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In the first part we introduce the class of vertex convexity polygons, and we show
that all 4-gons belong to this class. We define a point in some polygons, and in the
second part we prove that in a 4-gon this is the center of gravity. We calculate this
barycenter by a subdivision of the polygon into two triangles. Then we compute the
barycenters of the triangles. The barycenter of the 4-gon results in the barycenter
of the two barycenters of the triangles with taking into account the areas of the
triangles.
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1 Introduction

We start with a set of points. Let us assume k + 1 points called Points ⊂ R2, where
Points = {(x1, y1), (x2, y2), . . . (xk−1, yk−1), (xk, yk), (xk+1, yk+1)}. We joint the possible
edges. We take the set Union :=

⋃
[(xi, yi), (xi+1, yi+1)] for i ∈ {1, 2, . . . k − 1, k}. With the

expression ‘[a, b]’ we mean all points on the line segment between a and b and the boundaries
a and b.
We call the interval [(xi, yi), (xi+1, yi+1)] an edge and each point (xi, yi) a vertex for i ∈
{1, 2, 3, . . . k − 1, k}.
We call Union a polygon if and only if it holds (xi, yi) ̸= (xj , yj) for i ̸= j where i, j ≤ k. We
call Union a simple polygon if and only if it is a polygon and it is homeomorphic to a circle, and
there are no three consecutive collinear points (xi, yi), (xi+1, yi+1), (xi+2, yi+2). Also we demand
that the points (xk, yk), (x1, y1), (x2, y2) and (xk−1, yk−1), (xk, yk), (x1, y1) are not collinear. If
we have a simple polygon we include its interior, and it holds (xk+1, yk+1) = (x1, y1) and k > 2.
We say that a self-intersecting polygon is a polygon which self-intersects. This means that there
are two edges [(xi, yi), (xi+1, yi+1)] and [(xj , yj), (xj+1, yj+1)] where i ̸= j, and the two edges
have a common point. Further we demand that the polygon is not homeomorphic to a circle.
An r-gon is a simple polygon with r vertices.
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Proposition 1.1. A self-intersecting polygon is not a simple polygon.

Proof. Trivial.

We introduce a property. We say that a polygon has the property vertex convexity if and only
if it has a vertex (r, s) such that the intervals [(r, s), (p, q)] are a subset of the polygon for all
vertices (p, q). We call the class of those polygons which have the property of vertex convexity
vertex convexity polygons. Note that a convex simple polygon has the property ‘vertex convex-
ity’. The 4-gon in Figure 3 is an example of a polygon with the property ‘vertex convexity’,
which is not convex.
We call the class of all convex simple polygons convex simple polygons and the class of simple
polygons simple polygons and the class of all polygons polygons.

Proposition 1.2.

convex simple polygons ⊂ vertex convexity polygons ⊂ polygons

where the inclusions are proper.

Proof. The inclusions are trivial. To prove that they are proper consider the U-shaped 8-gon
with the vertex set {(−3,−1), (3,−1), (3, 3), (2, 3), (2, 0), (−2, 0), (−2, 3), (−3, 3)}. It is a poly-
gon, but no vertex convexity polygon. The 4-gon Q with a vertices (0, 0), (2, 2), (0, 1), (−2, 2)
is a vertex convexity polygon since the intervals [(0, 0), (p, q)] are a subset of Q for all vertices
(p, q) of Q, which is not convex. Note that the interior of Q is included.

Proposition 1.3. Every polygon with 4 vertices either is a self-intersecting polygon or it has
the property ‘vertex convexity’.

Proof. Please see below Figure 1. We assume that the polygon P has vertices a, b, c and d
(i.e. the edges connect a, b, c, d and then a). We see the lines that intersect a,b or a,c or b,c,
respectively. They form three different lines since some vertices are not collinear. For the same
reason d is not an element of one of the lines. The plane is subdiveded by the lines in seven
sets A, B, C, D, E, F, G, where only G has a finite area. G is the triangle with vertices a,
b, c. The fourth vertex d of P must be either in A or in B or in C or in D or in E or in F or
in G. If d is in A or B or C or E or G P is a simple polygon. In these five cases the vertex
convexity property is fulfiled, since the intervals [(r, s), (p, q)] are subsets of P where (r, s) is c
(if d is in A) or d (if d is in B) or a (if d is in C) or b (if d is in E) or d (if d is in G), and
(p, q) is any vertex of P . If d is in D or in F we get a self-intersecting polygon. Note that in a
simple polygon its interior is a part of the polygon.
The proposition is proved.
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2 The Barycenter

We got the following well-known formulas for the barycenter B = (Bx, By) of a simple polygon
from [1] or [2]. Please see also [3] and [4]. Area is the area of a simple polygon. Note that
Area > 0, and that in [1] and [3] the barycenter is called a Centroid. Note that B is the center of
gravity of the simple polygon, if it is realized with homogeneous material of constant thickness.
Further note that the order of the vertices in the simple polygon is counterclockwise. We write

Di = xi · yi+1 − xi+1 · yi, where 1 ≤ i ≤ k and it holds (2.1)

Area =
1

2
·

k∑
i=1

Di (2.2)

Bx =
1

6 · Area
·

k∑
i=1

(xi + xi+1) ·Di, By =
1

6 · Area
·

k∑
i=1

(yi + yi+1) ·Di (2.3)

3 Theorem

Let us consider either a convex simple polygon or a non-convex 4-gon which we call P . We
assume that it has k vertices (x1, y1), (x2, y2) . . . (xk−1, yk−1), (xk, yk) and (xk+1, yk+1) = (x1, y1)
where k > 2. It has the area Area (see the chapter ‘The Barycenter’). By Proposition 1.3 it
has the property ‘vertex convexity’. Without restrictions of generality let (x1, y1) be the vertex
such that the intervals [(x1, y1), (p, q)] are a subset of P for all vertices (p, q) of P . The polygon
can be represented by k− 2 triangles T2 ∪ T3 ∪ . . .∪ Tk−2 ∪ Tk−1, where Ti is the triangle with
vertices (x1, y1), (xi, yi) and (xi+1, yi+1), for 2 ≤ i ≤ k − 1.

Definition 3.1. We use the abbreviation Ai := x1·yi−y1·xi+xi·yi+1−yi·xi+1+xi+1·y1−yi+1·x1.
Ai is twice the area of the triangle Ti, for i = 2, 3, . . . k−1. We define the point C = (Cx, Cy) ∈
R2, where Cx is

1

6 · Area
·
k−1∑
i=2

(x1 + xi + xi+1) ·Ai (3.1)
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and Cy has the value

1

6 · Area
·
k−1∑
i=2

(y1 + yi + yi+1) ·Ai. (3.2)

Theorem 3.2. In a triangle or in a 4-gon it holds C = B.

Proof. First we show that Cx = Bx holds in a triangle. We assume vertices (x1, y1), (x2, y2),
(x3, y3), (x4, y4), where (x4, y4) = (x1, y1). A2 is twice the area of the triangle.
To show the equation Cx = Bx for a triangle we have to prove

(x1 + x2 + x3) ·A2 = (x1 + x2) ·D1 + (x2 + x3) ·D2 + (x3 + x4) ·D3 (3.3)

where

D1 = x1 · y2 − x2 · y1, D2 = x2 · y3 − x3 · y2, D3 = x3 · y4 − x4 · y3 (3.4)

and

A2 = D1 + D2 + D3 (3.5)

By using the commutativity of the multiplication the confirmation of equation (3.3) is straight-
forward.

Let us presume a 4-gon with vertices (x1, y1), (x2, y2), (x3, y3), (x4, y4) and (x5, y5), where
(x5, y5) = (x1, y1). (Mostly we omit the multiplication point ‘·’.) We calculate

Cx = (x1 + x2 + x3) ·A2 + (x1 + x3 + x4) ·A3 (3.6)

= x1x1y2 − x1y1x2 + x1x2y3 − x1y2x3 + x1x3y1 − x1y3x1 (3.7)

+ x2x1y2 − x2y1x2 + x2x2y3 − x2y2x3 + x2x3y1 − x2y3x1 (3.8)

+ x3x1y2 − x3y1x2 + x3x2y3 − x3y2x3 + x3x3y1 − x3y3x1 (3.9)

+ x1x1y3 − x1y1x3 + x1x3y4 − x1y3x4 + x1x4y1 − x1y4x1 (3.10)

+ x3x1y3 − x3y1x3 + x3x3y4 − x3y3x4 + x3x4y1 − x3y4x1 (3.11)

+ x4x1y3 − x4y1x3 + x4x3y4 − x4y3x4 + x4x4y1 − x4y4x1 (3.12)

= x1x1y2 − x1y1x2 (3.13)

+ x2x1y2 − x2y1x2 + x2x2y3 − x2y2x3 (3.14)

+ x3x2y3 − x3y2x3 (3.15)

+ x1x4y1 − x1y4x1 (3.16)

+ x3x3y4 − x3y3x4 (3.17)

+ x4x3y4 − x4y3x4 + x4x4y1 − x4y4x1 (3.18)

and

Bx = (x1 + x2) ·D1 + (x2 + x3) ·D2 + (x3 + x4) ·D3 + (x4 + x1) ·D4 (3.19)

= x1x1y2 − x1y1x2 + x2x1y2 − x2y1x2 (3.20)

+ x2x2y3 − x2y2x3 + x3x2y3 − x3y2x3 (3.21)

+ x3x3y4 − x3y3x4 + x4x3y4 − x4y3x4 (3.22)

+ x4x4y1 − x4y4x1 + x1x4y1 − x1y4x1 (3.23)
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We leave gaps where pairs erase itself due to different signs. Cx = Bx is shown.
The identity Cy = By is demonstrated in the same way, both for triangles and for 4-gons. The
theorem is proven.

The cases for larger k can be treated in the same manner. We consider the case k = 5. We
have to prove the equation

(x1 + x2 + x3) ·A2 + (x1 + x3 + x4) ·A3 + (x1 + x4 + x5) ·A4 (3.24)

= (x1 + x2) ·D1 + (x2 + x3) ·D2 + (x3 + x4) ·D3 + (x4 + x5) ·D4 + (x5 + x1) ·D5 (3.25)

for a 5-gon with vertices (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) and (x6, y6) = (x1, y1).
We will not continue the proof.

The following 6-gon shows that simple polygons is not a subclass of vertex convexity polygons.
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Figure 2:

Conjecture 3.3. It holds

vertex convexity polygons ⊂ simple polygons

Conjecture 3.4. Every 5-gon has the property ‘vertex convexity’.

Conjecture 3.5. In a 5-gon it holds C = B.

Conjecture 3.6. In all convex simple polygons it holds C = B.

Conjecture 3.7. In all simple polygons which have the property ‘vertex convexity’ where
perhaps we have to modify the formulas (3.1) and (3.2) it holds C = B.

Conjecture 3.8. In all simple polygons where perhaps we have to modify (3.1) and (3.2) it
holds C = B.

Conjecture 3.9. Every simple polygon can be formed by a finite number of triangles.
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Figure 3:

On the right hand we

see a 5-gon and a 4-gon,

respectively. They are

subdivided in three and

two triangles, respectively.
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