) = dH|ϕrq d

drϕrq =
〈
∇H|ϕrq, Ũ |ϕrq

〉
= 1,

show that H(ϕr(q)) = r. Compose ϕ with submanifold coordinates of Σ in M .

3 Replace f by −f .
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In the following local coordinate representations of maps are denoted by
the same symbols as the maps themselves. For instance, for F in our local
coordinates we write F (z, r). In these local coordinates we have

(i) f(z) = F (z, 0), (ii) FH(z, r, τ) = F (z, r) + τr.

The proof proceeds in two steps. First we consider the special case where
F (z, r) = f(z), second we homotop the general case to the special case.

Special case F (z, r) = f(z). The gradient of FH(z, r, τ) = f(z) + τr is
∇FH(z, r, τ) = (∇f(z), τ, r), so the Hessian at the critical point (x, 0, χ(x)) is

a0 := aFH(x,0,χ(x)) =

afx 0 0
0 0 1
0 1 0

 .
Since the lower 2× 2 diagonal block has eigenvalues −1,+1 we are done.

General case F (z, r). The gradient of FH(z, r, τ) = F (z, r) + τr is given by
∇FH(z, r, τ) = (∇1F (z, r),∇2F (z, r) + τ, r), so the Hessian at (x, 0, χ(x)) is the
matrix a1 = aFH(x,0,χ(x)) given by setting s = 1 in the interpolating family

as :=

 afx s∇2∇1F (x, 0) 0
s∇1∇2F |(x,0) s∇2∇2F |(x,0) 1

0 1 0

 , s ∈ [0, 1].

Zero is not an eigenvalue of a1: Let (ξ,R, T ) ∈ ker a1 ⊂ Rn × R× R, then0
0
0

 = a1

 ξR
T

 =

 afxξ +∇2∇1F (x, 0)R
∇1∇2F |(x,0)ξ +∇2∇2F |(x,0)R+ T

R

 =

 afxξ
∇1∇2F |(x,0)ξ + T

0

 .
Thus R = 0. Since afx does not have eigenvalue zero, if afxξ = 0, then ξ = 0, so
T = 0. For any s ∈ [0, 1) the same argument shows that the matrix as does not
have eigenvalue 0. But each eigenvalue depends continuously on the matrix as,
so a1 and a0 do have the same number of negative/positive eigenvalues.

3 Downward gradient flows

3.1 Base flow

The downward gradient equation on the regular hypersurface (Σ, g) =
(H−1(0), ι∗G) of the restriction f = F |Σ : Σ→ R is given by

∂sq = −∇f(q)
(2.11)

= −
(
∇F + χ∇H

)
(q)

f
(1.5)
= F ◦ ι : Σ→ R

(3.22)

for smooth maps q : R→ Σ and where χ is defined by (2.8).
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Pointwise evaluation at s ∈ R extends the canonical embedding (2.19) from
points in Σ to smooth maps q : R→ Σ. The induced embedding, still denoted by

i(q) = (ι ◦ q, χ ◦ ι ◦ q) =: (u, τ), q : R→ Σ, (3.23)

is injective consisting of a pair of maps u = ι◦q : R→M and τ = χ◦ι◦q : R→ R.
Consider the pair of equations

∂su+∇F (u) + τ∇H(u) = 0

H ◦ u = 0
(3.24)

for smooth maps (u, τ) : R→M × R.

Lemma 3.1 (Base equation). If q : R→ Σ solves (3.22), then (u, τ) := i(q) as
defined by (3.23) solves (3.24) and every solution of (3.24) arises this way.

Proof. Identifying domain and image of ι : Σ → M the first lines of (3.22) and
of (3.24) are just the same equation whenever u = ι(q) and τ = χ(q).

Now suppose (u, τ) : R → M × R solves (3.24). By the second equation u
takes values in Σ. This has two consequences. Firstly, we can view u as a map
to Σ, notation qu : R→ Σ. Secondly, the derivative ∂su is tangential to Σ, hence
so is −∂su = ∇F (u) + τ∇H(u). Take the inner product with the normal field
∇H(u) to get 0 = 〈∇F (u),∇H(u)〉+ τ |∇H(u)|2. By definition (2.8) this means
that τ = χ(u) = χ(qu). Hence i(qu) = (ι(qu), χ(ι(qu))) = (u, τ).

3.1.1 Base energy E0

Given critical points x∓ of f : Σ → R, we impose on a smooth map q : R → Σ
the asymptotic boundary conditions

lim
s→∓∞

qs = x∓. (3.25)

Definition 3.2. Define the base energy of a smooth map q : R→ Σ by

E0(q)
def.
= 1

2

∫ ∞
−∞
|∂sqs|2 + |∇f(qs)|2 ds

(3.22)
= 1

2

∫ ∞
−∞
|∂sqs|2 +

∣∣∇F (qs) + χ(qs) · ∇H(qs)
∣∣2 ds

def.
= E0(q, χ(q)).

Lemma 3.3 (Energy identity). Let q : R → Σ be a smooth solution of (3.22).
Then the energy is bounded by the oscillation of f and there is the energy identity

E0(q)
(3.22)

= ‖∂sq‖2 ≤ oscf := max f −min f <∞ (3.26)

where ‖·‖ is the L2 norm. With asymptotic boundary conditions (3.25) it holds

E0(q)
(3.22)

= ‖∂sq‖2
(3.25)

= f(x−)− f(x+) =: c∗. (3.27)
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Proof. We see that

E0(q)
(3.22)

= lim
T→∞

∫ T

−T
|∂sqs|2 ds

(3.22)
= lim

T→∞

∫ T

−T
−〈∇f(qs), ∂sqs〉 ds

(3.33)
= − lim

T→∞

∫ T

−T

d
dsf(qs) ds

(3.33)
= lim

T→∞
(f(q−T )− f(qT )) .

Now both, (3.26) and (3.27), are obvious.

3.2 Ambient flow and deformation

Ambient flow. We endow the product M × R with the product metric h1 :=
G ⊕ 1 and the associated Levi-Civita connection ∇1. The downward gradient
equation for the function FH : M×R→ R from (2.7), namely ∂sz = −∇1FH(z),
is according to (2.18) given by the pair of equations(

∂su
τ ′

)
= ∂sz = −∇1FH(z) = −

(
∇F (u) + τ∇H(u)

H(u)

)
(3.28)

for smooth maps z = (u, τ) : R → M × R. The ambient energy E1 is Eε=1 in
Definition 3.4.

Deformed flow. For ε > 0 consider on M ×R the rescaled Riemannian metric
and associated Levi-Civita connection

hε := G⊕ ε2, ∇ε. (3.29)

Thus the inner product of elements Z = (X, `) and Z̃ = (X̃, ˜̀) of TuM × R is

hε(Z, Z̃) = 〈X, X̃〉+ ε2`˜̀, |Z|2ε := hε(Z,Z) = |X|2 + ε2`2.

By (2.18) the downward ε-gradient equation for the function FH on M × R is(
∂su
τ ′

)
= ∂sz = −∇εFH(z) = −

(
∇F (u) + τ∇H(u)

ε−2H(u)

)
(3.30)

for smooth maps z = (u, τ) : R→M × R.
Multiply the second equation by ε2 and formally set ε = 0 to obtain that

H(us) = 0 ∀s ∈ R. This suggests that in the limit ε→ 0 the solutions to (3.30)
converge to a solution of the base equation (3.24).
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3.2.1 Ambient energy Eε

Given critical points x∓ of f : Σ → R, impose on a smooth map (u, τ) : R →
M × R the asymptotic boundary conditions

lim
s→∓∞

(us, τs) =
(
x∓, χ(x∓)

) (2.21)
∈ CritFH . (3.31)

Definition 3.4. The ε-energy of a smooth map z = (u, τ) : R→M × R is

Eε(u, τ) : = 1
2

∫ ∞
−∞
|∂szs|2ε + |∇εFH(zs)|2εds

= 1
2

∫ ∞
−∞
|∂sus|2 + ε2τ ′s

2
+
∣∣∇F (us) + τs∇H(us)

∣∣2 + ε−2H(us)
2ds.

Lemma 3.5 (Energy identity). Given ε > 0, let (u, τ) : R → M × R be a
solution of (3.30). Then the following is true. a) There is the identity

Eε(u, τ)
(3.30)

= ‖∂su‖2 + ε2‖τ ′‖2 ∈ [0,∞] (3.32)

where ‖·‖ denotes L2 norms. b) If, in addition, the energy Eε(u, τ) < ∞ is
finite, then the energy is bounded by the oscillation of f , in symbols

Eε(u, τ) ≤ max f −min f =: oscf <∞.

c) In case of asymptotic boundary conditions (3.31) there is the energy identity

Eε(u, τ)
(3.30)

= ‖∂su‖2 + ε2‖τ ′‖2 (3.31)
= f(x−)− f(x+) =: c∗. (3.33)

Proof. Fix ε > 0. We see that

Eε(u, τ)
(3.30)

= lim
T→∞

∫ T

−T

(
|∂sus|2 + ε2τ ′s

2
)
ds

(3.30)
= lim

T→∞

∫ T

−T
−
〈
∂sus,∇F (us)− τs∇H(us)

〉
G
− τ ′s ·H(us) ds

(3.30)
= − lim

T→∞

∫ T

−T
dF |us∂sus + τs dH|us∂sus + τ ′s ·H(us) ds

(3.30)
= − lim

T→∞

∫ T

−T

d

ds

(
F (us) + τsH(us)

)
ds

(3.30)
= lim

T→∞
(FH(u−T , τ−T )− FH(uT , τT )) .

This proves a) and also c) since FH(x−, χ(x−)) = F (x−) + χ(x−)H(x−) =
f(x−) ≤ max f and similarly at x+. b) That the right hand side of the displayed
formula is ≤ max f −min f will be proved in two steps.
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Step 1. Fix ε > 0. For each µ > 0 there exists a δ = δ(µ) > 0 with the
following property. At any point (p, t) ∈M × R where the gradient is δ-small

|∇εFH(p, t)|2ε = |∇F (p) + t∇H(p)|2 + ε−2H(p)2 ≤ δ (3.34)

the value of the multiplier function lies in the µ-interval

min f − µ ≤ FH(p, t) ≤ max f + µ. (3.35)

To prove Step 1 suppose that a point (p, t) satisfies (3.34). Hence H(p)2 ≤ δε2.
Since H is locally proper around zero by Hypothesis 1.3, it follows that for
any open neighborhood U of Σ there exists a δU > 0 such that the point p
lies in U whenever (p, t) satisfies (3.34) for δ = δU . Otherwise, there would
exist a sequence pν /∈ U with the property that H(pν) → 0, as ν → ∞. By
local properness there is a subsequence pνk which converges to a point p∞ ∈
Σ = H−1(0) contradicting the assumption that none of the pν lies in the open
neighborhood U of the compact set Σ.
Given µ > 0, we choose U(µ): Since zero is a regular value of H and Σ = H−1(0)
is compact there exists an open neighborhood U(µ) of Σ and constants c, C > 0
such that

c ≤ inf
U
|∇H|, sup

U
|∇F | ≤ C, sup

U
F ≤ max f + µ

2 , inf
U
F ≥ min f − µ

2 .

We choose δ = δ(µ): Choose δ < min{δU(µ), C
2, µ2c2

16ε2C2 }. From (3.34) we deduce
firstly that p ∈ U(µ) and secondly that, together with

√
δ ≥ |∇F (p) + t∇H(p)| ≥ |t∇H(p)| − |∇F (p)|,

we obtain
|t| ≤

√
δ+|∇F (p)|
|∇H(p)| ≤

√
δ+C
c .

From this we get that

FH(p, t) = F (p) + tH(p) ≤ max f + µ
2 +

√
δ+C
c ε
√
δ

≤ max f + µ
2 + 2C

c ε
µc

4εC
= max f + µ.

This proves the upper bound in (3.35). The lower bound follows similarly.

Step 2. If (u, τ) is a finite energy solution of the ε-equation. Then

min f ≤ FH(us, τs) ≤ max f.

We prove the upper bound in Step 2, the lower bound follows analogously.
Assume by contradiction that there exists a time s0 ∈ R such that FH(us0 , τs0) >
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max f . Let µ > 0 be determined by the difference 2µ := FH(us0 , τs0) −max f .
Let δ = δ(µ) be as in Step 1. Since (u, τ) has finite energy there exists s1 ≤ s0

such that |∇εFH(us1 , τs1)|2ε ≤ δ. Hence, by (3.35), we have

FH(us1 , τs1) ≤ max f + µ < max f + 2µ = FH(us0 , τs0).

However, the action is decreasing along the negative gradient flow. This con-
tradiction proves the upper bound.

4 Linearized operators

4.1 Base Σ

4.1.1 Hilbert manifold Q and moduli space M0

Fix two critical points x∓ of f : Σ → R. We denote the Hilbert manifold of all
absolutely continuous paths q : R → Σ from x− to x+ with square integrable
derivative4 by

Qx−,x+ := {q ∈W 1,2(R,Σ) | lim
s→∓∞

q(s) = x∓}.

We obtain charts for the Hilbert manifold Qx−,x+ as follows. Let qT : R→ Σ
be a smooth map with the property that there is a real T > 0 such that qT (s) =
x− for s ≤ −T and qT (s) = x+ for s ≥ T . Let UqT be the set of vector fields
ξ ∈W 1,2(R, q∗TTΣ) such that at each instant of time s the length of ξ(s) is less
than the injectivity radius of (Σ, g). The exponential map of (Σ, g) induces a
parametrization, still denoted exp, of a neighborhood of qT in Qx−,x+ as follows

expqT : UqT → Qx−,x+ , ξ 7→ expqT ξ, (expqT ξ)(s) := expqT (s) ξ(s).

Consider the tangent bundle of Qx−,x+ , namely

TQx−,x+ → Qx−,x+ , Wq := TqQx−,x+ = W 1,2(R, q∗TΣ),

whose fiber Wq := TqQx−,x+ over a path q are the W 1,2 vector fields along q
tangent to Σ. Now consider the vector bundle

L → Qx−,x+ , Lq := L2(R, q∗TΣ), (4.36)

whose fiber Lq over a path q consists of the L2 vector fields along q tangent
to Σ. Corresponding inner products are defined by

〈ξ, η〉 = 〈ξ, η〉2 = 〈ξ, η〉Lq : =

∫ ∞
−∞
〈ξ(s), η(s)〉 ds

〈ξ, η〉1,2 = 〈ξ, η〉Wq : =

∫ ∞
−∞
〈ξ(s), η(s)〉+ 〈∇sξ(s),∇sη(s)〉 ds

4 by absolute continuity the derivative, notation ∂sq, exists at almost every instant s ∈ R
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for compactly supported smooth vector fields ξ, η ∈ C∞0 (R, q∗TΣ) . A section of
the vector bundle L → Qx−,x+ , strictly speaking its principal part, is given by

F0 : Qx−,x+ → L,

q 7→ ∂sq +∇f(q)
(3.22)

= ∂sq +∇F (q) + χ(q)∇H(q).
(4.37)

The base moduli space is the zero set of the section F0, in symbols

M0
x−,x+ =

{
q ∈ Qx−,x+ | ∂sq +∇F (q) + χ(q)∇H(q) = 0

}
. (4.38)

Lemma 4.1 (Regularity and finite energy). Any element q ∈M0
x−,x+ is smooth

and, by (3.27), of finite energy E0(q) = f(x−)− f(x+).

Proof. Since by assumption F,H are C∞ smooth and q is continuous, we see
that the derivative ∂sq = −∇F (q)−χ(q)·∇H(q) is in fact continuous. So q ∈ C1.
But then the right-hand side, hence ∂sq, is C1, so q ∈ C2, and so on.

4.1.2 Linearization of base equation

Linearizing the section F0 at a zero q : R→ Σ we obtain the linear operator

D0
q := dF0(q) : W 1,2(R, q∗TΣ)→ L2(R, q∗TΣ)

which is of the form

D0
qξ

1
= ∇sξ +∇ξ∇f |q

(2.11)
= ∇sξ +∇ξ

(
∇F |q + χ|q∇H|q

)
2
= ∇sξ +∇ξ

(
∇F |q + χ|q∇H|q

) (2.11)
= ∇sξ +∇ξ∇f(q)

3
= ∇sξ +∇ξ∇F |q + χ|q∇ξ∇H|q + (dχ|qξ) · ∇H|q.

(4.39)

For general elements q ∈M0
x−,x+ we define D0

q by (4.39).
Formula 1 arises when linearizing the base formulation of the section, namely

F0(q) = ∂sq +∇f(q) = 0.
Formula 2 arises when linearizing the ambient formulation of the section,

namely F0(q) = ∂sq + ∇F (q) + χ(q) · ∇H(q) = 0. Here the second equation
in (3.24) imposes the condition that the domain of D0

q consists of vector fields
ξ along q that must be tangent to Σ.
Formula 2 in (4.39) is a sum of vector fields along q : S1 → Σ each of which a
priori takes values in TM . The sum, however, takes values in TΣ, indeed

D0
qξ = ∇sξ +∇ξ

(
∇F |q + χ|q∇H|q

) (3.22)
= ∇sξ −∇ξ∂sq = [∂sq, ξ],

but the commutator of vector fields tangent to Σ is tangent to Σ. The last
identity is torsion freeness of the induced connection ∇, Lemma 2.2 (iv). The
second equation in formula 2 uses the Leibniz rule, Lemma 2.2 (iii).
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Symmetry with respect to g of the map ξ 7→ ∇ξ∇f |q = ∇ξ
(
∇F + χ∇H

)
|q,5

even in the case where q ∈ Σ is a point and ξ, η ∈ TqΣ vectors, is seen as follows

〈η,∇ξ
(
∇F |q + χ|q∇H|q

)
〉G

⊥
= 〈η,∇ξ

(
∇F |q + χ|q∇H|q

)
〉g

(3.22)
= 〈η,∇ξ∇f |q〉g
3
= ξ〈η,∇f |q〉g − 〈∇ξη,∇f |q〉g
4
=

(
ξη −∇ξη

)
f |q

5
=

(
ηξ −∇ηξ

)
f |q.

(4.40)

Here step 3 is by metric compatibility of the Levi-Civita connection, step 4 holds
since 〈η,∇f〉 = df(η) = ηf , and step 5 is torsion freeness of ∇.

Alternatively formula 2 arises from formula 1 by substituting both terms
∇sξ and ∇ξ∇f(q) by differences according to (2.14):

∇sξ +∇ξ∇f |q
(2.14)

= ∇sξ − II(∂sq, ξ)

(1.15)
= +∇ξ

(
∇F |q + χ|q∇H|q

)
− II

(
ξ,
(
∇F |q + χ|q∇H|q

))
(3.22)

= ∇sξ +∇ξ
(
∇F |q + χ|q∇H|q

)
.

(4.41)

To see the second step substitute ∂sq, then cancel the two II-terms by symmetry.
Such cancellation will not happen for the adjoint operator in (4.42) where ∇sξ
appears with the opposite sign, but the other term keeps its sign.

Lemma 4.2. If F0(q) = 0, then the kernel of D0
q contains the element ∂sq.

Proof. Take the covariant derivative ∇s of the vector field ∂sq +∇f(q) = 0.

4.1.3 Trivialization of base section and derivative

Given a map q ∈ Qx−,x+ and a vector field ξ along q, denote (pointwise for
s ∈ R) parallel transport in (Σ, g) along the geodesic r 7→ expq(rξ) by

φ = φ(q, ξ) : TqΣ→ Texpq(ξ)
Σ.

A trivialization of the base section F0 is given by the map

F0
q (ξ) := φ(q, ξ)−1F0(expq ξ) = φ(q, ξ)−1

(
∂s(expq(ξ)) +∇f(expq(ξ))

)
defined on a sufficiently small neighborhood of the origin (so exp is injec-
tive) in the Hilbert space scale h = (hm)m∈N0

where hm = Wm+1,2(R, q∗TΣ);
see [HWZ21] or the introduction [Web22]. The derivative at the origin

dF0
q (0)ξ = d

dr

∣∣
r=0
F0
q (rξ) = D0

qξ

coincides with the linearization (4.39) of the section F0 at a zero; details are
spelled out, e.g., in the proof of Theorem A.3.1 in [Web99].

5 the map ξ 7→ ∇ξ
(
∇F + χ∇H

)
takes values in TM only, so it cannot be g-symmetric
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4.1.4 Formal adjoint

For q ∈W 1,2 the formal adjoint (D0
q)
∗ : Wq → Lq is determined by

〈η,D0
qξ〉2 = 〈(D0

q)
∗η, ξ〉2, ∀ξ, η ∈ Wq = W 1,2(R, q∗TΣ), (4.42)

and consequently given by the first formula in what follows, namely

(D0
q)
∗ξ

1
= −∇sξ +∇ξ∇f |q
2
= −∇sξ + II(∂sq, ξ)

+∇ξ∇f |q − II
(
ξ,∇f |q

)
3
= −∇sξ +∇ξ

(
∇F |q + χ|q∇H|q

)
+ 2II

(
ξ, ∂sq

)
= −∇sξ +∇ξ∇f |q + 2II

(
ξ, ∂sq

)
(4.43)

for every ξ ∈ Wq and where II is defined by (2.16). Step 3 holds for 0-solutions q.
To see step 1 it suffices to work in (4.42) with the dense subspace C∞0 (R, q∗TΣ).
That ∇s becomes −∇s follows by partial integration and compact support. The
map ξ 7→ ∇ξ∇f is symmetric by (4.40) and thus it passes from D0

q to the adjoint.
To obtain step 2 we substituted each of the two terms tangential to Σ, namely
∇sξ and ∇ξ∇f(q), according to (2.14). In step 3 we replaced ∇f by ∇F + χ∇H
using (2.11) and in the II-term by −∂sq using (3.22) and symmetry of II.

4.1.5 Base linear estimate

Proposition 4.3. Let q ∈ C1(R,Σ×R) such that ‖∂sq‖∞ <∞ is finite. Then
there is a constant cb = cb(‖∂sq‖∞, ‖f‖C2(Σ), ‖II‖L∞(Σ)) such that

‖∇sξ‖+
∥∥∇sξ∥∥ ≤ cb (∥∥D0

qξ
∥∥+ ‖ξ‖

)
(4.44)

for all vector fields ξ ∈W 1,2(R, q∗TM). The estimate also holds for (D0
q)
∗.

Proof. Expand the square
∥∥D0

qξ
∥∥2

= ‖∇sξ +∇ξ∇f(q)‖2 and use Cauchy-
Schwarz and Young to get ‖∇sξ‖2 ≤ 2‖D0

qξ‖2 − 2‖∇∇f(q)‖2∞‖ξ‖2. By (2.14)

‖∇sξ‖2 = ‖∇sξ − II(∂sq, ξ)‖2, now expand the square. Same for (D0
q)
∗.

4.1.6 Fredholm property

Given a path q ∈ Qx−,x+ , it makes sense to define operators D0
q , (D

0
q)
∗ : Wq →

Lq by the formulae (4.39) and (4.43), respectively.
A continuous linear operator D between Banach spaces is called Fredholm

if kernel and cokernel are finite dimensional. Finite codimension implies closed
image.6 The difference dim kerD−dim cokerD is called the Fredholm index.

6 Finite codimension of an arbitrary linear subspace Y does not, in general, imply closedness
of Y – for an image Y = imT of a continuous operator T it does.
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Proposition 4.4. Let q ∈ Qx−,x+ with x∓ ∈ Critf non-degenerate. Then
the following is true for the operators D0

q , (D
0
q)
∗ : Wq → Lq defined by (4.39)

and (4.43).

(Exp. decay) Any kernel element ξ = ξ(s) of D0
q or (D0

q)
∗ is C∞ smooth and decays

exponentially with all derivatives, as s→ ∓∞. Hence ‖ξ‖, ‖ξ‖∞ <∞.

(Fredholm) Both operators D0
q and (D0

q)
∗ are Fredholm and the Fredholm indices are

the Morse index differences, namely

indexD0
q = indf (x−)− indf (x+) = − index(D0

q)
∗.

Proof of Proposition 4.4. That an operator d
ds + A(s) with invertible asymp-

totics A(∓∞) has exponentially decaying kernel elements, that it is Fredholm,
and that the index is the asymptotics’ Morse index difference is well known, see
e.g. [Sch93]. In suitable trivializations both D0

q and (D0
q)
∗ are of such form.

That the formal adjoint is Fredholm whenever D0
q is (and of the same Fred-

holm index times −1) follows immediately from the two vector space equalities

ker(D0
q)
∗ = cokerD0

q :=
(
imD0

q

)⊥
, coker (D0

q)
∗ = kerD0

q . (4.45)

Vector space equality one. ‘⊂’ Pick η ∈ ker(D0
q)
∗. By definition (4.42) of (D0

q)
∗

we have 〈η,D0
qξ〉 = 0 for every ξ ∈W 1,2. But this means that η ∈

(
imD0

q

)⊥
.

‘⊃’ Pick η ∈
(
imD0

q

)⊥ ⊂ L2. Then

0 = 〈η,D0
qξ〉

(4.39)
= 〈η,∇sξ〉+ 〈η,∇ξ∇f(q)〉

(1.32)
= 〈η,∇sξ〉+ 〈∇η∇f(q), ξ〉

for every ξ ∈W 1,2. But this is the definition of weak derivative. So η admits a
weak derivative, again denoted by ∇sη, and it is given by

∇sη = ∇η∇f(q) = D∇f(q) η ∈ L2.

Indeed the last term lies in L2, because η does and since D∇f(q) is of class C∞

(as f is and by Lemma 4.1) and decays exponentially with all derivatives: indeed
∇f(q) = −∂sq ∈ kerD0

q is a kernel element by Lemma 4.2. Thus η ∈W 1,2. Now
we can use the defining identity (4.42) of the adjoint to get that

0 = 〈(D0
q)
∗η, ξ〉 = 〈(D0

q)
∗η, ξ〉g

for every ξ ∈W 1,2(R, q∗TΣ). Thus (D0
q)
∗η = 0 by nondegeneracy of g.

The proof of vector space equality two is analogous.
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4.2 Ambience M × R
4.2.1 Hilbert manifold Z and moduli space Mε

Fix two critical points x∓ of f = F |Σ. So (x∓, χ(x∓)) ∈ CritFH , by Lemma 2.5.
We denote the Hilbert manifold of absolutely continuous paths z = (u, τ) : R→
M × R from z− to z+ with square integrable derivative by

Zx−,x+ , x∓ ∈ Critf, τ∓ := χ(x∓), z∓ := (x∓, τ∓) ∈ CritFH .

The tangent space at an element z = (u, τ) are the pairs Z = (X, `) consisting
of a W 1,2 vector field X along u and a W 1,2 function ` : R→ R, in symbols

Wu,τ := T(u,τ)Zx−,x+ = W 1,2(R, u∗TM ⊕ R).

We use the same symbol L as in (4.36) also for the vector bundle

L → Zx−,x+ , Lu,τ := L2(R, u∗TM ⊕ R)

whose fiber Lu,τ over a path in M × R are the L2 vector fields along (u, τ).
Given a parameter value ε > 0, a section of the vector bundle L → Zx−,x+

is defined by

Fε(u, τ) := ∂s(u, τ) +∇εFH(u, τ)
(3.30)

=

(
∂su+∇F |u + τ∇H|u

τ ′ + ε−2H ◦ u

)
. (4.46)

By definition the zero set is called the ambient or ε-moduli space, notation

Mε
x−,x+ := {Fε = 0} ⊂ Zx−,x+ .

4.2.2 Linearization of ambient equation

Linearizing the section Fε at a zero z = (u, τ) : R→M×R provides the operator

Dε
u,τ := dFε(u, τ) : Wu,τ → Lu,τ

given by Dε
u,τZ = ∇εsZ +∇εZ∇εFH(u, τ) or, equivalently, given by

Dε
u,τ

(
X
`

)
=

(
∇sX +∇X∇F |u + τ∇X∇H|u + `∇H|u

`′ + ε−2dH|uX

)
. (4.47)

for Z = (X, `) ∈W 1,2(R, u∗TM⊕R). For (u, τ) ∈ Zx−,x+ define Dε
u,τ by (4.47).

4.2.3 Trivialization of ambient section and derivative

Pick a map (u, τ) ∈ Zx−,x+ and a vector field (X, `) along it. Denote parallel
transport in (M,G) along the geodesic r 7→ Expu(rX) by

Φ = Φ(u,X) : TuM → TΓM, Γ := Expu(X),
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pointwise for s ∈ R. A trivialization of the ambient section Fε is defined by

Fεu,τ (X, `) =

(
Φ−1

(
∂sΓ +∇F |Γ + (τ + `)∇H|Γ

)
(τ + `)′ + ε−2H|Γ

)
(4.48)

for every vector field (X, `) in a sufficiently small (so Exp is injective) ball O
about the origin of W 1,2(R, u∗TM ⊕ R).

To calculate the derivative at the origin we utilize the facts about covariant
derivation and exponential maps collected in [Web99, appendix A] where the
details of essentially the same linearization are spelled out. Abbreviate Φr :=
Φ(u, rX) and Γr := Expu(rX), then d

dr

∣∣
0

Γr = X and

dFεu,τ (0, 0)

(
X
`

)
:= d

dr

∣∣
0
Fεu,τ (rX, r`)

1
=

d

dr

∣∣∣
0

(
Φ−1
r

(
∂s(Γr) +∇F |Γr

)
+ (τ + r`)Φ−1

r ∇H|Γr
(τ + r`)′ + ε−2H|Γr

)
2
=

(
d
dr

∣∣
0

(
Φ−1
r

(
∂s(Γr) +∇F |Γr

))
+ `∇H|u + τ d

dr

∣∣
0

(
Φ−1
r ∇H|Γr

)
d
dr

∣∣
0

(
(τ + r`)′ + ε−2H|Γr

) )
3
=

(
∇sX +∇X∇F |u + τ∇X∇H|u + `∇H|u

`′ + ε−2dH|uX

)
(4.47)

= Dε
u,τ

(
X
`

)
.

(4.49)

Step 1 is by definition of Fεu,τ and linearity of parallel transport. Step 2 uses

the Levi-Civita connection ∇ of (M,G) and the Leibniz rule. Step 3 holds by
Theorem A.3.1 in [Web99], more precisely by terms 1 and 3 in the proof.

4.2.4 Formal adjoint and Fredholm property

The formal adjoint (Dε
u,τ )∗ : Wu,τ → Lu,τ with respect to the (0, 2, ε) inner

product associated to the (0, 2, ε) norm, defined in (4.55) below, is determined by〈
Z̃,Dε

u,τZ
〉

0,2,ε
=
〈

(Dε
u,τ )∗Z̃, Z

〉
0,2,ε

, ∀Z, Z̃ ∈ Wu,τ . (4.50)

The formal (0, 2, ε) adjoint is then given by the formula

(Dε
u,τ )∗

(
X
`

)
= (Dε

z)
∗Z

2
= −∇εsZ +∇εZ∇εFH |z
3
=

(
−∇sX +∇X∇F |u + τ∇X∇H|u + `∇H|u

−`′ + ε−2dH|uX

) (4.51)

for every Z = (X, `) ∈ Wu,τ = W 1,2(R, u∗TM ⊕ R). Concerning identity 2,
an s-derivative turns, by partial integration, into minus an s-derivative and the
operator Z 7→ ∇εZ∇εFH is symmetric by an argument analoguous to (4.40).
Alternatively, analyze (4.50) term by term. Apart from the two arguments we
just gave, the two underlined terms in (4.51) satisfy the identity

〈X̃, `∇H|u〉+ ε2〈˜̀, ε−2dH|uX〉 = 〈˜̀∇H|u, X〉+ ε2〈ε−2dH|uX̃, `〉. (4.52)

29



Mind the tildes. To see the equality write out the inner products as integrals.

Proposition 4.5 (Fredholm property). For a path z = (u, τ) ∈ Zεx−,x+ with

non-degenerate boundary conditions x∓ ∈ Critf the following is true. Both
operators Dε

u,τ , (D
ε
u,τ )∗ : Wu,τ → Lu,τ are Fredholm and

ker(Dε
u,τ )∗ = cokerDε

u,τ :=
(
imDε

u,τ

)⊥
, coker (Dε

u,τ )∗ = kerDε
u,τ . (4.53)

The Fredholm and Morse indices are related by

indexDε
u,τ = indf (x−)− indf (x+) = − index(Dε

u,τ )∗. (4.54)

Proof. Analogous to Proposition 4.4; use in addition Lemma 2.6.

4.2.5 Suitable ε-dependent norms

To obtain uniform estimates for the right inverse with constants independent of
ε > 0 small, we must work with ε-dependent norms which are suggested on L2

by the energy identity (3.33) and on W 1,2 by the fundamental estimate (4.60).
For compactly supported smooth vector fields Z = (X, `) along (u, τ) define

‖Z‖0,2,ε : =
(
‖X‖2 + ε2‖`‖2

)1/2
≤ ‖X‖+ ε‖`‖

‖Z‖0,∞,ε : = ‖X‖∞ + ε‖`‖∞

‖Z‖1,2,ε : =
(
‖X‖2 + ε2‖`‖2 + ε2‖∇sX‖2 + ε4‖`′‖2

)1/2
≤ ‖X‖+ ε‖`‖+ ε‖∇sX‖+ ε2‖`′‖

(4.59)

≤ 2
3
2 ‖Z‖1,2,ε.

(4.55)

Lemma 4.6. Let (u, τ) ∈W 1,2(R,M×R) and ε > 0. Then there is the estimate

ε1/2‖Z‖0,∞,ε ≤ 3‖Z‖1,2,ε (4.56)

for every Z = (X, `) ∈W 1,2(R, u∗TM ⊕ R).

Proof. For v : R→ R of class C1 and compactly supported it holds that

|v(s)| · v(s) =

∫ s

−∞

d
dσ (|v(σ)| · v(σ))︸ ︷︷ ︸

=2|v(σ)|v′(σ)

dσ = 2〈|v|, v′〉L2 ≤ 2‖v‖ · ‖v′‖ ≤ ‖v‖1,2

where the last step is by Young ab ≤ a2/2 + b2/2 and ‖v‖21,2 := ‖v‖2 +‖v′‖2. So

‖v‖∞ ≤ ‖v‖1,2. (4.57)

Use that C1
0 is dense in W 1,2 on the domain R, then (4.57) provides the Cauchy

property of the approximating sequence, so (4.57) remains true for v ∈W 1,2.
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Now we rescale. For β ∈ R and ε > 0 define vβ : R→ R by vβ(s) := v(ε2βs).
Note that ‖vβ‖∞ = ‖v‖∞, but the L2-norms behave as follows

‖vβ‖2 =

∫ ∞
−∞

v(ε2βs︸︷︷︸
σ(s)

)2 ds = ε−2β

∫ ∞
−∞

v(σ)2 dσ = ε−2β‖v‖2,

‖v′β‖2 =

∫ ∞
−∞

(v′(ε2βs︸︷︷︸
σ(s)

)ε2β)2 ds = ε−2βε4β

∫ ∞
−∞

(v′(σ))2 dσ = ε2β‖v′‖2.

Now square (4.57) to vβ to see that

‖v‖2∞ = ‖vβ‖2∞
(4.57)

≤ ‖vβ‖2 + ‖v′β‖2 ≤
(
ε−β‖v‖

)2
+
(
εβ‖v′‖

)2
≤
(
ε−β‖v‖+ εβ‖v′‖

)2
whenever β ∈ R and ε > 0. Take the square root, then multiply by εβ to obtain

εβ‖v‖∞ ≤ ‖v‖+ ε2β‖v′‖. (4.58)

With β = 1
2 apply (4.58) for v(s) = |X(s)| = |X(s)|G and v(s) = `(s) to obtain

√
ε‖Z‖0,∞,ε

(4.55)
=
√
ε‖X‖∞ +

√
εε‖`‖∞

(4.58)

≤ ‖X‖+ ε‖X ′‖+ ε‖`‖+ ε2‖`′‖.

Now the square root of the inequality for non-negative reals

(a1 + · · ·+ ak)2 ≤ 2k−1(a2
1 + · · ·+ a2

k) (4.59)

in case k = 4 completes the proof of Lemma 4.6.

4.2.6 Ambient linear estimate along maps i(q)

The most important uniform linear estimates in an adiabatic limit are the fun-
damental estimate, in our case the ambient linear estimate, Theorem 4.7 below,7

and the key estimate, Theorem 5.8.
In the following we consider maps q that take values in the compact regular

hypersurface Σ. Thus we can work directly with the (positive) minimal length
mH := minΣ|∇H| > 0 along Σ, instead of invoking part (ii) of Theorem 1.4
which only works for small ε > 0. In fact, Section 4.2.6 can be generalized to
maps (u, τ) ∈ C1(R,M × R) with ‖∂su‖∞ + ‖τ‖∞ < cw and for ε > 0 small.

Theorem 4.7. Let q ∈ C1(R,Σ). Let ‖∂sq‖∞ < cw be bounded by a constant.
Then there is a constant ca = ca(mH , cw, ‖H‖C2(Σ), ‖F‖C2(Σ)) > 0 such that

ε−1‖dH|qX‖+ ‖`‖+ ‖∇sX‖+ ε‖`′‖ ≤ ca
(
‖Dε

qZ‖0,2,ε + ‖X‖
)

(4.60)

for all ε > 0 and Z = (X, `) ∈ W 1,2(R, q∗TM ⊕ R). The estimate continues to
hold for (Dε

q)
∗. The constants ca is invariant under s-shifts of q.

7 In PDE cases, such as [SW06], the ambient linear estimate is often much weaker than in
our ODE case, so it must be improved to what we refer to as the fundamental estimate.
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Proof. Fix Z = (X, `) in the dense subset C∞0 (R, q∗TM ⊕ R). Take the square

‖Dε
qZ‖20,2,ε = ‖∇sX +∇X

(
∇F |q + χ|q∇H|q

)
+ `∇H|q‖2L2

q

+ ε2‖`′ + ε−2dH|qX‖2L2(R).

Consider the first term in the sum. Expand the square to get

‖∇sX +∇X
(
∇F |q + τ∇H|q

)
+ `∇H|q‖2L2

q

= ‖∇sX‖2L2
q

+ ‖∇X
(
∇F |q + τ∇H|q

)
‖2L2

q
+ ‖`∇H|q‖2L2

q

+ 2
〈√

2∇X
(
∇F |q + τ∇H|q

)
, 1√

2
`∇H|q

〉
L2
q

+ 2
〈

1√
2
∇sX,

√
2∇X

(
∇F |q + τ∇H|q

)〉
L2
q

+ 2
〈
∇sX, `∇H|q

〉
L2
q

≥ 1
2‖∇sX‖

2
L2
q

+ 1
2‖`∇H|q‖

2
L2
q
− 3‖∇X

(
∇F |q + τ∇H|q

)
‖2L2

q
+ 2

〈
∇sX, `∇H|q

〉
L2
q

≥ 1
2‖∇sX‖

2
L2
q

+ mH
2

2 ‖`‖
2
L2(R) − 3

(
‖F‖C2(Σ) + ‖τ‖∞‖H‖C2(Σ)

)
‖X‖2L2

q

+ 2
〈
∇sX, `∇H|q

〉
L2
q
.

Here we also used Cauchy-Schwarz followed by Young’s inequality, then we
pulled out the L∞ norms. Next consider the second term in the sum. Expand
the square and integrate by parts to get

ε2‖`′ + ε−2dH|qX‖2L2(R)

= ε2‖`′‖2L2(R) + ε−2‖dH|qX‖2L2(R) + 2
〈
`′, 〈∇H|q, X〉G

〉
L2(R)

= ε2‖`′‖2L2(R) + ε−2‖dH|qX‖2L2(R)

−
〈
mH√

2
`, 2

√
2

mH
〈∇s∇H|q, X〉G

〉
L2(R)

− 2
〈
`, 〈∇H|q,∇sX〉G

〉
L2(R)

≥ ε2‖`′‖2L2(R) + ε−2‖dH|qX‖2L2(R) − mH
2

4 ‖`‖
2
L2(R)

−
4‖∂su‖2∞‖H‖

2
C2(Σ)

mH2 ‖X‖2L2
q
− 2

〈
`, 〈∇H|q,∇sX〉G

〉
L2(R)

.

To obtain the inequality we used Cauchy-Schwarz followed by Young’s inequal-
ity, then we pulled out the L∞ norms. Adding the two estimates the underlined
terms cancel and we obtain the estimate (4.60).

The estimate for the formal adjoint follows exactly the same way. Here the
derivative terms show up with a minus sign. The underlined terms now show
up with a factor −1 and so they still cancel.

Remark 4.8. Under the hypotheses of Theorem 4.7 there are C, ε0 > 0 with

ε−1‖dH|qX‖+ ‖`‖+ ‖∇sX‖+ ε‖`′‖ ≤ C
(
‖Dε

qZ‖0,2,ε + ‖tanX‖
)

for every Z = (X, `) ∈ W 1,2(R, q∗TM ⊕ R) and whenever ε ∈ (0, ε0]. Similarly
for (Dε

q)
∗ and the constants C, ε0 are invariant under s-shifts of q.
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To see this decompose X = tanX + norX on the right of (4.60) to obtain

‖X‖ ≤ ‖tanX‖+ ‖norX‖
(2.11)

≤ ‖tanX‖+ ε
mH

ε−1 ‖dH|qX‖ .

Incorporate the last summand into the left-hand side of (4.60) for small ε.

Corollary 4.9. Let q ∈ C1(R,Σ). Let ‖∂sq‖∞ < cw be bounded by a constant.
Let ε0 be the constant in Remark 4.8. Then there is a constant Ca > 0 with

1
3ε

1/2‖Z‖0,∞,ε ≤ ‖Z‖1,2,ε ≤ εCa‖D
ε
qZ‖0,2,ε + ‖tanX‖ (4.61)

for all ε ∈ (0, ε0] and Z = (X, `) ∈W 1,2(R, q∗TM⊕R). The estimate also holds
for (Dε

q)
∗. The constants Ca, ε0 are invariant under s-shifts of q.

Proof. By definition (4.55) of the (1, 2, ε)-norm, by writing X = tanX + norX,
and since ‖norX‖ ≤ 1

mH
‖dH|qX‖ by (2.11), we get that

‖Z‖1,2,ε ≤ ‖tanX‖+ ‖norX‖+ ε‖`‖+ ε‖∇sX‖+ ε2‖`′‖

≤ ‖tanX‖+ ε · max{mH ,1}
mH

(
ε−1‖dH|qX‖+ ‖`‖+ ‖∇sX‖+ ε‖`′‖

)
.

Now apply Remark 4.8. Inequality (4.56) concludes the proof.

5 Linear estimates

Throughout Section 5 we study linearized operators along maps q which take
values in the compact hypersurface Σ. Thus we can work with the constant

mH := min
Σ

∣∣∇H∣∣ > 0,

see (2.11), which does not impose restrictions on the values of ε > 0, in sharp
contrast to the constant cκ that appears in part (ii), see [FW22a], of the a priori
Theorem 1.4 requiring a small parameter interval (0, εκ].

5.1 Canonical embedding and orthogonal projection

The elements q of the Hilbert manifold Qx−,x+ are paths that take values in
the regular level set Σ = H−1(0) along which the map χ defined by (2.8) is well
defined. By (2.19) and (3.23) there is the canonical embedding

i : Qx−,x+ → Zx−,x+ , q 7→ (q, χ(q)),

which is useful to compare the base solutions q and the ε-solutions (u, τ). At a
path q ∈ Qx−,x+ the linearization of the natural embedding is given by

TqQx−,x+→ Ti(q)i(Qx−,x+) ⊂ Ti(q)Zx−,x+

Iq := di|q : W 1,2(R, q∗TΣ)→W 1,2(R, q∗TΣ⊕ R) ⊂W 1,2(R, q∗TM ⊕ R)

ξ 7→ (ξ, dχ|qξ) .
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Definition 5.1 (Orthogonal projection). At q ∈ Qx−,x+ the (0, 2, ε)-orthogonal
projection onto the image of the linearized embedding Iq is the composition

Π⊥ε = Iqπ
⊥
ε : Ti(q)Zx−,x+ = W 1,2(R, q∗TM ⊕ R)→W 1,2(R, q∗TM ⊕ R)

whose value on Z = (X, `) ∈W 1,2(R, q∗TM ⊕ R) is determined by〈
Z − Iqπ⊥ε Z, Iqξ

〉
0,2,ε

= 0 (5.62)

for every vector field ξ ∈ TqQx−,x+ = W 1,2(R, q∗TΣ).

Lemma 5.2. a) The linear map π⊥ε : Ti(q)Zx−,x+ → TqQx−,x+ is given by

π⊥ε (X, `) =
(
1l + ε2µ2 P

)−1 (
tanX + ε2`∇χ|q

)
, µ := |∇χ(q)| , (5.63)

for every pair Z = (X, `) ∈ W 1,2(R, q∗TM ⊕ R). Here ∇χ is the gradient in
(Σ, g) and P is the pointwise orthogonal projection 8

P = Pq : TqΣ→ Vq := R∇χ|q ⊂ TqΣ

ξ 7→ 〈∇χ|q, ξ〉
µ2

∇χ|q,
(5.64)

where q actually abbreviates q(s) for s ∈ R. By compactness of Σ the constant
µ∞ := max{1, ‖∇χ‖L∞(Σ)} is finite. b) It holds that π⊥ε Iq = 1l, so (Π⊥ε )2 = Π⊥ε .

Proof. a) Let ξ0 := π⊥ε (X, `). By (5.62) the vector field ξ0 lives in TΣ and

0 = 〈X − ξ0, ξ〉G + ε2 (`− dχ|qξ0) dχ|qξ
=
〈
tanX − ξ0 + ε2 (`− 〈∇χ, ξ0〉)∇χ, ξ

〉
pointwise at s ∈ R and for every ξ ∈ TqQx−,x+ . We wrote X = tanX + norX,
we used that ξ ⊥ norX, and we replaced the metric G by g. By non-degeneracy

tanX + ε2`∇χ = ξ0 + ε2 〈∇χ, ξ0〉∇χ = ξ0 + ε2µ2Pξ0

and so π⊥ε (X, `) = ξ0 =
(
1l + ε2 〈∇χ, 1l〉∇χ

)−1 (
tanX + ε2`∇χ

)
.

b) Apply the isomorphism in (5.67) to the desired identity ξ = π⊥ε Iqξ to get
equivalently ξ+ ε2µ2Pξ = ξ+ ε2(dχ|qξ)∇χ which is true by definition of P .

5.1.1 Ansatz for a suitable projection

In previous adiabatic limits [DS94,Gai99,Web99,GS05,SW06] – where the spa-
tial part involves differential equations, so the flow equation is a PDE and not
just an ODE as in the present article – it was crucial for the functioning of the
Newton iteration not to choose the operator π⊥ε associated to the orthogonal
projection Π⊥ε = Iqπ

⊥
ε . There the natural orthogonal choice did produce an

8 if ∇χ(q(s) = 0 vanishes at some s, then µ2
q(s)

Pq(s) = 0 is the zero map at that s
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abundance of powers of ε in one component, but a lack in the other one. To
balance this out one can introduce parameters α, β > 0 and make the Ansatz

πε(X, `) :=
(
1l + εαµ2P

)−1 (
tanX + εβ`∇χ|q

)
. (5.65)

It seems a common principle that the epsilon power β = 2 that shows up in the
orthogonal projection (5.63) and also in the ε-equation (3.30), is the right value
of β. Usually the value β = 2 is suggested, too, when comparing the linear
operators D0

q and Dε
q , see the proof of Proposition 5.5. In the present article

the choice β = 2 also optimizes the Uniqueness Theorem 6.2, see (6.105). For
α = 1 the operator comparison estimate (5.72) has a nicely equilibrated right
hand side, but the orthogonal choice α = 2 works as well.

Lemma 5.3 (Le. 4.1.5). Let q ∈W 1,2(R,Σ) and α ∈ R. Then∥∥(1l + εαµ2P )−1ξ
∥∥ ≤ ‖ξ‖∥∥(1l + εαµ2P )−1Pξ
∥∥ ≤ ‖ξ‖ (1l + εαµ2P )−1P = P

1+εαµ2∥∥∥(1l + εαµ2P )−1εα/2µPξ
∥∥∥ ≤ 1

2 ‖ξ‖
εα/2

1+εαµ(s)2 ≤ 1
2µ(s)∥∥(1l + εαµ2P )−1εαµ2Pξ

∥∥ ≤ ‖ξ‖ εα

1+εαµ(s)2 ≤ 1
µ(s)2

(5.66)

for all constants ε > 0, vector fields ξ ∈W 1,2(R, q∗TΣ), and reals s ∈ R.

Recall that P 2 = P , pointwise at q(s), is a projection, an orthogonal one,
hence of norm 1. So estimate one with ξ replaced by Pξ implies estimate two.
Note that estimate two in the lemma allows for removing the square root µP , at
cost εα/2, of the operator (µP )2 = µ2P that appears in (1l+εαµ2P )−1, whereas
removing (µP )2 = µ2P itself has cost εαµ2. These facts are somewhat hidden
since P 2 = P . As it turns out only estimates one and two in Lemma 5.3 are of
significance in the present ODE adiabatic limit. In sharp contrast, the refined
estimates three and four were foundational in the PDE adiabatic limit [SW06]
where P = ∇t is one spatial derivative. At present the finer estimate three in the
lemma can still be used for cosmetics, for example to get constant 2 in estimate
three in (5.68), as opposed to a factor involving µ∞, see (5.70).

Proof. Let ε > 0 and ξ ∈W 1,2(R, q∗TΣ). Pick s ∈ R. The operator

B(s) := 1l + εαµ2
q(s)Pq(s) : Tq(s)Σ→ Tq(s)Σ (5.67)

is symmetric since the projection is orthogonal, thus the eigenvalues are real.
The eigenvalues of B(s) are positive: The projection Pq(s), defined by (5.64),

has eigenvalue 0 on V ⊥q(s) and 1 on the line Vq(s) = R∇χ|q(s). Thus the operator

B(s) has eigenvalue 1 on V ⊥q(s) and 1+εαµ2
q(s) on Vq(s). Hence B(s) is invertible.

The inverse B(s)−1 has spectrum {1, (1 + εαµ2
q(s))

−1}, thus norm 1. Hence∥∥(1l + εαµ2P )−1ξ
∥∥ =

∥∥B(s)−1ξ
∥∥ ≤ ‖ξ‖ .
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This proves estimate one. For estimate two replace ξ by Pξ and use that by
orthogonality |Pq(s)ξ(s)| ≤ |ξ(s)| at any s ∈ R. The symmetric operator

(1l + εαµ2
q(s)Pq(s))

−1Pq(s) : Tq(s)Σ→ Tq(s)Σ

has eigenvalue 0 on V ⊥q(s) and 1/(1 + εαµ2
q(s)) on Vq(s) = imPq(s) = R∇χ(q(s)).

This proves in (5.66) the identity in line two. By Young 1 · εα/2µ ≤ (12 +
(εα/2µ)2)/2, hence εα/2µ/(1 + εαµ2) ≤ 1/2 and this implies estimate three.
Clearly εαµ2/(1 + εαµ2) ≤ 1 and this implies estimate four.

5.1.2 Component estimates

As discussed prior to Lemma 5.3 we already choose β = 2.

Lemma 5.4. Let q ∈W 1,2(R,Σ). In πε let α ∈ [1, 2] and β = 2. Then

‖X − πεZ‖ ≤ 1
mH
‖dH|qX‖+ εαµ2

∞ ‖P tanX‖+ ε2µ∞ ‖`‖
‖`− dχ|qπεZ‖ ≤ µ∞ ‖P tanX‖+ 2 ‖`‖

‖Z − IqπεZ‖0,2,ε ≤
1
mH
‖dH|qX‖+ 2µ2

∞ε ‖P tanX‖+ 4µ∞ε ‖`‖

‖πεZ‖ ≤ ‖IqπεZ‖0,2,ε ≤ 2 ‖Z‖0,2,ε

(5.68)

for all constants ε ∈ (0, 1] and pairs Z = (X, `) ∈W 1,2(R, q∗TM ⊕ R) where

mH := min
Σ

∣∣∇H∣∣ > 0, µ∞ := max{1, ‖∇χ‖L∞(Σ)} ∈ [1,∞). (5.69)

Proof. Given q and Z = (X, `), we denote

ξ0 := πεZ = (1l + εαµ2P )−1
(
tanX + ε2`∇χ

)
.

Write X = norX +B−1(B tanX), with B given by (5.67), in order to obtain

X1 := X − ξ0 = norX + (1l + εαµ2P )−1
(
εαµ2P tanX − ε2`∇χ

)
pointwise at s ∈ R. By (2.11) and Lemma 5.3, we get

‖X1‖ ≤ 1
mH
‖dH|qX‖+ εαµ2

∞ ‖P tanX‖+ ε2µ∞ ‖`‖

Similarly, we get

`1 : = `− dχ|qξ0
= `− dχ|q

(
1l + εαµ2P

)−1 (
tanX + ε2`∇χ

)
= `−

〈
∇χ,

(
1l + εαµ2P

)−1 (
P tanX + (1l− P ) tanX + ε2`∇χ

)〉
4
= `− 〈∇χ,P tanX〉

1+εαµ2 − 0− ε2µ2

1+εαµ2 `

By Lemma 5.3 we get

‖`1‖ ≤ µ∞ ‖P tanX‖+ 2 ‖`‖ .
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For later use in (5.70), note that by equality 4 above

dχ(q)ξ0 = 〈∇χ,P tanX〉
1+εαµ2 + εαµ2

1+εαµ2 ε
2−α`.

Take the sum of the estimates for X1 and `1 to obtain

‖Z − IqπεZ‖0,2,ε ≤ ‖X1‖+ ε ‖`1‖

≤ 1
mH
‖dH|qX‖+ µ2

∞ε(1 + εα−1) ‖P tanX‖
+ 2µ∞ε(1 + ε) ‖`‖ .

Now use the hypotheses α ≥ 1 and ε ≤ 1. By Lemma 5.3, also using the finer
third estimate, applied to the earlier identity for ξ0, and for dχ(q)ξ0, we get

‖ξ0‖ ≤ ‖tanX‖+ 1
2ε

2−α2 ‖`‖ ,
‖dχ|qξ0‖ ≤ 1

2ε
−α2 ‖tanX‖+ ε2−α ‖`‖ .

(5.70)

Square these two inequalities and take the sum to obtain

‖IqπεZ‖20,2,ε = ‖ξ0‖2 + ε2 ‖dχ|qξ0‖2

≤ 2(1 + 1
4ε

2−α) ‖tanX‖2 + 2ε2−α( 1
4 + ε2−α)ε2 ‖`‖2

≤ 3
(
‖tanX‖2 + ε2 ‖`‖2

)
.

Note that ‖tanX‖ ≤ ‖X‖ since tan is an orthogonal projection. The proof of
Lemma 5.4 is complete.

5.2 Comparing the base and ambient linear operators

We keep focusing on the special class of the ambient linear operators, see (4.47),
along the canonical embedding i : q 7→ (q, χ(q)). The aim of this section is to
control, downstairs in q-space, the difference between the base linear operator
along q and the ambient linear operator along i(q).

For q ∈ C1(R,Σ) denote the ambient linear operators along the graph of χ
over q by Dε

q := Dε
q,χ(q) and (Dε

q)
∗ := (Dε

q,χ(q))
∗. These operators have the form

Dε
q

(
X
`

)
(4.47)

=

(
∇sX +∇X∇F |q + χ(q)∇X∇H|q + `∇H|q

`′ + ε−2dH|qX

)
(Dε

q)
∗
(
X
`

)
(4.51)

=

(
−∇sX +∇X∇F |q + χ(q)∇X∇H|q + `∇H|q

−`′ + ε−2dH|qX

) (5.71)

for every Z = (X, `) ∈W 1,2(R, q∗TM ⊕ R).

Proposition 5.5. In πε let α > 0 and β = 2. Let q ∈ C1(R,Σ) be a map with
bounded derivative ∂sq. Then there is a constant cd > 0 such that∥∥(D0

q)
∗πεZ − πε(Dε

q)
∗Z
∥∥∥ ≤ εcd ( 1

ε ‖dH|qX‖+ εα−1 ‖tanX‖+ ε ‖`‖
)

(5.72)

for every Z = (X, `) ∈ W 1,2(R, q∗TM ⊕ R) whenever ε ∈ (0, 1]. The same is
true for D0

qπε − πεDε
q. The constant cd is invariant under s-shifts of q.

37



Note that for α = 1 all three terms on the right hand side of (5.72) are of the
same quality in terms of powers of ε as in the ambient linear estimate (4.60).

5.2.1 Commutators along Σ

The proof of Proposition 5.5 below suggests the value β = 2. For better reading
we set β = 2 already now. Let α ∈ R.

A commutator with the inverse operator
(
1l + εαµ2 P

)−1
should be rewritten

in terms of a commutator with the operator itself. The reason is that commuta-
tors are additive and the first summand of 1l + εαµ2 P commutes with anybody,
thus disappears, and the second summand then brings in the precious factor εα.

Here is an example of this technique, further below in (5.75) there will be
another one. In preparation to prove Proposition 5.5 note that along Σ it holds

[∇s,
(
1l + εαµ2 P

)−1
] =

(
1l + εαµ2 P

)−1
[1l + εαµ2 P,∇s]

(
1l + εαµ2 P

)−1

= εα
(
1l + εαµ2 P

)−1
[µ2 P,∇s]

(
1l + εαµ2 P

)−1

where, by definition (5.64) of P , the last commutator has the form

[µ2 P,∇s]ξ = −〈∇s∇χ, ξ〉∇χ− 〈∇χ, ξ〉∇s∇χ

for every ξ ∈W 1,2(R, q∗TΣ). Thus, abbreviating B
(5.67)
:= 1l + εαµ2 P , we get

[∇s, B−1]· = −εαB−1
(〈
∇s∇χ,B−1·

〉
∇χ+

〈
∇χ,B−1·

〉
∇s∇χ

)
. (5.73)

Proof of Proposition 5.5. Let Z = (X, `) ∈W 1,2(R, q∗TM ⊕R). We abbreviate
ξ0 := πεZ and write the operator πε in the general form

ξ0 := πεZ = B−1
(
tanX + εβ`∇χ

)
, B

(5.67)
:= 1l + εαµ2 P,

in order to identify how the natural choice β = 2 arises. For simplicity of reading
we mainly omit arguments q and q(s). By (4.43) the adjoint of D0

q is given by

(D0
q)
∗πεZ

(4.43)
= −∇sξ0 +∇ξ0∇f
ξ0
= −B−1∇s

(
tanX + εβ`∇χ

)
− [∇s, B−1]

(
tanX + εβ`∇χ

)
+∇B−1(tanX+εβ`∇χ)∇f

(5.73)
= −B−1

(
∇s tanX + εβ`′∇χ+ εβ`∇s∇χ

)
+ εαB−1

(
〈∇s∇χ, ξ0〉∇χ+ 〈∇χ, ξ0〉∇s∇χ

)
+∇B−1 tanX∇f + εβ`∇B−1∇χ∇f.

The underlined terms annihilate their twins below when we take the difference.
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We write (Dε
q)
∗Z =: (X∗, `∗), where (Dε

q)
∗ is given by (5.71), then

πε(D
ε
q)
∗Z = πε(X

∗, `∗)

= B−1
(
tanX∗ + εβ`∗∇χ

)
3
= B−1 tan

(
−∇sX +∇X

(
∇F |q + χ|q∇H|q

)
− (dχ|qX)∇H + `∇H

)
+B−1

(
−εβ`′ + εβ−2dH|qX

)
∇χ

4
= −B−1

(
∇s tanX + tan∇snorX −∇tanX∇f − tan∇norX∇f

)
−B−1

(
εβ`′∇χ− εβ−2(dH|qX)∇χ

)
.

In identity 3 we pulled out the term ∇X from the sum of two terms whereby the
extra term −(dχ|qX)∇H arises. Identity 4 substitutes ∇F |q + χ|q∇H|q for ∇f ,
by (2.11), and uses that tan∇H = 0 = tan II and that tan∇χ = ∇χ, by (2.11).
We wrote ∇sX = ∇s(tanX + norX) and ∇X∇f = ∇tanX∇f + ∇norX∇f , then
we used (2.14) and that normal parts II vanish under tangential projection.

Take the difference, so the s-derivatives (underlined) disappear, and uti-
lize (2.14), to obtain (the lower signs are for D0

qπε − πεDε
q)

(D0
q)
∗πεZ − πε(Dε

q)
∗Z

= −εβ−2(dH|qX)B−1∇χ∓ εβ`
(
B−1∇s∇χ− 1

1+εαµ2 ∇∇χ∇f
)

± εαB−1
(
〈∇s∇χ, ξ0〉∇χ+ 〈∇χ, ξ0〉∇s∇χ

)
+∇B−1 tanX∇f −B−1∇tanX∇f
±B−1 tan∇snorX ∓B−1 tan∇norX∇f.

(5.74)

To finish the proof it remains to inspect line by line the L2 norm of these
four lines, denoted by L1, . . . , L4. The coefficient εβ−2 suggests to choose β ≥ 2.
In view of line four, see analysis below, choosing β > 2 does not improve the
overall estimate for the term dH|qX. So the value β = 2 that appears in the
orthogonal projection will be just fine.9

To estimate line one L1 we use that
∥∥B−1

∥∥ ≤ 1, by (5.66), to obtain

‖L1‖ ≤ µ∞εβ−2 ‖dH|qX‖+ caε
β ‖`‖

where ca depends on ‖∂sq‖∞, the C2(Σ)-norms of χ and f , and on µ∞.

Concerning line two L2, by definition of ξ0 and since
∥∥B−1

∥∥ ≤ 1, we obtain

‖L2‖ ≤ Cεα ‖ξ0‖ , ‖ξ0‖ ≤ ‖tanX‖+ µ∞ε
β ‖`‖ ,

where C depends on ‖∂sq‖∞, the C2(Σ)-norm of χ, and µ∞.

9 We do not see here the phenomenon that the two most unpleasant terms, here dH|qX,
appear with opposite signs, one with ε0 and one with εβ−2 thereby enforcing the choice β = 2,
as opposed to [SW06, p. 1132, formula for πεDεuζ, unpleasant terms ∇tη already cancelled].
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Line three L3 in (5.74) is of the form

[Φ, B−1] = B−1[B,Φ]B−1 = B−1[1l + εαµ2P,Φ]B−1 = εαµ2B−1[P,Φ]B−1

where Φ: W 1,2(R, q∗TM)→W 1,2(R, q∗TM) is given by Φξ = ∇ξ∇f . Thus

‖L3‖ =
∥∥[Φ, B−1] tanX

∥∥
=
∥∥εαµ2B−1 (P∇B−1 tanX∇f −∇PB−1 tanX∇f)

∥∥
≤ εαµ2

∞ ‖f‖C2(Σ) ‖tanX‖
(5.75)

since
∥∥B−1

∥∥ ≤ 1, by (5.66), and since orthogonal projection have ‖P‖ = 1.

Line four L4 in (5.74): For the first summand, by (2.10) and Leibniz, we get

∇snorX =
(
〈∇H,X〉
|∇H|2

)′
∇H + 〈∇H,X〉

|∇H|2 ∇s∇H.

Now use orthogonality ∇H ⊥ tanX and write X = tanX + norX to obtain

tan∇snorX = 〈∇H,norX〉
|∇H|2 tan∇s∇H

where the right-hand side is linear in norX. Use this formula to get the estimate

∥∥tan∇snorX
∥∥ ≤ ∥∥∥ tan∇s∇H

|∇H|

∥∥∥
∞
‖norX‖

(2.11)

≤ ‖∇·∇H‖∞‖∂sq‖∞
m2
H

‖dH|qX‖ (5.76)

where ‖∇·∇H‖∞ is over the compact Σ. For the second summand of L4 we get

∥∥tan∇norX∇f
∥∥ ≤ ∥∥∇norX∇f

∥∥ ≤ ∥∥∇·∇f∥∥∞ ‖norX‖
(2.11)

≤ ‖∇·∇f‖∞
mH

‖dH|qX‖ .

For α > 0, β = 2, and ε > 0 the estimates together prove the L2 bound (5.72).
All estimates are invariant under s-shifts of q, because all constants depend on
the L∞ norm of ∂sq. The proof of Proposition 5.5 is complete.

5.3 Right inverse – key estimate

In this section we show that if the base flow is Morse-Smale, then so is the
ambient ε-flow for all ε > 0 small, see Theorem 5.8.

Definition of right inverse

Suppose that q ∈M0
x−,x+ . By Morse-Smale the linear operator

D0
q : W 1,2(R,Σ)→ L2(R,Σ)

is surjective. By (4.45) this is equivalent to injectivity of the adjoint (D0
q)
∗.

Here the Fredholm operator property of D0
q and (D0

q)
∗ enters which holds true,

see Proposition 4.4, since Morse-Smale implies Morse.
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The main result of this section, Theorem 5.8, tells that surjectivity of D0
q

implies, for ε > 0 small, surjectivity of Dε
q , equivalently injectivity of (Dε

q)
∗. As

kerDε
q = im (Dε

q)
∗, by analogy to (4.45), the composition Dε

qD
ε
q
∗ : W 2,2 → L2

is a bijection and, as a composition of bounded operators, it is bounded. So
Dε
qD

ε
q
∗ has a bounded inverse by the open mapping theorem. Then the operator

Rεq := (Dε
q)
∗ (Dε

q(D
ε
q)
∗)−1

: L2 (...)−1

−→ W 2,2
(Dεq)∗

−→ W 1,2 (5.77)

is bounded and a right inverse of the operator Dε
q given by (5.71).

Boundedness of Rεq is not enough to get a bijection T ε : M0
x−,x+ →Mε

x−,x+

between base and ambient moduli spaces for every parameter value ε > 0 small.
To achieve this via the Newton method, what we need is a uniform bound that
works for every ε > 0 small. Uniform boundedness of the right inverse amounts
to establishing uniform estimates for Dε

q along the image of the formal adjoint.
This is also part of Theorem 5.8. To have a chance to obtain uniform bounds
in ε one works with Sobolev norms ‖·‖0,2,ε and ‖·‖1,2,ε weighted by suitable
powers of ε, see (4.55). The weights are suggested by, respectively, the ε-energy
identity and the ambient linear estimate.

5.3.1 The Fredholm operator interchange estimate

In adiabatic limit analysis when one proves the key estimates for the linearized
operator along the image of the adjoint (in the present article Theorem 5.8)
one needs to interchange the base and ambient operators at some point. For
future reference we include the proof of an abstract version of [SW06, Le. D.7]
for Fredholm operators D and D′. In practice D′ is the formal adjoint of D, so
the isomorphism hypothesis on the maps A and B is satisfied automatically.

Lemma 5.6. Let D,D′ : W → E be Fredholm operators between Banach spaces
such that W is contained and dense in E and such that the maps defined by

A : kerD
'→ cokerD′ := E

imD′ , B : kerD′
'→ cokerD := E

imD ,

ξ 7→ ξ + imD′ η 7→ η + imD

are isomorphisms. Let D be surjective. Then there is a constant c such that

‖η‖W ≤ c‖D′η‖E
‖ξ‖W ≤ c (‖ξ −D′η‖E + ‖Dξ‖E)

(5.78)

for all ξ, η ∈W .

Proof of Lemma 5.6. Since D is surjective D′ is injective as the isomorphism B
shows. Hence estimate one in (5.78) follows from the open mapping theorem;
see e.g. [Rud91, Thm. 4.13]

The linear map P : E → E/imD′, defined by ξ 7→ ξ + imD′, is continuous
since the target space is of finite dimension. The operator

T : W → E ⊕ E
imD′ , ξ 7→ (Dξ, Pξ) ,

41



is an injective Fredholm operator: Linearity is clear and continuity holds by
continuity of D and of P . Note that kerT ⊂ kerD. For injectivity let ξ ∈ kerT ,
then Dξ = 0 and 0 = Pξ = Aξ. But then ξ = 0 since A is an isomorphism.
The image of T is closed, since so is the image of D and since the dimension of
kerD is finite. The image of T has finite codimension, since so has D and since
E

imD′ is of finite dimension.
By injectivity and closed range the operator T , as a map W → imT , is

a bijection between Banach spaces. Thus by the open mapping theorem, see
e.g. [Rud91, Cor. 2.12 (c)], there is a constant c > 0 such that

‖ξ‖W ≤ c‖Tξ‖ = c
(
‖Dξ‖E + ‖Pξ‖E/imD′

)
for every ξ ∈W . Given η ∈W , then D′η ∈ imD′ = kerP . Thus, by continuity
of P with constant C, we get ‖Pξ‖ = ‖P (ξ −D′η)‖ ≤ C‖ξ −D′η‖E .

5.3.2 Weak injectivity estimate of (Dε
q)∗

To show injectivity of (Dε
q)
∗ : W 1,2 → L2 amounts to prove the last estimate

in (5.79) with the (1, 2, ε)-norm on the left-hand side. In this section we aim for
the weaker (0, 2, ε)-norm and this is why we use the term weak injectivity.

Proposition 5.7 (Weak injectivity of adjoint (Dε
q)
∗). In πε let α ∈ [1, 2] and

β = 2. Let x∓ ∈ Critf be non-degenerate and q ∈ M0
x−,x+ a connecting base

trajectory such that D0
q : W 1,2 → L2 is surjective. Then there are constants

c > 0 and ε0 ∈ (0, 1] such that for any parameter value ε ∈ (0, ε0] it holds that

‖X‖ ≤ c
(
ε‖(Dε

q)
∗Z‖0,2,ε + ‖πε(Dε

q)
∗Z‖

)
‖dH(u)X‖+ ε‖`‖ ≤ c

(
ε‖(Dε

q)
∗Z‖0,2,ε + ε‖πε(Dε

q)
∗Z‖

)
‖Z‖0,2,ε ≤ c

(
ε‖(Dε

q)
∗Z‖0,2,ε + ‖πε(Dε

q)
∗Z‖

)
‖Z‖0,2,ε ≤ c‖(Dε

q)
∗Z‖0,2,ε (weak injectivity estimate)

(5.79)

for every Z = (X, `) ∈W 1,2(R, q∗TM ⊕ R).

Proof. Let ε ∈ (0, 1]. A base connecting trajectory q ∈ M0
x−,x+ is smooth, by

Lemma 4.1, and ‖∂sq‖ ≤ oscf is finite, by the energy identity (3.26). So the
difference Proposition 5.5 applies. By Lemma 5.6, which applies due to the
Fredholm Proposition 4.4, there is a constant c0 > 0 such that

‖ξ‖ ≤ c0‖(D0
q)
∗ξ‖

for every ξ ∈ W 1,2(R, q∗TΣ). The inequality for ξ = πεZ is used in step 2 of
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what follows. In step 1 and 3 add zero and use the triangle inequality to get

‖X‖
(2.34)

≤ ‖X − πεZ‖+ ‖πεZ‖
comps.
(5.68)

≤ 1
mH
‖dH|qX‖+ εαµ2

∞ ‖P tanX‖+ ε2µ∞ ‖`‖+ c0‖(D0
q)
∗πεZ‖

(2.34)

≤ 1
mH
‖dH|qX‖+ εαµ2

∞ ‖P tanX‖+ ε2µ∞ ‖`‖+ c0‖πε(Dε
q)
∗Z‖

+ c0‖(D0
q)
∗πεZ − πε(Dε

q)
∗Z‖

diff.
(5.72)

≤ 1
mH
‖dH|qX‖+ εαµ2

∞ ‖P tanX‖+ ε2µ∞ ‖`‖+ c0‖πε(Dε
q)
∗Z‖

+ c0cd
(
‖dH|qX‖+ εα ‖tanX‖+ ε2 ‖`‖

)
(2.34)

≤ ε
(

1
mH

+ c0cd + µ2
∞

) (
1
ε ‖dH|qX‖+ ε ‖`‖+ εα−1 ‖X‖

)
+ c0‖πε(Dε

q)
∗Z‖

amb.
(4.60)

≤ ε(ca + 1)
(

1
mH

+ c0cd + µ2
∞

) (
‖(Dε

q)
∗Z‖0,2,ε + ‖X‖

)
+ c0‖πε(Dε

q)
∗Z‖.

Here (5.68) requires α ∈ [1, 2], the last step α ≥ 1. Choose ε0 > 0 so small that

ε0C := ε0(ca + 1)
(

1
mH

+ c0cd + µ2
∞

)
≤ 1

2 .

Then we can incorporate the term ‖X‖ into the left-hand side and get that

‖X‖ ≤ 2Cε‖(Dε
q)
∗Z‖0,2,ε + 2c0‖πε(Dε

q)
∗Z‖. (5.80)

Multiply by ε the ambient estimate (4.60) for (Dε
q)
∗ with constant ca to obtain

‖dH(u)X‖+ ε‖`‖
amb.
(4.60)

≤ εca

(
‖(Dε

q)
∗Z‖0,2,ε + ‖X‖

)
(5.80)

≤ εca

(
(1 + 2εC)‖(Dε

q)
∗Z‖0,2,ε + 2c0‖πε(Dε

q)
∗Z‖

)
.

The previous two estimates provide inequality two in the following

‖Z‖0,2,ε
(4.55)

≤ ‖X‖+ ε‖`‖
(4.42)

≤ ε(2C + ca(1 + 2εC))‖(Dε
q)
∗Z‖0,2,ε + 2c0(1 + caε)‖πε(Dε

q)
∗Z‖

(5.68)

≤ ε(2C + ca(1 + 2εC))‖(Dε
q)
∗Z‖0,2,ε + 4c0(1 + εca)‖(Dε

q)
∗Z‖0,2,ε

where the last step uses the last estimate in (5.68). This proves the final asser-
tions three and four of Proposition 5.7 whose proof is thereby complete.
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5.3.3 Surjectivity of Dε
q and key estimate

Theorem 5.8 (Surjectivity and key estimates for Dε
q on image of (Dε

q)
∗). In

πε let α ∈ [1, 2] and β = 2. Let x∓ ∈ Critf be non-degenerate and q ∈ M0
x−,x+

a connecting base trajectory such that D0
q : W 1,2 → L2 is surjective. Then there

are positive constants c and ε0 (invariant under s-shifts of q) such that, for
every ε ∈ (0, ε0], the following is true. The operator Dε

q : W 1,2 → L2 is onto
and along the image of the to W 2,2 restricted adjoint, that is for every pair

Z∗ := (X∗, `∗) ∈ im (Dε
q)
∗|W 2,2 ⊂W 1,2(R, q∗TM ⊕ R),

there are the key estimates

‖X∗‖ ≤ ‖Z∗‖1,2,ε ≤ c
(
ε‖Dε

qZ
∗‖0,2,ε + ‖πε(Dε

qZ
∗)‖
)

ε1/2‖Z∗‖0,∞,ε + ‖Z∗‖1,2,ε ≤ c‖Dε
qZ
∗‖0,2,ε

‖dH|qX∗‖+ ε‖`∗‖+ ε‖∇sX∗‖+ ε2‖(`∗)′‖
≤ c

(
ε‖Dε

qZ
∗‖0,2,ε + ε‖πε(Dε

qZ
∗)‖
)

≤ 3cε‖Dε
qZ
∗‖0,2,ε.

(5.81)

Proof. A base connecting trajectory q ∈M0
x−,x+ is smooth, by Lemma 4.1, and

‖∂sq‖ ≤ oscf is finite, by the energy identity (3.26). So we are in position to
apply the difference Proposition 5.5 with constant cd and the weak injectivity
Proposition 5.7 which provides a constant ε0 ∈ (0, 1]. Let ε ∈ (0, ε0].

To see surjectivity of the Fredholm operator Dε
q or, equivalently, injectivity

of (Dε
q)
∗, pick Z = (X, `) ∈W 1,2(R, q∗TM ⊕R). Use consequence (4.61) of the

ambient linear estimate with constant Ca (shrink ε0 > 0 if necessary) to obtain

‖X‖ ≤ ‖Z‖1,2,ε ≤ εCa‖(Dε
q)
∗Z‖0,2,ε + ‖tanX‖

≤ (εCa + cw)‖(Dε
q)
∗Z‖0,2,ε.

(5.82)

In the second step we used ‖tanX‖ ≤ ‖X‖ ≤ ‖Z‖0,2,ε, then we applied the
weak injectivity estimate (5.79) with constant cw. Thus (Dε

q)
∗ is injective.

Now pick Z = (X, `) ∈W 2,2(R, q∗TM ⊕R) and set Z∗ := (Dε
q)
∗Z. To prove

the first two lines in (5.81) let cF be the constant of the Fredholm interchange
Lemma 5.6. By (5.78) in Lemma 5.6, with ξ = πεZ

∗ and η = πεZ, we have

‖πεZ∗‖
(5.78)

≤ cF ‖πεZ∗ − (D0
q)
∗πεZ‖+ cF ‖D0

qπεZ
∗‖

add 0
≤ cF

(
‖πε(Dε

q)
∗Z − (D0

q)
∗πεZ‖+ ‖D0

qπεZ
∗ − πεDε

qZ
∗‖+ ‖πεDε

qZ
∗‖
)

diff.
(5.72)

≤ cF cdε
(

1
ε ‖dH|qX‖+ εα−1 ‖tanX‖+ ε ‖`‖

)
+ cF ‖πεDε

qZ
∗‖

+ cF cdε
(

1
ε ‖dH|qX

∗‖+ εα−1 ‖tanX∗‖+ ε ‖`∗‖
)

α∈[1,2]

≤ cF cdεca

(
‖Z∗‖0,2,ε + ‖X‖+ ‖Dε

qZ
∗‖0,2,ε+ ‖X∗‖

)
+ cF ‖πεDε

qZ
∗‖

(5.82)

≤ c1ε‖Z∗‖0,2,ε + cF cdcaε‖Dε
qZ
∗‖0,2,ε + cF ‖πεDε

qZ
∗‖
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where c1 = cF cdca(2 + εCa + cw). In step 4 we used twice the ambient linear
estimate (4.60) with constant ca, once for (Dε

q)
∗ and once for Dε

q . In the final
step (underlined terms) we estimate ‖X‖ by (5.82) and ‖X∗‖ by ‖Z∗‖0,2,ε.

Now add zero and use the formula for the linearized injection Iq prior to
Definition 5.1, then apply estimate three of the component Lemma 5.4 to get

‖Z∗‖0,2,ε
(2.37)

≤ ‖Z∗ − IqπεZ∗‖0,2,ε + ‖(πεZ∗, dχ|qπεZ∗)‖0,2,ε
comps.
(5.68)

≤ 3µ2
∞ε
(
ε−1

mH
‖dH|qX∗‖+ ‖tanX∗‖+ ‖`∗‖

)
+ ‖πεZ∗‖+ ε‖dχ|qπεZ∗‖

amb.
(4.60)

≤ εc2
(
‖Dε

qZ
∗‖0,2,ε + ‖X∗‖

)
+ (1 + µ∞ε)‖πεZ∗‖

(2.37)

≤ (c2 + c3cF cdca)ε‖Dε
qZ
∗‖0,2,ε + (c2 + c3c1)ε‖Z∗‖0,2,ε + c3cF ‖πεDε

qZ
∗‖

where c2 =
3µ2
∞max{1,mH}

mH
ca and c3 = (1 + µ∞ε). Inequality three uses the

ambient linear estimate (4.60) and definition (5.69) of the constant µ∞ ≥ 1. The
final inequality four uses that ‖X∗‖ ≤ ‖Z∗‖0,2,ε and the previously established
estimate for ‖πεZ∗‖. Choosing ε0 > 0 sufficiently small, we obtain

‖tanX∗‖ ≤ ‖X∗‖ ≤ ‖Z∗‖0,2,ε ≤ c4ε‖Dε
qZ
∗‖0,2,ε + 2c3cF ‖πεDε

qZ
∗‖. (5.83)

By the ambient linear estimate consequence (4.61) for Dε
q , constant Ca, we have

‖Z∗‖1,2,ε ≤ εCa‖Dε
qZ
∗‖0,2,ε + ‖tanX∗‖.

Combining this with (5.83) proves inequality one in (5.81). Inequality two, sec-
ond summand ‖Z∗‖1,2,ε, follows from line one via the last estimate in (5.68) with
constant 2. To incorporate the first summand ε1/2‖Z∗‖0,∞,ε simply use (4.56).

To prove inequality three in (5.81) multiply the ambient linear esti-
mate (4.60), for Dε

q , by ε to obtain that

‖dH|qX∗‖+ ε‖`∗‖+ ε‖∇sX∗‖+ ε2‖(`∗)′‖
(4.60)

≤ εca‖Dε
qZ
∗‖0,2,ε + εca‖X∗‖.

Combining this with (5.83) proves inequality three in (5.81). Inequality four
holds by estimate four in (5.68). This concludes the proof of Theorem 5.8.

6 Implicit function theorem I – Ambience

Theorem 6.1 (IFT I – Existence). Assume (f, g) is Morse-Smale. Then there
are constants c > 0 and ε0 ∈ (0, 1] such that the following holds. For every
ε ∈ (0, ε0], every pair x∓ ∈ Critf of index difference one, and every q ∈M0

x−,x+ ,

there exists a pair (uε, τε) ∈Mε
x−,x+ of the form

uε = ExpqX, τε = χ(q) + `, (X, `) ∈ im (Dε
q)
∗,
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where the difference Z = (X, `) ∈ C∞(R, q∗TM ⊕R) is smooth and bounded by

‖Z‖1,2,ε ≤ ‖X‖+ ε‖`‖+ ε‖∇sX‖+ ε2‖`′‖ ≤ cε2 (6.84)

and by
‖X‖∞ ≤ cε3/2, ‖`‖∞ ≤ cε1/2. (6.85)

Theorem 6.2 (IFT I – Uniqueness). Assume (f, g) is Morse-Smale. Then there
are constants δ0, ε0 ∈ (0, 1] such that, for any ε ∈ (0, ε0], any pair x∓ ∈ Critf
of index difference one, and any q ∈M0

x−,x+ the following holds. If

(Xi, `i) ∈ im (Dε
q)
∗, ‖Xi‖∞ ≤ δ0

√
ε,

for i = 1, 2 and both pairs of maps (uε1, τ
ε
1 ) and (uε2, τ

ε
2 ) defined by

uεi := ExpqXi, τεi := χ(q) + `i, (6.86)

belong to the moduli space Mε
x−,x+ , then they are equal (uε1, τ

ε
1 ) = (uε2, τ

ε
2 ).

Observe that each pair (Xi, `i) is smooth by hypothesis (6.86). Hence, by
exponential decay of the derivatives of (uεi , τ

ε
i ), each pair (Xi, `i) belongs to

W k,2(R, q∗TM ⊕ R) for every integer k ≥ 0.

Definition 6.3. Assume (f, g) is Morse-Smale. Choose constants ε0, δ0 ∈ (0, 1]
and c > 0 such that the assertions of Theorem 6.1 and 6.2 hold with these
constants. Shrink ε0 so that cε0 < δ0. Given a pair x∓ ∈ Critf of index
difference one, define for ε ∈ (0, ε0) the map

T ε : M0
x−,x+ →Mε

x−,x+ , q 7→ (uε, τε) :=
(
ExpqX,χ(q) + `

)
, (6.87)

where the pair (X, `) ∈ im (Dε
q)
∗ is chosen such that (6.84) and (6.85) are

satisfied and (ExpqX,χ(q) + `) ∈Mε
x−,x+ . Such a pair exists, by Theorem 6.1,

and is unique, by Theorem 6.2. The map T ε is time shift equivariant.

Lemma 6.4 (Injectivity). Assume (f, g) is Morse-Smale. Then there is a con-
stant ε0 ∈ (0, 1], such that for every ε ∈ (0, ε0] and every pair x∓ ∈ Critf of
index difference one, the map T ε : M0

x−,x+ →Mε
x−,x+ is injective.

Proof. As Σ is compact, the index difference is 1, and the metric is Morse-Smale,
the moduli space M̃0

∓ :=M0
x−,x+/R is a finite set. So the smallest distance

dmin := min
[q1] 6=[q2]∈M̃0

∓

sup
s∈R

inf
t∈R

dist(q1(s), q2(t))) > 0

is positive. Choose the constant ε0 > 0 in Theorem 6.1 smaller if necessary
such that 2cε0

3/2 < dmin. By construction of T ε, for ε ∈ (0, ε0), an element
T ε(q1) = T ε(q2) lies in both radius cε3/2 balls, the one about q1 and the one
about q2. Thus we must have [q1] = [q2] since otherwise these two balls, by
definition of dmin, would be disjoint. But [q1] = [q2] means that there exists
σ ∈ R such that q1 = σ∗q2 := q2(·+σ). Since T ε is time shift invariant we have
T ε(q1) = σ∗T ε(q2) = σ∗T ε(q1). This implies σ = 0, hence q1 = q2.
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To prove Theorem 6.1 we carry out a modified Newton iteration to detect a
zero of Fε near an approximate zero for which we choose the pair (q, χ(q)) with
q ∈ M0

x−,x+ . The first step is to define a suitable map between Banach spaces

for which we choose the local trivialization Fεq := Fεq,χ(q), see (4.48). In this
model the origin corresponds to our approximate zero. One finds a true zero
nearby if three conditions are satisfied. Firstly, a small initial value Fεq (0) where
smallness will be taken care of by the weights in the (0, 2, ε) norm. Secondly,
a uniformly bounded right inverse Rεq of Dε

q = dFεq (0) which holds due to the
key estimate (5.81). Thirdly, we need quadratic estimates to gain control on
the variation of the derivative dFεq (Z) for Z near the origin.

6.1 Quadratic estimates

Pick a map q ∈W 1,2(R,Σ). Consider the map z = (q, χ(q)) ∈W 1,2(R,M × R)
and let Z = (X, `) ∈ W 1,2(R, q∗O ⊕ R) be a vector field along it.10 Denote
parallel transport in (M,G) along the geodesic r 7→ Expq(s)(rX(s)) by

Φ = Φq(X) : TqM ⊃ Oq → TE(q,X)M, Γ0 = Expq(X), (6.88)

pointwise for s ∈ R. A trivialization of the ambient section Fε is defined by

Fεq (X, `) =

(
Φ−1
q (X)

(
∂sΓ0 +∇F |Γ0

+ (χ(q) + `)∇H|Γ0

)
(χ(q) + `)′ + ε−2H|Γ0

)
(6.89)

for every vector field (X, `) ∈ W 1,2(R, q∗O ⊕ R). To compute the derivative of

the trivialization Fεq at a point Z = (X, `) in direction ζ = (X̂, ˆ̀) abbreviate

Φr := Φq(X + rX̂), Γr := E(q,X + rX̂).

Then d
dr

∣∣
0

Γr = E2(q,X)X̂ and the derivative is given by

dFεq (X, `)

(
X̂
ˆ̀

)
:= d

dr

∣∣
0
Fεq (X + rX̂, `+ r ˆ̀)

1
=

d

dr

∣∣∣
0

(
Φ−1
r

(
∂sΓr +∇F |Γr

)
+ (χ(q) + `+ r ˆ̀)Φ−1

r ∇H|Γr
(χ(q) + `+ r ˆ̀)′ + ε−2H|Γr

)
2
=

(
d
dr

∣∣
0

(
Φ−1
r

(
∂sΓr +∇F |Γr

))
+ ˆ̀Φ−1

0 ∇H|Γ0 + (χ(q) + `) d
dr

∣∣
0

(
Φ−1
r ∇H|Γr

)
ˆ̀′ + ε−2dH|Γ0

E2(q,X)X̂

)
3
=

(
d
dr

∣∣
0

Φ−1
r ∂sΓr + d

dr

∣∣
0

Φ−1
r ∇F |Γr + (χ(q) + `) d

dr

∣∣
0

Φ−1
r ∇H|Γr + ˆ̀Φ−1

0 ∇H|Γ0

ˆ̀′ + ε−2dH|Γ0E2(q,X)X̂

)

where step 1 is by definition of Fεq and step 3 by linearity of parallel transport.

10 For q ∈ Σ let Oq be the maximal domain of the exponential map Expq : TqM → M .
The subset Oq is open and star-shaped about 0; see e.g. [O’N83, §5 4. Cor.]. The maximal
domain of Exp: TΣM → M is an open neighborhood O ⊂ TΣM of the zero section with
O ∩ TqM = Oq .
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Proposition 6.5 (Quadratic estimate I). There is a constant δ ∈ (0, 1] with
the following significance. For every c0 > 0 there is a constant c > 0 such that
the following is true. Let q ∈W 1,2(R,Σ) be a map and Z = (X, `), ζ = (X̂, ˆ̀) ∈
W 1,2(R, q∗TM × R) be two vector fields along z = (q, χ(q)) such that

‖∂sq‖∞ + ‖χ(q)‖∞ ≤ c0, ‖X‖∞ + ‖X̂‖∞ ≤ δ.

Then the components F and f of the vector field along z, defined by

Fεq (Z + ζ)−Fεq (Z)− dFεq (Z)ζ =:

(
F
f

)
, (6.90)

satisfy the inequalities

‖F‖ ≤ c‖X̂‖∞
(
‖X̂‖+ ‖ˆ̀‖+ ‖∇sX̂‖ · ‖X̂‖∞

)
+ c‖X‖∞

(
‖X̂‖+ ‖∇sX̂‖ · ‖X‖∞

)
+ c‖`‖∞‖X̂‖∞‖X̂‖

+ c‖X̂‖∞‖∇sX‖
(
‖X̂‖∞ + ‖X‖∞

)
ε‖f‖ ≤ cε−1‖X̂‖∞‖X̂‖

(6.91)

whenever ε > 0.

By compactness of Σ the injectivity radius of the Riemannian vector bundle
(TΣM,G) is positive. The choice δ = ι(TΣM)/2 > 0 takes care that X and X̂
are in the domain of Exp.

Proposition 6.6 (Quadratic estimate II). There is a constant δ ∈ (0, 1] with the
following significance. For any c0 > 0 there is a constant c > 0 such that the
following is true. Let q ∈ W 1,2(R,Σ) be a map and Z = (X, `), ζ = (X̂, ˆ̀) ∈
W 1,2(R, q∗TM × R) be two vector fields along z = (q, χ(q)) such that

‖∂sq‖∞ + ‖χ(q)‖∞ ≤ c0, ‖X‖∞ ≤ δ.

Then the components F and f of the vector field along z, defined by

dFεq (Z)ζ − dFεq (0)ζ =:

(
F
f

)
, (6.92)

satisfy the inequalities

‖F‖ ≤ c‖X‖∞
(
‖X̂‖+ ‖ˆ̀‖+ ‖∇sX̂‖ · ‖X‖∞

)
+ c‖`‖∞‖X̂‖+ c‖X‖∞‖X̂‖∞‖∇sX‖

ε‖f‖ ≤ cε−1‖X‖∞‖X̂‖

(6.93)

whenever ε > 0.
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Tools

Theorem 6.7 (Exponential map – derivatives). Let u be a point in a Rieman-
nian manifold M and X ∈ Ou a tangent vector. Then there are linear maps

Ei(u,X) : TuM → TExpuXM, Eij(u,X) : TuM × TuM → TExpuXM

for i, j ∈ {1, 2} such that the following is true. If u : R→M is a smooth curve
and X,Y are smooth vector fields along u with X(s) ∈ Ou(s) for every s, then
the maps Ei and Eij are characterized (uniquely determined) by the identities

d

ds
Expu(X) = E1(u,X)∂su+ E2(u,X)∇sX

∇s (E1(u,X)Y ) = E11(u,X) (Y, ∂su) + E12(u,X)
(
Y,∇sX

)
+ E1(u,X)∇sY

∇s (E2(u,X)Y ) = E21(u,X) (Y, ∂su) + E22(u,X)
(
Y,∇sX

)
+ E2(u,X)∇sY.

Here ∇ is the Levi-Civita connection.11 Furthermore, there are the identities

E1(u, 0) = E2(u, 0) = 1l, E11(u, 0) = E21(u, 0) = E22(u, 0) = 0. (6.94)

For all u ∈M , X ∈ Ou, and Y,Z ∈ TuM there are the symmetry properties

E12(u,X) (Y,Z) = E21(u,X) (Z, Y ) E22(u,X) (Y,Z) = E22(u,X) (Z, Y )

and the identity E11(u,X) (Y,Z)−E11(u,X) (Z, Y ) = E2(u,X)R(Y, Z)X where
R is the Riemannian curvature operator.

Proof. El̆ıasson [El̆ı67]. For details see also [Gai99, sec. 3.1.1] or [Web22].

The following lemma is a major technical tool in the proof of the pointwise
quadratic estimates. The proof is standard, for details see e.g. [Web99, Le. 5.0.9].
Note that the lemma remains valid for covariant derivatives D = d+ Γ X̂ since
the Christoffel symbol Γ arrives together with the direction X̂.

Lemma 6.8. Let m,n ∈ N and h ∈ C2(Rm,Rn). Then for any δ > 0 there
exists a continuous function cδ ∈ C0(Rm,R+) such that

i) |h(X + X̂)− h(X)| ≤ cδ(X̂)|X̂|
ii) |h(X + X̂)− h(X)− dh(X) X̂| ≤ cδ(X̂)|X̂|2

for all X ∈ Rm with |X| ≤ δ and all X̂ ∈ Rm.

11 Our convention for derivatives, example ∂jEi, is to put both, the derivative index j
and the arising new linear factor to the right. This way index order and linear factor order
coincide, example ∂j(Ei(xi, xj)Xi) = Eij(xi, xj) (Xi, Xj).
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Proofs

Proof of Proposition 6.5. Write F = F1 + F2 + F3 + F4 and f = f1 + f2 where
the summands Fi and fj are defined now. The summand F1 is defined by

F1 : = Φ−1
q (X + X̂) ddsE(q,X + X̂)− Φ−1

q (X) ddsE(q,X)

−
(
D
dr

∣∣∣
0

Φ−1
q (X + rX̂)

)
d
dsE(q,X)− Φ−1

q (X) D
dr

∣∣∣
0

d
dsE(q,X + rX̂)

2
= Φ−1

q (X + X̂)
(
E1(q,X + X̂)∂sq + E2(q,X + X̂)

(
∇sX +∇sX̂

))
− Φ−1

q (X)
(
E1(q,X)∂sq + E2(q,X)∇sX

)
−DΦ−1

q |X
(
E1(q,X)∂sq, X̂

)
−DΦ−1

q |X
(
E2(q,X)∇sX, X̂

)
− Φ−1

q (X)
(
E12(q,X)

(
∂sq, X̂

)
+ E22(q,X)

(
∇sX, X̂

)
+ E2(q,X)∇sX̂

)
3
= Φ−1

q (X + X̂)E1(q,X + X̂)∂sq − Φ−1
q (X)E1(q,X)∂sq

−DΦ−1
q |X

(
E1(q,X)∂sq, X̂

)
+ Φ−1

q (X + X̂)E2(q,X + X̂)∇sX − Φ−1
q (X)E2(q,X)∇sX

−DΦ−1
q |X

(
E2(q,X)∇sX, X̂

)
− Φ−1

q (X)E12(q,X)
(
∂sq, X̂

)
− Φ−1

q (X)E22(q,X)
(
∇sX, X̂

)
+
(

Φ−1
q (X + X̂)E2(q,X + X̂)− 1l + 1l− Φ−1

q (X)E2(q,X)
)
∇sX̂.

To get identity 2 we carried out the derivatives with respect to s and r using the
characterizing identities from Theorem 6.7. In identity 3 we only reordered the
summands. The estimate for ‖F1‖ is obtained by applying pointwise Lemma 6.8
followed by integration. More precisely, for the first triple of summands one
applies part ii) of the lemma, same for the second triple. To the next two
summands apply part i) individually. For example define and note that

h(X) := Φ−1
q (X)E22(q,X), h(0)

(6.94)
= 0.

Part ii) also applies to the final line where we added −1l + 1l = 0. To deal with
the second part of the final line (analogously part one) define and note that

h(X) := Φ−1
q (X)E2(q,X)− 1l, h(0)

(6.94)
= 0, Dh(0)X = 0. (6.95)

It remains to show that the derivative vanishes, indeed

Dh(0)X = D
dr

∣∣∣
0
h(rX)

= DΦ−1
q |0 (E2(q, 0)·, X) + Φ−1

q (0)E22(q, 0) (·, X)

=
(
DΦ−1

q |0 + E22(q, 0)
)

(·, X)

= 0.

50



The last step holds since both summands vanish individually, namely E22(q, 0) =
0 and a short calculation in local coordinates shows that(

D
dr

∣∣∣
0

Φ−1
q (rX̂)

)k
j

=
(
DΦ−1

q |0
(
·, X̂

))k
j

= d
dr

∣∣
0

Φ−1
q (rX̂)kj︸ ︷︷ ︸

=−ΓkijX̂
i

+ΓkijX̂
i = 0 (6.96)

where the under-braced identity is Lemma A.1.3 in [Web99]. Recall from the
primer article (remark in quadratic estimate section) that L∞ norms should go
preferably on the base point Z = (X, `), but never on derivatives. As pointwise
estimate for F1, written in the same order as above, we obtain

|F1| ≤ cδ,X̂‖∂sq‖∞|X̂|
2 + cδ,X̂ |X̂|

2|∇sX|+ cδ,X‖∂sq‖∞|X| · |X̂|

+ cδ,X |X̂| · |X| · |∇sX|+ cδ,X+X̂ |X + X̂|2|∇sX̂|+ cδ,X |X|2|∇sX̂|

≤ c̃1
(
|X̂|2(1 + |∇sX|) + |X| · |X̂|(1 + |∇sX|) + (|X|2 + |X̂|2|∇sX̂|)

)
‖F1‖ ≤ c1‖X̂‖∞

(
‖X̂‖+ ‖∇sX̂‖ · ‖X̂‖∞

)
+ c1‖X‖∞

(
‖X̂‖+ ‖∇sX̂‖ · ‖X‖∞

)
+ c1‖X̂‖∞

(
‖X̂‖∞ + ‖X‖∞

)
‖∇sX‖

for suitable positive constants c̃1 and c1. In step 2 of the pointwise estimate
we used that |X + X̂|2 ≤ 2|X|2 + 2|X̂|2. The L2 estimate for F1 follows by
squaring the estimate for |F1|, integrate the result, and pull out L∞ norms.
The summand F2 is defined and then, via Lemma 6.8 ii), estimated by

F2 : = Φ−1
q (X + X̂)∇F |E(q,X+X̂) − Φ−1

q (X)∇F |E(q,X) − d
dr

∣∣
0

(
Φ−1
r ∇F |Γr

)
= h(X̂)− h(0)− dh(0)X̂, h(X̂) := Φ−1

q (X + X̂)∇F |E(q,X+X̂)

‖F2‖ ≤ c2‖X̂‖∞‖X̂‖

for suitable c2 > 0. Analogous to F2 we define and treat the summand F3 by

F3 : = (χ(q) + `)
(

Φ−1
q (X + X̂)−1∇H|E(q,X+X̂) − Φ−1

q (X)−1∇H|E(q,X)

− d
dr

∣∣
0

(
Φ−1
q (X + rX̂)∇H|E(q,X+rX̂)

))
‖F3‖ ≤ c3

(
‖X̂‖∞‖X̂‖+ ‖`‖∞‖X̂‖ · ‖X̂‖∞

)
for suitable c3 > 0. For suitable c4 > 0 we define and treat summand F4 by

F4 : = ˆ̀
(

Φ−1
q (X + X̂)∇H|E(q,X+X̂) − Φ−1

q (X)−1∇H|E(q,X)

)
,

‖F4‖ ≤ c4‖X̂‖∞‖ˆ̀‖.

Summand f1 is defined by f1 := (χ(q) + `+ ˆ̀)′ − (χ(q) + `)′ − ˆ̀′ = 0 and f2 by

f2 : = ε−2
(
H|E(q,X+X̂) −H|E(q,X) − dH|E(q,X)E2(q,X)X̂

)
,

‖f2‖ ≤ ε−2c5‖X̂‖∞‖X̂‖.

This concludes the proof of Proposition 6.5 (Quadratic Estimate I).
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Proof of Proposition 6.6. The derivative of Fεq at 0 in direction ζ = (X̂, ˆ̀) is

dFεq (0, 0)

(
X̂
ˆ̀

)
(4.49)

=

(
d
dr

∣∣
0

Φ−1
q (rX̂)

(
∂sE(q, rX̂) +∇F |E(q,rX̂) + χ(q)∇H|E(q,rX̂)

)
+ ˆ̀∇H|q

ˆ̀′ + ε−2dH|qX̂

)
.

Write F = F1 + F2 + F3 + F4 and f = f1 + f2 where the summands Fi and
fj are defined in what follows. The summand F1 is defined by

F1 : =
(
d
dr

∣∣
0

Φ−1
q (X + rX̂)

)
d
dsE(q,X)−

(
d
dr

∣∣
0

Φ−1
q (rX̂)

)
d
dsE(q, 0)

+ Φ−1
q (X) D

dr

∣∣∣
0

d
dsE(q,X + rX̂)− Φ−1

q (0) D
dr

∣∣∣
0

d
dsE(q, rX̂)

2
= DΦ−1

q |X
(
E1(q,X)∂sq + E2(q,X)∇sX, X̂

)
−DΦ−1

q |0
(
∂sq, X̂

)
−∇sX̂

+ Φ−1
q (X)

(
E12(q,X)

(
∂sq, X̂

)
+ E22(q,X)

(
∇sX, X̂

)
+ E2(q,X)∇sX̂

)
3
= DΦ−1

q |X
(
E1(q,X)∂sq, X̂

)
−DΦ−1

q |0
(
∂sq, X̂

)
+ Φ−1

q (X)E12(q,X)
(
∂sq, X̂

)
+
(
Φ−1
q (X)E2(q,X)− 1l

)
∇sX̂

+DΦ−1
q |X

(
E2(q,X)∇sX, X̂

)
+ Φ−1

q (X)E22(q,X)
(
∇sX, X̂

)
.

To get identity 2 we carried out the derivatives with respect to s and r us-
ing the characterizing identities from Theorem 6.7. In identity 3 we only re-
ordered the summands. The estimate for ‖F1‖ is obtained by applying point-
wise Lemma 6.8 followed by integration. One uses the same techniques as
for term F1 in quadratic estimate I, in particular (6.95) and the identities
E1(q, 0) = 1l = E2(q, 0) and E12(q, 0) = 0 = E22(q, 0). Note that the last
but one term

g(X) := DΦ−1
q |X

(
E2(q,X)∇sX, X̂

)
, g(0) = 0,

vanishes at the origin as we saw earlier in (6.96). Recall from the primer article
(remark in quadratic estimate section) that L∞ norms should go preferably on
the base point Z = (X, `), but not on derivatives. We get the estimate

‖F1‖ ≤ c1
(
‖∂sq‖∞‖X‖∞‖X̂‖+ ‖X‖2∞‖∇sX̂‖+ ‖X̂‖∞‖X‖∞‖∇sX‖

)
.

The summand F2 is defined, and then estimated, by

F2 : = d
dr

∣∣
0

(
Φ−1
q (X + rX̂)∇F |E(q,X+rX̂)

)
− d

dr

∣∣
0

(
Φ−1
q (rX̂)∇F |E(q,rX̂)

)
= DΦ−1

q |X
(
∇F |E(q,X), X̂

)
−DΦ−1

q |0
(
∇F |q, X̂

)
+ Φ−1

q (X)D∇F |E(q,X)E2(q,X)X̂ −D∇F |q X̂,

‖F2‖ ≤ c2‖X‖∞‖X̂‖.
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Summand F3 is defined, and then estimated, by

F3 : = ` d
dr

∣∣
0

(
Φ−1
q (X + rX̂)∇H|E(q,X+rX̂)

)
+ χ(q) d

dr

∣∣
0

(
Φ−1
q (X + rX̂)∇H|E(q,X+rX̂) − Φ−1

q (rX̂)∇H|E(q,rX̂)

)
,

= `DΦ−1
q |X

(
∇H|E(q,X), X̂

)
+ `Φ−1

q (X)D∇H|E(q,X)E2(q,X) X̂

+ χ(q)DΦ−1
q |X

(
∇H|E(q,X), X̂

)
− χ(q)DΦ−1

q |0
(
∇H|q, X̂

)
+ χ(q)Φ−1

q (X)D∇H|E(q,X)E2(q,X)X̂ − χ(q)D∇H|q X̂,

‖F3‖ ≤ c3
(
‖X‖∞‖`‖∞ + ‖`‖∞ + ‖χ(q)‖∞‖X‖∞

)
‖X̂‖.

Summand F4 is defined by

F4 : = ˆ̀
(
Φ−1
q (X)∇H|E(q,X) −∇H|q

)
,

‖F4‖ ≤ c4‖X‖∞‖ˆ̀‖.

Summand f1 is defined by f1 := ˆ̀′ − ˆ̀′ = 0 and f2 by

f2 : = ε−2
(
dH|E(q,X)E2(q,X)− dH|q

)
X̂,

‖f2‖ ≤ ε−2c5‖X‖∞‖X̂‖.

This concludes the proof of Proposition 6.6 (Quadratic Estimate II).

6.2 Existence – definition of T ε

We prove Theorem 6.1. Assume the Morse-Smale condition holds true. Up
to time-shift there are only finitely many elements q of M0

x−,x+ , that is base
solutions q between critical points of f of Morse index difference 1. The constant

c0 := max
{
‖∂sq‖∞ | q ∈M0

x−,x+

}
+ ‖χ‖L∞(Σ) <∞

is finite since the function χ is bounded along the compact Σ and since ‖∂sq‖∞
is finite due to exponential decay and since, by index difference one, there are
only finitely many q’s up to time shift. Fix ε0 > 0 sufficiently small such that
the key estimate, Theorem 5.8, applies to all q ∈M0

x−,x+ and ε ∈ (0, ε0].

Pick q ∈ M0
x−,x+ . Recall that χ is defined by (2.8). The trivialized

section along the canonical embedding i(q) = (q, χ(q)), namely Fεq (X, `)
defined by (6.89), acts on the elements Z = (X, `) of the Banach space
W 1,2(R, q∗TM ⊕ R). At the origin the first component vanishes

Fεq
(

0
0

)
=

(
∂sq +∇F (q) + χ(q)∇H(q)

(χ(q))′ + ε−2H(q)

)
=

(
0

dχ|q∂sq

)
(6.97)

since H(q) ≡ 0. Therefore for the initial point

Z0 := (0, 0)
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we have∥∥Fεq (Z0)
∥∥

0,2,ε
= ‖Fε(q, χ(q))‖0,2,ε = ‖(0, dχ|q∂sq)‖0,2,ε ≤ εµ∞

√
c∗

where µ∞ is defined by (5.69) and

‖∂sq‖
(3.27)

=
√
f(x−)− f(x+) =:

√
c∗.

Now define the initial correction term ζ0 = (X̂0, ˆ̀
0) by

ζ0 := −Dε
q
∗ (Dε

qD
ε
q
∗)−1 Fεq (0)

where Dε
q = dFεq (0, 0). Recursively, for ν ∈ N, define the sequence ζν = (X̂ν , ˆ̀

ν)
of correction terms by

ζν = (X̂ν , ˆ̀
ν) := −Dε

q
∗ (Dε

qD
ε
q
∗)−1 Fεq (Zν),

Zν = (Xν , `ν) :=

ν−1∑
k=0

ζk = Zν−1 + ζν−1.
(6.98)

We prove by induction that there is a constant c > 0 such that

ε1/2‖ζν‖0,∞,ε + ‖ζν‖1,2,ε ≤
c

2ν
ε2

‖Fεq (Zν+1)‖0,2,ε ≤
c

2ν
ε5/2

(Hν)

for every ν ∈ N0. The (1, 2, ε) and (0,∞, ε) norms were defined in (4.55).

Initial step: ν = 0. By definition of ζ0 we have

Dε
qζ0 = −Fεq (0) =

(
0

−dχ|q∂sq

)
. (6.99)

Thus, by the key estimate, Theorem 5.8, (with constant c1 > 0) we get

‖ζ0‖1,2,ε
(5.81)

≤ c1 (ε‖(0, dχ|q∂sq)‖0,2,ε + ‖πε(0, dχ|q∂sq)‖)
(5.63)

≤ c1
(
ε2µ∞‖∂sq‖+ ‖(1l + ε2µ2P )−1ε2(dχ|q∂sq)∇χ‖

)
(5.66)

≤ 2c1µ
2
∞
√
c∗ε2

‖ζ0‖0,∞,ε
(4.56)

≤ 3ε−1/2‖ζ0‖1,2,ε
(4.47)

≤ 6c1µ
2
∞
√
c∗ε3/2 ≤ δ.

(6.100)

To get the bound δ (needed by the quadratic estimates Proposition 6.5 and 6.6)
choose ε0 > 0 smaller if necessary. This proves estimate one in (Hν) for ν = 0
and with a suitable constant c > 0 depending only on c1 and the L∞-norms
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of ∇χ : Σ → TΣ and ∂sq. To prove estimate two we observe that Z1 = ζ0 and
hence, by Proposition 6.5 (with constant c2 > 0), we get

‖Fεq (Z1)‖0,2,ε
(6.99)

= ‖Fεq (ζ0)

=0︷ ︸︸ ︷
−Fεq (0)−Dε

uζ0‖0,2,ε
(6.91)

≤ c2
ε

(
‖X̂0‖∞

(
‖X̂0‖+ ε‖ˆ̀0‖+ ε‖∇sX̂0‖ · ‖X̂0‖∞

))
(6.91)

≤ 2c2
ε
‖ζ0‖0,∞,ε ‖ζ0‖1,2,ε

(6.100)

≤ 48c21c2µ
4
∞c
∗ ε5/2.

(6.101)

In step 3 we discarded the underlined term ‖X̂0‖∞ ≤ 1. Then, up to a factor 2,
see (4.59), the (1, 2, ε) norm (4.55) appears. This proves (Hν) for ν = 0. From
now on we fix the constant c for which the estimate (H0) has been established.

Induction step: ν − 1 ⇒ ν. Let ν ≥ 1 and assume that the hypothe-
ses (H0), . . . , (Hν−1) are true. Then we obtain that

ε1/2‖Zν‖0,∞,ε + ‖Zν‖1,2,ε
(H0...ν−1)

≤
ν−1∑
k=0

(
ε1/2‖ζk‖0,∞,ε + ‖ζk‖1,2,ε

)
(H0...ν−1)

≤ cε2
ν−1∑
k=0

2−k ≤ 2cε2 ≤ δ

(6.102)

(for the bound δ choose ε0 > 0 smaller if necessary) and we also obtain that

‖Fεq (Zν)‖0,2,ε
(Hν−1)

≤ c

2ν−1
ε5/2. (6.103)

By (6.98), using the property of a right inverse, we have

Dε
qζν = −Fεq (Zν), ζν ∈ im (Dε

q)
∗.

Hence, together with the key estimate (5.81), (with constant c1 > 0), we get

ε1/2‖ζν‖0,∞,ε + ‖ζν‖1,2,ε
(5.81)

≤ c1‖Fεq (Zν)‖0,2,ε
(6.103)

≤ c1ε
1/2 c

2ν−1
ε2 ≤ c

2ν
ε2 ≤ δ.

(6.104)

The last but one inequality holds if 9c1
√
ε0 ≤ 1

2 . The last inequality holds by
the last inequality in (6.102). This proves the first estimate in (Hν).

In what follows in step 1 add twice zero and in step 2 apply the quadratic
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estimates, Proposition 6.5 and 6.6 (with constant c2 > 0), in order to obtain

‖Fεq (Zν+1)‖0,2,ε
(7.110)

≤ ‖Fεq (Zν + ζν)−Fεq (Zν)− dFεq (Zν)ζν‖0,2,ε + ‖dFεq (Zν)ζν −Dε
qζν‖0,2,ε

(7.110)

≤ c2
ε
‖X̂ν‖∞

(
‖X̂ν‖+ ε‖ˆ̀ν‖+ ε‖∇sX̂ν‖

)
+ c2‖∇sXν‖ · ‖X̂ν‖∞

+
c2
ε
‖Xν‖∞

(
‖X̂ν‖+ ε‖ˆ̀ν‖+ ε‖∇sX̂ν‖

)
+ c2‖`ν‖∞‖X̂ν‖

(7.110)

≤ c2
ε

(‖ζν‖0,∞,ε + ‖Zν‖0,∞,ε) ‖ζν‖1,2,ε + c2ε
−1‖Zν‖1,2,ε‖ζν‖0,∞,ε

(6.104)

≤ c2ε
−1
(
cε3/2 + 2cε3/2

)
c1︸ ︷︷ ︸

≤1/4

c

2ν−1
ε5/2 + c22cε1/2c1︸ ︷︷ ︸

≤1/4

c

2ν−1
ε5/2

(7.110)

≤ c

2ν
ε5/2.

In inequality two we already estimated some factors ‖X̂‖∞ ≤ 1 and ‖X‖∞ ≤ 1
in triple products. The last inequality holds by choosing ε0 > 0 sufficiently
small. This completes the induction and proves (Hν) for every ν ∈ N0.

Conclusion. It follows from (Hν) that Zν is a Cauchy sequence with respect
to ‖·‖1,2,ε. We denote its limit by

Zε := lim
ν→∞

Zν =

∞∑
ν=0

ζν ∈W 1,2(R, q∗TM ⊕ R).

By construction, and since the image of (Dε
q)
∗ is closed, the limit satisfies

ε1/2‖Zε‖1,∞,ε + ‖Zε‖1,2,ε
(6.102)

≤ 2cε2, Fεq (Zε) = 0, Zε ∈ im (Dε
q)
∗.

This concludes the proof of Theorem 6.1.

6.3 Uniqueness – injectivity of T ε

We prove Theorem 6.2 under the conventions and notations of Section 6.2, in
particular Section 6.2 provides ε0 ∈ (0, 1], whereas δ ∈ (0, 1] is the constant that
appears in the quadratic estimates. Shrink δ0 > 0 such that δ0

√
ε0 ≤ δ/4. Pick

q ∈M0
x−,x+ and ε ∈ (0, ε0]. Let the base point Z = (X, `) := T ε(q) be the zero

of the trivialized section Fεq provided by the existence Theorem 6.1. Then

Z ∈ im (Dε
q)
∗, Fεq (Z) = 0, ε1/2‖Z‖0,∞,ε + ‖Z‖1,2,ε ≤ cε2 ≤ δ/4.

for a suitable constant c > 0 and where the norms are defined by (4.55) and
the δ estimate holds by choosing ε0 > 0 smaller, if necessary. Shrink ε0 > 0
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further such that cε0 < δ0. Now assume ζ = (X̂, ˆ̀) satisfies the hypotheses of
the present Theorem 6.2, that is

ζ = (X̂, ˆ̀) ∈ im (Dε
q)
∗, Fεq (ζ) = 0, ‖X̂‖∞ ≤ δ0ε1/2.

The difference

(X∗, `∗) = ζ∗ := ζ − Z = (X̂ −X, ˆ̀− `) ∈ im (Dε
q)
∗

then satisfies the inequalities12

‖X∗‖∞ ≤ (δ0 + cε) ε1/2 ≤ 2δ0ε
1/2≤ δ/2, ‖`∗‖∞ <∞.

With the difference abbreviations (6.90) and (6.92) and since both ζ = Z + ζ∗

and Z are zeroes of Fεq we get the first identity in the following

‖Dε
qζ
∗‖0,2,ε

=
∥∥(Fεq (Z + ζ∗)−Fεq (Z)− dFεq (Z)ζ∗︸ ︷︷ ︸

=:(F,f)

)
+
(
dFεq (Z)ζ∗ − dFεq (0)ζ∗︸ ︷︷ ︸

=:(F,f)

)∥∥
0,2,ε

= ‖(F + F, f + f)‖0,2,ε
≤ ‖F‖+ ‖F‖+ ε‖f‖+ ε‖f‖.

By definition (5.65) of πε with β = 2 and α ∈ [1, 2] and by Lemma 5.3 we obtain

‖πεDε
qζ
∗‖ = ‖πε(F + F, f + f)‖

= ‖(1l + εαµ2P )−1(tan(F + F) + ε2(f + f)∇χ)‖
≤ ‖F‖+ ‖F‖+ µ∞ε

2‖f‖+ µ∞ε
2‖f‖

(6.105)

where we also used that ‖tan‖ ≤ 1 since the projection tan is orthogonal. The
choice β = 2 neutralizes the toxic factor ε−2 that comes with the f and f terms.

Thus, by estimate four in the key estimate (5.81), with a constant c1 > 0,
by the quadratic estimates (6.91) and (6.93), with a constant c2 ≥ 2, we obtain

‖`∗‖ · ‖X∗‖∞
≤ c1‖Dε

qζ
∗‖0,2,ε‖X∗‖∞

≤ c1 (‖F‖+ ‖F‖+ ε‖f‖+ ε‖f‖) ‖X∗‖∞

≤ c1c2‖X∗‖∞
(

1
ε‖X

∗‖∞‖X∗‖+ ‖`∗‖ · ‖X∗‖∞ + ‖∇sX∗‖ · ‖X∗‖2∞

+ ‖X‖∞
(

1
ε‖X

∗‖+ ‖`∗‖+ ‖∇sX∗‖
)

+ ‖`‖∞‖X∗‖+ ‖X∗‖∞‖∇sX‖
)

≤ c1c2
(

4δ2
0 + 8δ3

0

√
ε+ 2cδ0ε+ 2cδ0ε+ 2cδ0ε+ 2cδ0ε

)
‖ζ∗‖1,2,ε

+ c1c22δ0
√
ε
(

1√
ε
‖X∗‖+

√
ε‖∇sX∗‖

)
cε+ c1c22δ0

√
ε ‖`∗‖ · ‖X∗‖∞

≤ 1
8·2µ∞c1c2 ‖ζ

∗‖1,2,ε + 1
2‖`
∗‖ · ‖X∗‖∞.

12 a numerical bound ‖`∗‖∞ < C is irrelevant in the proof, only finiteness (<∞) matters
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In inequality three we already discarded in a few triple products some factors
‖X∗‖∞ ≤ 1 or ‖X‖∞ ≤ 1. The once underlined term enforces the smallness
assumption in Theorem 6.2. The doubly underlined estimate in inequality three
is by (4.58) with β = 1/2. The final inequality holds by choosing δ0 and ε0

sufficiently small. We summarize the estimate, which comes in handy below, by

2µ∞c1c2 ‖`∗‖ · ‖X∗‖∞ ≤ 1
4‖ζ
∗‖1,2,ε.

Similarly, by estimate one in the key estimate (5.81), with a constant c1 > 0,
by the quadratic estimates (6.91) and (6.93), with a constant c2 ≥ 2, and with
the constant µ∞ defined by (5.69), we obtain

‖ζ∗‖1,2,ε ≤ c1
(
ε‖Dε

qζ
∗‖0,2,ε + ‖πε(Dε

qζ
∗)‖
)

≤ 2µ∞c1
(
‖F‖+ ‖F‖+ ε2‖f‖+ ε2‖f‖

)
≤ 2µ∞c1c2

(
‖X∗‖ · ‖X∗‖∞ + ‖`∗‖ · ‖X∗‖∞ + ‖∇sX∗‖ · ‖X∗‖2∞

+ ‖X‖∞
(
‖X∗‖+ ‖`∗‖+ ‖∇sX∗‖

)
+ ‖`‖∞‖X∗‖+ ‖X∗‖∞‖∇sX‖

)
≤ 2µ∞c1c2

(
δ0
√
ε+ δ2

0 + cε3/2 + cε1/2 + cε3/2ε−1 + c
√
ε
)
‖ζ∗‖1,2,ε

+ 2µ∞c1c2

(
ε−1/2‖X∗‖+ ε1/2‖∇sX∗‖

)
cε+ 1

4‖ζ
∗‖1,2,ε

≤ 1

2
‖ζ∗‖1,2,ε.

In inequality three we discarded in a few triple products some factors ‖X∗‖∞ ≤ 1
or ‖X‖∞ ≤ 1. The once underlined term enforces the smallness assumption in
Theorem 6.2. The doubly underlined estimate in inequality three is by (4.58)
with β = 1/2. The final inequality holds by choosing δ0 and ε0 sufficiently
small. Thus the element ζ∗ = ζ − Z is zero in W 1,2. This proves Theorem 6.2.
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