[9] **viXra:1111.0106 [pdf]**
*replaced on 2013-11-10 15:33:06*

**Authors:** Dan Visser

**Comments:** 7 Pages.

In this version 3 the formulations are given for the existence of a force smaller than the smallest gravity. This is a new dark energy force, which affects neutrinos differently than is assumed according to current physics. The formulations also imply a different look on the Higgs-mass and dark matter-mass. A deeper analysis became important, because a new cosmological hypothesis is involved. The CERN-experiments on these issues are far from criticism. My set of equations mentioned in my paper “A New Dark Energy Force Theoretically Calculates Faster-than-light-neutrinos” and “Duonistic Neutrinos Violate Relativity” reveal such a criticism. However, until now my formulations withstand a hurricane, even after a Director of the OPERA-project had to resign. My set of equations theoretically proves the neutrino-faster-than-light experiments had to be investigated to the bottom.

**Category:** Mathematical Physics

[8] **viXra:1111.0091 [pdf]**
*replaced on 2012-01-30 08:18:27*

**Authors:** Matti Pitkänen

**Comments:** 24 Pages.

The arguments of this article support the view that in TGD Universe number theoretic and geometric Langlands conjectures could be understood very naturally. The basic notions are following.

- Zero energy ontology (ZEO) and the related notion of causal diamond CD (CD is short hand for the cartesian product of causal diamond of M
^{4}and of CP_{2}). ZEO leads to the notion of partonic 2-surfaces at the light-like boundaries of CD and to the notion of string world sheet. These notions are central in the recent view about TGD. One can assign to the partonic 2-surfaces a conformal moduli space having as additional coordinates the positions of braid strand ends (punctures). By electric-magnetic duality this moduli space must correspond closely to the moduli space of string world sheets. - Electric-magnetic duality realized in terms of string world sheets and partonic 2-surfaces. The group G and its Langlands dual
^{L}G would correspond to the time-like and space-like braidings. Duality predicts that the moduli space of string world sheets is very closely related to that for the partonic 2-surfaces. The strong form of 4-D general coordinate invariance implying electric-magnetic duality and S-duality as well as strong form of holography indeed predicts that the collection of string world sheets is fixed once the collection of partonic 2-surfaces at light-like boundaries of CD and its sub-CDs is known. - The proposal is that finite measurement resolution is realized in terms of inclusions of hyperfinite factors of type II
_{1}at quantum level and represented in terms of confining effective gauge group. This effective gauge group could be some associate of G: gauge group, Kac-Moody group or its quantum counterpart, or so called twisted quantum Yangian strongly suggested by twistor considerations. At space-time level the finite measurement resolution would be represented in terms of braids at space-time level which come in two varieties correspond to braids assignable to space-like surfaces at the two light-like boundaries of CD and with light-like 3-surfaces at which the signature of the induced metric changes and which are identified as orbits of partonic 2-surfaces connecting the future and past boundaries of CDs.There are several steps leading from G to its twisted quantum Yangian. The first step replaces point like particles with partonic 2-surfaces: this brings in Kac-Moody character. The second step brings in finite measurement resolution meaning that Kac-Moody type algebra is replaced with its quantum version. The third step brings in zero energy ontology: one cannot treat single partonic surface or string world sheet as independent unit: always the collection of partonic 2-surfaces and corresponding string worlds sheets defines the geometric structure so that multilocality and therefore quantum Yangian algebra with multilocal generators is unavoidable.

In finite measurement resolution geometric Langlands duality and number theoretic Langlands duality are very closely related since partonic 2-surface is effectively replaced with the punctures representing the ends of braid strands and the orbit of this set under a discrete subgroup of G defines effectively a collection of "rational" 2-surfaces. The number of the "rational" surfaces in geometric Langlands conjecture replaces the number of rational points of partonic 2-surface in its number theoretic variant. The ability to compute both these numbers is very relevant for quantum TGD.

- The natural identification of the associate of G is as quantum Yangian of Kac-Moody type group associated with Minkowskian open string model assignable to string world sheet representing a string moving in the moduli space of partonic 2-surface. The dual group corresponds to Euclidian string model with partonic 2-surface representing string orbit in the moduli space of the string world sheets. The Kac-Moody algebra assigned with simply laced G is obtained using the standard tachyonic free field representation obtained as ordered exponentials of Cartan algebra generators identified as transversal parts of M
^{4}coordinates for the braid strands. The importance of the free field representation generalizing to the case of non-simply laced groups in the realization of finite measurement resolution in terms of Kac-Moody algebra cannot be over-emphasized. - Langlands duality involves besides harmonic analysis side also the number theoretic side. Galois groups (collections of them) defined by infinite primes and integers having representation as symplectic flows defining braidings. I have earlier proposed that the hierarchy of these Galois groups define what might be regarded as a non-commutative homology and cohomology. Also G has this kind of representation which explains why the representations of these two kinds of groups are so intimately related. This relationship could be seen as a generalization of the MacKay correspondence between finite subgroups of SU(2) and simply laced Lie groups.
- Symplectic group of the light-cone boundary acting as isometries of the WCW geometry kenociteallb/compl1 allowing to represent projectively both Galois groups and symmetry groups as symplectic flows so that the non-commutative cohomology would have braided representation. This leads to braided counterparts for both Galois group and effective symmetry group.
- The moduli space for Higgs bundle playing central role in the approach of Witten and Kapustin to geometric Landlands program is in TGD framework replaced with the conformal moduli space for partonic 2-surfaces. It is not however possible to speak about Higgs field although moduli defined the analog of Higgs vacuum expectation value. Note that in TGD Universe the most natural assumption is that all Higgs like states are "eaten" by gauge bosons so that also photon and gluons become massive. This mechanism would be very general and mean that massless representations of Poincare group organize to massive ones via the formation of bound states. It might be however possible to see the contribution of p-adic thermodynamics depending on genus as analogous to Higgs contribution since the conformal moduli are analogous to vacuum expectation of Higgs field.

[7] **viXra:1111.0090 [pdf]**
*replaced on 2012-01-30 08:22:30*

**Authors:** Matti Pitkänen

**Comments:** 16 Pages.

Infinite primes is a purely TGD inspired notion. The notion of infinity is number theoretical and infinite primes have well defined divisibility properties. One can partially order them by the real norm. p-Adic norms of infinite primes are well defined and finite. The construction of infinite primes is a hierarchical procedure structurally equivalent to a repeated second quantization of a supersymmetric arithmetic quantum field theory. At the lowest level bosons and fermions are labelled by ordinary primes. At the next level one obtains free Fock states plus states having interpretation as bound many particle states. The many particle states of a given level become the single particle states of the next level and one can repeat the construction ad infinitum. The analogy with quantum theory is intriguing and I have proposed that the quantum states in TGD Universe correspond to octonionic generalizations of infinite primes. It is interesting to compare infinite primes (and integers) to the Cantorian view about infinite ordinals and cardinals. The basic problems of Cantor's approach which relate to the axiom of choice, continuum hypothesis, and Russell's antinomy: all these problems relate to the definition of ordinals as sets. In TGD framework infinite primes, integers, and rationals are defined purely algebraically so that these problems are avoided. It is not surprising that these approaches are not equivalent. For instance, sum and product for Cantorian ordinals are not commutative unlike for infinite integers defined in terms of infinite primes.

Set theory defines the foundations of modern mathematics. Set theory relies strongly on classical physics, and the obvious question is whether one should reconsider the foundations of mathematics in light of quantum physics. Is set theory really the correct approach to axiomatization?

- Quantum view about consciousness and cognition leads to a proposal that p-adic physics serves as a correlate for cognition. Together with the notion of infinite primes this suggests that number theory should play a key role in the axiomatics.
- Algebraic geometry allows algebraization of the set theory and this kind of approach suggests itself strongly in physics inspired approach to the foundations of mathematics. This means powerful limitations on the notion of set.
- Finite measurement resolution and finite resolution of cognition could have implications also for the foundations of mathematics and relate directly to the fact that all numerical approaches reduce to an approximation using rationals with a cutoff on the number of binary digits.
- The TGD inspired vision about consciousness implies evolution by quantum jumps meaning that also evolution of mathematics so that no fixed system of axioms can ever catch all the mathematical truths for the simple reason that mathematicians themselves evolve with mathematics.

[6] **viXra:1111.0089 [pdf]**
*replaced on 2012-01-30 08:24:00*

**Authors:** Matti Pitkänen

**Comments:** 80 Pages.

In this article the goal is to find whether the general mathematical structures associated with twistor approach, superstring models and M-theory could have a generalization or a modification in TGD framework. The contents of the chapter is an outcome of a rather spontaneous process, and represents rather unexpected new insights about TGD resulting as outcome of the comparisons.

*1. Infinite primes, Galois groups, algebraic geometry, and TGD*

In algebraic geometry the notion of variety defined by algebraic equation is very general: all number fields are allowed. One of the challenges is to define the counterparts of homology and cohomology groups for them. The notion of cohomology giving rise also to homology if Poincare duality holds true is central. The number of various cohomology theories has inflated and one of the basic challenges to find a sufficiently general approach allowing to interpret various cohomology theories as variations of the same motive as Grothendieck, who is the pioneer of the field responsible for many of the basic notions and visions, expressed it.

Cohomology requires a definition of integral for forms for all number fields. In p-adic context the lack of well-ordering of p-adic numbers implies difficulties both in homology and cohomology since the notion of boundary does not exist in topological sense. The notion of definite integral is problematic for the same reason. This has led to a proposal of reducing integration to Fourier analysis working for symmetric spaces but requiring algebraic extensions of p-adic numbers and an appropriate definition of the p-adic symmetric space. The definition is not unique and the interpretation is in terms of the varying measurement resolution.

The notion of infinite has gradually turned out to be more and more important for quantum TGD. Infinite primes, integers, and rationals form a hierarchy completely analogous to a hierarchy of second quantization for a super-symmetric arithmetic quantum field theory. The simplest infinite primes representing elementary particles at given level are in one-one correspondence with many-particle states of the previous level. More complex infinite primes have interpretation in terms of bound states.

- What makes infinite primes interesting from the point of view of algebraic geometry is that
infinite primes, integers and rationals at the n:th level of the hierarchy are in 1-1 correspondence with rational functions of n arguments. One can solve the roots of associated polynomials and perform a root decomposition of infinite primes at various levels of the hierarchy and assign to them Galois groups acting as automorphisms of the field extensions of polynomials defined by the roots coming as restrictions of the basic polynomial to planes x
_{n}=0, x_{n}=x_{n-1}=0, etc... - These Galois groups are suggested to define non-commutative generalization of homotopy and homology theories and non-linear boundary operation for which a geometric interpretation in terms of the restriction to lower-dimensional plane is proposed. The Galois group G
_{k}would be analogous to the relative homology group relative to the plane x_{k-1}=0 representing boundary and makes sense for all number fields also geometrically. One can ask whether the invariance of the complex of groups under the permutations of the orders of variables in the reduction process is necessary. Physical interpretation suggests that this is not the case and that all the groups obtained by the permutations are needed for a full description. - The algebraic counterpart of boundary map would map the elements of G
_{k}identified as analog of homotopy group to the commutator group [G_{k-2},G_{k-2}] and therefore to the unit element of the abelianized group defining cohomology group. In order to obtains something analogous to the ordinary homology and cohomology groups one must however replaces Galois groups by their group algebras with values in some field or ring. This allows to define the analogs of homotopy and homology groups as their abelianizations. Cohomotopy, and cohomology would emerge as duals of homotopy and homology in the dual of the group algebra. - That the algebraic representation of the boundary operation is not expected to be unique turns into blessing when on keeps the TGD as almost topological QFT vision as the guide line. One can include all boundary homomorphisms subject to the condition that the anticommutator δ
^{i}_{k}δ^{j}_{k-1}+δ^{j}_{k}δ^{i}_{k-1}maps to the group algebra of the commutator group [G_{k-2},G_{k-2}]. By adding dual generators one obtains what looks like a generalization of anticommutative fermionic algebra and what comes in mind is the spectrum of quantum states of a SUSY algebra spanned by bosonic states realized as group algebra elements and fermionic states realized in terms of homotopy and cohomotopy and in abelianized version in terms of homology and cohomology. Galois group action allows to organize quantum states into multiplets of Galois groups acting as symmetry groups of physics. Poincare duality would map the analogs of fermionic creation operators to annihilation operators and vice versa and the counterpart of pairing of k:th and n-k:th homology groups would be inner product analogous to that given by Grassmann integration. The interpretation in terms of fermions turns however to be wrong and the more appropriate interpretation is in terms of Dolbeault cohomology applying to forms with homomorphic and antiholomorphic indices. - The intuitive idea that the Galois group is analogous to 1-D homotopy group which is the only non-commutative homotopy group, the structure of infinite primes analogous to the braids of braids of braids of ... structure, the fact that Galois group is a subgroup of permutation group, and the possibility to lift permutation group to a braid group suggests a representation as flows of 2-D plane with punctures giving a direct connection with topological quantum field theories for braids, knots and links. The natural assumption is that the flows are induced from transformations of the symplectic group acting on δ M
^{2}_{+/-}× CP_{2}representing quantum fluctuating degrees of freedom associated with WCW ("world of classical worlds"). Discretization of WCW and cutoff in the number of modes would be due to the finite measurement resolution. The outcome would be rather far reaching: finite measurement resolution would allow to construct WCW spinor fields explicitly using the machinery of number theory and algebraic geometry. - A connection with operads is highly suggestive. What is nice from TGD perspective is that the non-commutative generalization homology and homotopy has direct connection to the basic structure of quantum TGD almost topological quantum theory where braids are basic objects and also to hyper-finite factors of type II
_{1}. This notion of Galois group makes sense only for the algebraic varieties for which coefficient field is algebraic extension of some number field. Braid group approach however allows to generalize the approach to completely general polynomials since the braid group make sense also when the ends points for the braid are not algebraic points (roots of the polynomial).

This construction would realize the number theoretical, algebraic geometrical, and topological content in the construction of quantum states in TGD framework in accordance with TGD as almost TQFT philosophy, TGD as infinite-D geometry, and TGD as generalized number theory visions.

*2. p-Adic integration and cohomology*

This picture leads also to a proposal how p-adic integrals could be defined in TGD framework.

- The calculation of twistorial amplitudes reduces to multi-dimensional residue calculus. Motivic integration gives excellent hopes for the p-adic existence of this calculus and braid representation would give space-time representation for the residue integrals in terms of the braid points representing poles of the integrand: this would conform with quantum classical correspondence. The power of 2π appearing in multiple residue integral is problematic unless it disappears from scattering amplitudes. Otherwise one must allow an extension of p-adic numbers to a ring containing powers of 2π.
- Weak form of electric-magnetic duality and the general solution ansatz for preferred extremals reduce the Kähler action defining the Kähler function for WCW to the integral of Chern-Simons 3-form. Hence the reduction to cohomology takes places at space-time level and since p-adic cohomology exists there are excellent hopes about the existence of p-adic variant of Kähler action. The existence of the exponent of Kähler gives additional powerful constraints on the value of the Kähler fuction in the intersection of real and p-adic worlds consisting of algebraic partonic 2-surfaces and allows to guess the general form of the Kähler action in p-adic context.
- One also should define p-adic integration for vacuum functional at the level of WCW. p-Adic thermodynamics serves as a guideline leading to the condition that in p-adic sector exponent of Kähler action is of form (m/n)
^{r}, where m/n is divisible by a positive power of p-adic prime p. This implies that one has sum over contributions coming as powers of p and the challenge is to calculate the integral for K= constant surfaces using the integration measure defined by an infinite power of Kähler form of WCW reducing the integral to cohomology which should make sense also p-adically. The p-adicization of the WCW integrals has been discussed already earlier using an approach based on harmonic analysis in symmetric spaces and these two approaches should be equivalent. One could also consider a more general quantization of Kähler action as sum K=K_{1}+K_{2}where K_{1}=rlog(m/n) and K_{2}=n, with n divisible by p since exp(n) exists in this case and one has exp(K)= (m/n)^{r}× exp(n). Also transcendental extensions of p-adic numbers involving n+p-2 powers of e^{1/n}can be considered. - If the Galois group algebras indeed define a representation for WCW spinor fields in finite measurement resolution, also WCW integration would reduce to summations over the Galois groups involved so that integrals would be well-defined in all number fields.

*3. Floer homology, Gromov-Witten invariants, and TGD*

Floer homology defines a generalization of Morse theory allowing to deduce symplectic homology groups
by studying Morse theory in loop space of the symplectic manifold. Since the symplectic transformations of the boundary of δ M^{4}_{+/-}× CP_{2} define isometry group of WCW, it is very natural to expect that Kähler action defines a generalization of the Floer homology allowing to understand the symplectic aspects of quantum TGD. The hierarchy of Planck constants implied by the one-to-many correspondence between canonical momentum densities and time derivatives of the imbedding space coordinates leads naturally to singular coverings of the imbedding space and the resulting symplectic Morse theory could characterize the homology of these coverings.

One ends up to a more precise definition of vacuum functional: Kähler action reduces Chern-Simons terms (imaginary in Minkowskian regions and real in Euclidian regions) so that it has both phase and real exponent which makes the functional integral well-defined. Both the phase factor and its conjugate must be allowed and the resulting degeneracy of ground state could allow to understand qualitatively the delicacies of CP breaking and its sensitivity to the parameters of the system. The critical points with respect to zero modes correspond to those for Kähler function. The critical points with respect to complex coordinates associated with quantum fluctuating degrees of freedom are not allowed by the positive definiteness of Kähler metric of WCW. One can say that Kähler and Morse functions define the real and imaginary parts of the exponent of vacuum functional.

The generalization of Floer homology inspires several new insights. In particular, space-time surface as hyper-quaternionic surface could define the 4-D counterpart for pseudo-holomorphic 2-surfaces in Floer homology. Holomorphic partonic 2-surfaces could in turn correspond to the extrema of Kähler function with respect to zero modes and holomorphy would be accompanied by super-symmetry.

Gromov-Witten invariants appear in Floer homology and topological string theories and this inspires the attempt to build an overall view about their role in TGD. Generalization of topological string theories of type A and B to TGD framework is proposed. The TGD counterpart of the mirror symmetry would be the equivalence of formulations of TGD in H=M^{4}× CP_{2} and in CP_{3}× CP_{3} with space-time surfaces replaced with 6-D sphere bundles.

*4. K-theory, branes, and TGD *

K-theory and its generalizations play a fundamental role in super-string models and M-theory since they allow a topological classification of branes. After representing some physical objections against the notion of brane more technical problems of this approach are discussed briefly and it is proposed how TGD allows to overcome these problems. A more precise formulation of the weak form of electric-magnetic duality emerges: the original formulation was not quite correct for space-time regions with Euclidian signature of the induced metric. The question about possible TGD counterparts of R-R and NS-NS fields and S, T, and U dualities is discussed.

*5. p-Adic space-time sheets as correlates for Boolean cognition*

p-Adic physics is interpreted as physical correlate for cognition. The so called Stone spaces are in one-one correspondence with Boolean algebras and have typically 2-adic topologies. A generalization to p-adic case with the interpretation of p pinary digits as physically representable Boolean statements of a Boolean algebra with 2^{n}>p>p^{n-1} statements is encouraged by p-adic length scale hypothesis. Stone spaces are synonymous with profinite spaces about which both finite and infinite Galois groups represent basic examples. This provides a strong support for the connection between Boolean cognition and p-adic space-time physics. The Stone space character of Galois groups suggests also a deep connection between number theory and cognition and some arguments providing support for this vision are discussed.

[5] **viXra:1111.0088 [pdf]**
*replaced on 2012-01-30 08:34:19*

**Authors:** Matti Pitkänen

**Comments:** 17 Pages.

Witten was awarded by Fields medal from a construction recipe of Jones polynomial based on topological QFT assigned with braids and based on Chern-Simons action. Recently Witten has been working with an attempt to understand in terms of quantum theory the so called Khovanov polynomial associated with a much more abstract link invariant whose interpretation and real understanding remains still open.

The attempts to understand Witten's thoughts lead to a series of questions unavoidably culminating to the frustrating "Why I do not have the brain of Witten making perhaps possible to answer these questions?". This one must just accept. In this article I summarize some thoughts inspired by the associations of the talk of Witten with quantum TGD and with the model of DNA as topological quantum computer. In my own childish manner I dare believe that these associations are interesting and dare also hope that some more brainy individual might take them seriously.

An idea inspired by TGD approach which also main streamer might find interesting is that the Jones invariant defined as vacuum expectation for a Wilson loop in 2+1-D space-time generalizes to a vacuum expectation for a collection of Wilson loops in 2+2-D space-time and could define an invariant for 2-D knots and for cobordisms of braids analogous to Jones polynomial. As a matter fact, it turns out that a generalization of gauge field known as gerbe is needed and that in TGD framework classical color gauge fields defined the gauge potentials of this field. Also topological string theory in 4-D space-time could define this kind of invariants. Of course, it might well be that this kind of ideas have been already discussed in literature.

[4] **viXra:1111.0087 [pdf]**
*submitted on 1 Nov 2011*

**Authors:** Matti Pitkänen

**Comments:** 4 pages.

The vanishing of ordinary determinant tells that a group of linear equations possesses non-trivial solutions. Hyperdeterminant generalizes this notion to a situation in which one has homogenous multilinear equations. The notion has applications to the description of quantum entanglement and has stimulated interest in physics blogs. Hyperdeterminant applies to hyper-matrices with n matrix indices defined for an n-fold tensor power of vector space - or more generally - for a tensor product of vector spaces with varying dimensions. Hyper determinant is an n-linear function of the arguments in the tensor factors with the property that all partial derivatives of the hyper determinant vanish at the point, which corresponds to a non-trivial solution of the equation. A simple example is potential function of n arguments linear in each argument.

Why the notion of hyperdeterminant- or rather its infinite-dimensional generalization- might be interesting in TGD framework relates to the quantum criticality of TGD stating that TGD Universe involves a fractal hierarchy of criticalities: phase transitions inside phase transitions inside... At classical level the lowest order criticality means that the extremal of Kähler action possesses non-trivial second variations for which the action is not affected. The system is critical. In QFT context one speaks about zero modes. The vanishing of the so called Gaussian (of functional) determinant associated with second variations is the condition for the existence of critical deformations. In QFT context this situation corresponds to the presence of zero modes.

The simplest physical model for a critical system is cusp catastrophe defined by a potential function V(x) which is fourth order polynomial. At the edges of cusp two extrema of potential function stable and unstable extrema co-incide and the rank of the matrix defined by the potential function vanishes. This means vanishing of its determinant. At the tip of the cusp the also the third derivative vanishes of potential function vanishes. This situation is however not describable in terms of hyperdeterminant since it is genuinely non-linear rather than only multilinear.

In a complete analogy, one can consider also the vanishing of n:th variations in TGD framework as higher order criticality so that the vanishing of hyperdeterminant might serve as a criterion for the higher order critical point and occurrence of phase transition. Why multilinearity might replace non-linearity in TGD framework could be due to the non-locality. Multilinearty with respect to imbedding space-coordinates at different space-time points would imply also the vanishing of the standard local divergences of quantum field theory known to be absent in TGD framework on basis of very general arguments. In this article an attempt to concretize this idea is made. The challenge is highly non-trivial since in finite measurement resolution one must work with infinite-dimensional system.

[3] **viXra:1111.0086 [pdf]**
*replaced on 2012-01-30 08:45:30*

**Authors:** Matti Pitkänen

**Comments:** 61 Pages.

There have been impressive steps in the understanding of N=4 maximally sypersymmetric YM theory possessing 4-D super-conformal symmetry. This theory is related by AdS/CFT duality to certain string theory in AdS_{5}× S^{5} background. Second stringy representation was discovered by Witten and is based on 6-D Calabi-Yau manifold defined by twistors. The unifying proposal is that so called Yangian symmetry is behind the mathematical miracles involved.

In the following I will discuss briefly the notion of Yangian symmetry and suggest its generalization in TGD framework by replacing conformal algebra with appropriate super-conformal algebras. Also a possible realization of twistor approach and the construction of scattering amplitudes in terms of Yangian invariants defined by Grassmannian integrals is considered in TGD framework and based on the idea that in zero energy ontology one can represent massive states as bound states of massless particles. There is also a proposal for a physical interpretation of the Cartan algebra of Yangian algebra allowing to understand at the fundamental level how the mass spectrum of n-particle bound states could be understood in terms of the n-local charges of the Yangian algebra.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell's equations. Kähler action is Maxwell action for the induced Kähler form of CP_{2}. The preferred extremals allow a very concrete interpretation in terms of modes of massless non-linear field. Both conformally compactified Minkowski space identifiable as so called causal diamond and CP_{2} allow a description in terms of twistors. These observations inspire the proposal that a generalization of Witten's twistor string theory relying on the identification of twistor string world sheets with certain holomorphic surfaces assigned with Feynman diagrams could allow a formulation of quantum TGD in terms of 3-dimensional holomorphic surfaces of CP_{3}× CP_{3} mapped to 6-surfaces dual CP_{3}× CP_{3}, which are sphere bundles so that they are projected in a natural manner to 4-D space-time surfaces. Very general physical and mathematical arguments lead to a highly unique proposal for the holomorphic differential equations defining the complex 3-surfaces conjectured to correspond to the preferred extremals of Kähler action.

[2] **viXra:1111.0085 [pdf]**
*replaced on 2012-03-16 03:44:46*

**Authors:** Matti Pitkänen

**Comments:** 17 Pages.

Shnoll and collaborators have discovered strange repeating patterns of random fluctuations of physical observables such as the number n of nuclear decays in a given time interval. Periodically occurring peaks for the distribution of the number N(n) of measurements producing n events in a series of measurements as a function of n is observed instead of a single peak. The positions of the peaks are not random and the patterns depend on position and time varying periodically in time scales possibly assignable to Earth-Sun and Earth-Moon gravitational interaction.

These observations suggest a modification of the expected probability distributions but it is very difficult to imagine any physical mechanism in the standard physics framework. Rather, a universal deformation of predicted probability distributions would be in question requiring something analogous to the transition from classical physics to quantum physics.

The hint about the nature of the modification comes from the TGD inspired quantum measurement theory proposing a description of the notion of finite measurement resolution in terms of inclusions of so called hyper-finite factors of type II_{1} (HFFs) and closely related quantum groups. Also p-adic physics -another key element of TGD- is expected to be involved. A modification of a given probability distribution P(nkenovert λ_{i}) for a positive integer valued variable n characterized by rational-valued parameters λ_{i} is obtained by replacing n and the integers characterizing λ_{i} with so called quantum integers depending on the quantum phase q_{m}=exp(i2π/m). Quantum integer n_{q} must be defined as the product of quantum counterparts p_{q} of the primes p appearing in the prime decomposition of n. One has p_{q}= sin(2π p/m)/sin(2π/m) for p≠ P and p_{q}=P for p=P. m must satisfy m≥ 3, m≠ p, and m≠ 2p.

The quantum counterparts of positive integers can be negative. Therefore quantum distribution is defined first as p-adic valued distribution and then mapped by so called canonical identification I to a real distribution by the map taking p-adic -1 to P and powers P^{n} to P^{-n} and other quantum primes to themselves and requiring that the mean value of n is for distribution and its quantum variant. The map I satisfies I(∑ P_{n})=∑ I(P_{n}). The resulting distribution has peaks located periodically with periods coming as powers of P. Also periodicities with peaks corresponding to n=n^{+}n^{-}, n^{+}_{q}>0 with fixed n^{-}_{q}<0,
are predicted. These predictions are universal and easily testable. The prime P and integer m characterizing the quantum variant of distribution can be identified from data. The shapes of the distributions obtained are qualitatively consistent with the findings of Shnoll but detailed tests are required to see whether the number theoretic predictions are correct.

The periodic dependence of the distributions would be most naturally assignable to the gravitational interaction of Earth with Sun and Moon and therefore to the periodic variation of Earth-Sun and Earth-Moon distances. The TGD inspired proposal is that the p-dic prime P and integer m characterizing the quantum distribution are determined by a process analogous to a state function reduction and their most probably values depend on the deviation of the distance R through the formulas Δ p/p≈ k_{p}Δ R/R and Δ m/m≈ k_{m}Δ R/R. The p-adic primes assignable to elementary particles are very large unlike the primes which could characterize the empirical distributions. The hierarchy of Planck constants allows the gravitational Planck constant assignable to the space-time sheets mediating gravitational interactions to have gigantic values and this allows p-adicity with small values of the p-adic prime P.

[1] **viXra:1111.0026 [pdf]**
*replaced on 2014-12-31 04:06:33*

**Authors:** Malcolm Macleod

**Comments:** 3 Pages.

In this essay I propose a geometrical formula for a dimensionless magnetic monopole sigma constructed from Planck time, elementary charge, -c and alpha, the fine structure constant. A formula for the electron may be constructed from these monopoles, this formula suggests that the charge distribution of the electron is perfectly symmetrical. As this monopole comprises a 1/3rd part of electron charge, it is analogous to the quark. If all charges therefore emanate from this monopole, even if charges have opposite polarity, their magnitudes must be equivalent, the differences between the proton and electron for example being geometrical rather than physical. Furthermore, these formulas suggest a Planck universe, wave-particle duality becoming a wave-state to Planck-state oscillation.

**Category:** Mathematical Physics