Extension of an imaginary triangle through Complex Variables

Thomas Halley

Abstract: Complex Variables has a link to general geometry in placing the geometry of squares. Given is a problem in geometry where a short-cut is taken to solve what the angle is in the given situation.

Question: If the angle opposite 45° and the angle opposite x° when added is equal to $x^{4}+y^{4}+z^{4}=(a+b)$ given that $x^{2}+y^{2}+z^{2}=\sqrt{\pi}$ and $x+y+z=0$, find x° and organize the triangles to form a proof of the Pythagorean Theorem.

Answer: Given a sphere $x^{2}+y^{2}+z^{2}=r^{2}$, where $r=\pi^{1 / 4}$ we have $x^{2}+y^{2}+z^{2}=\sqrt{\pi}$
If $x+y+z=0$, what is $(a+b)$ from $x^{4}+y^{4}+z^{4}=(a+b)$, if we use understanding from complex variables we know that π exists in a square root. By correlating the imaginary or complex component $i v$, we can take $z=w=0$, so $w=u+i v \rightarrow$ $\sqrt{\sqrt{\pi}} / \sqrt{2}=x,-\sqrt{\sqrt{\pi}} / \sqrt{2}=y, 0=z$, so $x+y+z=0$, then $x^{2}+y^{2}+z^{2}=\frac{\sqrt{\pi}}{2}+\frac{\sqrt{\pi}}{2}+0=\sqrt{\pi}$, this satisfies the condition so $x^{4}+y^{4}+z^{4}=\frac{\pi}{4}+\frac{\pi}{4}+0=\pi / 2=a+b$. Complex Variables is used since u and v cancel, the i part implies negation.
Triangle A: $45^{\circ}+3 x^{\circ}+a=180^{\circ}$, Triangle B: $135^{\circ}+x^{\circ}+b=180^{\circ}, a+b=\pi / 2=90^{\circ}$
Triangle B+Triangle A $=270^{\circ}+4 x^{\circ}=360^{\circ}$, so $x^{\circ}=\frac{90}{4}$ or $\frac{45}{2}$, then $x^{\circ}=22.5^{\circ}$
Final Part 1 Answer: Angle $a+b=\frac{\pi}{2}$, so $x^{\circ}=22.5^{\circ}$ or $\frac{\pi}{8}$
How would we check this?
Check: Triangle $A=180^{\circ}=45^{\circ}+3 \cdot 22.5^{\circ}+a, a=67.5^{\circ}, b=22.5^{\circ}$, Triangle $B=135^{\circ}+22.5^{\circ}+b=180^{\circ} 。$
Part 2 Proof: Rearranging the structure of triangles (A and B), we create this diagram. An imaginary triangle (C) is inverted.

Using the law of similar trapezoid areas

$$
\begin{aligned}
\frac{1}{2}(a+b)(a+b) & =a b+\frac{1}{2} c^{2} \\
\frac{1}{2}\left(a^{2}+2 a b+b^{2}\right) & =a b+\frac{1}{2} c^{2} \\
\left(a^{2}+2 a b+b^{2}\right) & =2 a b+c^{2} \\
a^{2}+b^{2} & =c^{2}
\end{aligned}
$$

Thus the Pythagorean Theorem is proved by law of similar Trapezoids

