Physics of Biology

1811 Submissions

[14] viXra:1811.0242 [pdf] submitted on 2018-11-15 08:03:50

Life Couldn't Exist Without Weak Force

Authors: George Rajna
Comments: 59 Pages.

David Armstrong studies a phenomenon that is ubiquitous in nature, yet only a few non-scientists know what it is. [36] Physicists at Johannes Gutenberg University Mainz (JGU) have recently succeeded in observing parity violation in ytterbium atoms with different numbers of neutrons. [35] Exploring the mystery of molecular handedness in nature, scientists have proposed a new experimental scheme to create custom-made mirror molecules for analysis. [34] Identifying right-handed and left-handed molecules is a crucial step for many applications in chemistry and pharmaceutics. [33]
Category: Physics of Biology

[13] viXra:1811.0221 [pdf] submitted on 2018-11-14 18:11:43

Hoyle-Wickramasinghe Panspermia is Far More Than a Hypothesis

Authors: Edward J. Steele, Reginald M. Gorczynski, Gensuke Tokoro, Dayal T. Wickramasinghe, N. Chandra Wickramasinghe
Comments: 17 Pages.

The hypothesis of life being a cosmic rather than a terrestrial phenomenon has evolved from the mid 1970's onwards and is documented in an extensive body of publications by Fred Hoyle, Chandra Wickramasinghe and their many collaborators and students in the columns of Nature and other peer-reviewed journals.  After nearly 5 decades of pursuing a rigorous Popperian prediction/verification cycle, and the emergence of a vast body of astronomical and biological evidence, the reigning Aristotelean dogma of Earth-bound abiogenesis is now seriously threatened.  A paradigm shift to the H-W theory of cosmic life (H-W Panspermia) has been long overdue, and is currently held back mostly by sociological impediments. Here we outline the special subset of scientific facts which constitute, in our minds, the demarcation data set which distinguishes the terrestrial theory of evolution (neo-Darwinism) based on abiogenesis from the new cosmic theory of evolution (H-W Panspermia).
Category: Physics of Biology

[12] viXra:1811.0216 [pdf] submitted on 2018-11-13 05:32:55

Neural Nets in Cell RNA Sequencing

Authors: George Rajna
Comments: 31 Pages.

Computer scientists at Carnegie Mellon University say neural networks and supervised machine learning techniques can efficiently characterize cells that have been studied using single cell RNA-sequencing (scRNA-seq). [19] Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11] Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9]
Category: Physics of Biology

[11] viXra:1811.0196 [pdf] submitted on 2018-11-12 07:31:14

Bending DNA

Authors: George Rajna
Comments: 31 Pages.

The way DNA folds largely determines which genes are read out. John van Noort and his group have quantified how easily rolled-up DNA parts stack. [19] Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11] Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9]
Category: Physics of Biology

[10] viXra:1811.0195 [pdf] submitted on 2018-11-12 07:58:56

Genes Give Vegetables Shape

Authors: George Rajna
Comments: 32 Pages.

Researchers at the University of Georgia College of Agricultural and Environmental Sciences have recently found the genetic mechanism that controls the shape of our favorite fruits, vegetables and grains. [20] The way DNA folds largely determines which genes are read out. John van Noort and his group have quantified how easily rolled-up DNA parts stack. [19] Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11] Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology.
Category: Physics of Biology

[9] viXra:1811.0190 [pdf] submitted on 2018-11-12 10:21:33

Nanoparticles for Medical Applications

Authors: George Rajna
Comments: 34 Pages.

Diagnosing diseases and understanding the processes that take place within cells at the molecular level require sensitive and selective diagnostic instruments. [21] A single-molecule DNA " navigator " that can successfully find its way out of a maze constructed on a 2D DNA origami platform might be used in artificial intelligence applications as well as in biomolecular assembly, sensing, DNA-driven computation and molecular information and storage. [20] The way DNA folds largely determines which genes are read out. John van Noort and his group have quantified how easily rolled-up DNA parts stack. [19] Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11]
Category: Physics of Biology

[8] viXra:1811.0106 [pdf] submitted on 2018-11-06 05:33:44

Understanding Biology at the Nanoscale

Authors: George Rajna
Comments: 49 Pages.

Washington State University researchers for the first time have shown that they can use electrical fields to gain valuable information about the tiny, floating vesicles that move around in animals and plants and are critically important to many biological functions. [31] Finding a fast and inexpensive way to detect specific strains of bacteria and viruses is critical to food safety, water quality, environmental protection and human health. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25]
Category: Physics of Biology

[7] viXra:1811.0066 [pdf] submitted on 2018-11-06 05:21:30

Molecular Electronics Detecting E. Coli

Authors: George Rajna
Comments: 48 Pages.

Finding a fast and inexpensive way to detect specific strains of bacteria and viruses is critical to food safety, water quality, environmental protection and human health. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25]
Category: Physics of Biology

[6] viXra:1811.0052 [pdf] submitted on 2018-11-03 09:09:12

Large Spherical Viruses

Authors: George Rajna
Comments: 18 Pages.

A virus, the simplest physical object in biology, consists of a protein shell called the capsid, which protects its nucleic acid genome—RNA or DNA. [9] A protein involved in cognition and storing long-term memories looks and acts like a protein from viruses. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[5] viXra:1811.0051 [pdf] submitted on 2018-11-03 10:47:22

Mysterious Periodicity of Genome

Authors: George Rajna
Comments: 20 Pages.

Scientists at the Institute for Research in Biomedicine (IRB Barcelona) have found an explanation for a periodicity in the sequence of the genomes of all eukaryotes, from yeast to humans. [10] A virus, the simplest physical object in biology, consists of a protein shell called the capsid, which protects its nucleic acid genome—RNA or DNA. [9] A protein involved in cognition and storing long-term memories looks and acts like a protein from viruses. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[4] viXra:1811.0050 [pdf] submitted on 2018-11-03 11:02:02

Ring-Shaped Protein

Authors: George Rajna
Comments: 21 Pages.

Biological physicists at Rice University have a new cellular mechanics theory that rings true. [11] Scientists at the Institute for Research in Biomedicine (IRB Barcelona) have found an explanation for a periodicity in the sequence of the genomes of all eukaryotes, from yeast to humans. [10] A virus, the simplest physical object in biology, consists of a protein shell called the capsid, which protects its nucleic acid genome—RNA or DNA. [9] A protein involved in cognition and storing long-term memories looks and acts like a protein from viruses. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[3] viXra:1811.0049 [pdf] submitted on 2018-11-03 11:25:51

Cellular Atlas of Brain

Authors: George Rajna
Comments: 25 Pages.

For decades, scientists have viewed the brain as a veritable black box—and now Catherine Dulac and Xiaowei Zhuang are poised to open it. [12] Biological physicists at Rice University have a new cellular mechanics theory that rings true. [11] Scientists at the Institute for Research in Biomedicine (IRB Barcelona) have found an explanation for a periodicity in the sequence of the genomes of all eukaryotes, from yeast to humans. [10] A virus, the simplest physical object in biology, consists of a protein shell called the capsid, which protects its nucleic acid genome—RNA or DNA. [9] A protein involved in cognition and storing long-term memories looks and acts like a protein from viruses. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[2] viXra:1811.0039 [pdf] submitted on 2018-11-02 08:37:44

Protein Stem Cells in Brain

Authors: George Rajna
Comments: 54 Pages.

A research group from Kumamoto University, Japan, has discovered a new neurogenic mechanism responsible for brain development. [34] These will then produce the proteins themselves, without the cell functions being disturbed: cells, structures or their activities thus become visible under the microscope. [33] Measuring optical blood flow in the resting human brain to detect spontaneous activity has for the first time been demonstrated by Wright State University imaging researchers, holding out promise for a better way to study people with autism, Alzheimer's and depression. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24]
Category: Physics of Biology

[1] viXra:1811.0038 [pdf] submitted on 2018-11-02 09:44:08

Atomic View of Molecular Machines

Authors: George Rajna
Comments: 40 Pages.

Researchers from the MPSD's Department of Atomically Resolved Dynamics at the Center for Free-Electron Laser Science, the Centre for Ultrafast Imaging (all in Hamburg), the University of Toronto in Canada and the ETH in Zurich, Switzerland, have developed a new method to watch biomolecules at work. [24] Proteins rarely work alone, they interact, form protein complexes or bind DNA and RNA to control what a cell does. [23] Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality. [22] Scientists at the University of Illinois at Urbana-Champaign have produced the most precise picture to date of population dynamics in fluctuating feast-or-famine conditions. [21] For planetary protection, this indicates that more stringent cleaning steps may be needed for missions focused on life detection and highlights the potential need to use differing and rotating cleaning reagents that are compatible with the spacecraft to control the biological burden. [20]
Category: Physics of Biology