Condensed Matter

1812 Submissions

[28] viXra:1812.0467 [pdf] submitted on 2018-12-28 07:53:54

Rotating Molecules Description

Authors: George Rajna
Comments: 92 Pages.

Giacomo Bighin, a postdoc in the group of Mikhail Lemeshko at the Institute of Science and Technology Austria (IST Austria), has now extended the Feynman diagram technique. [52] When beams of ultra-short laser pulses running in the same direction intersect with each other at a noticeable angle, various interactions occur between the pulses. [51] In a recent publication in Science, researchers at the University of Paderborn and the Fritz Haber Institute Berlin demonstrated their ability to observe electrons' movements during a chemical reaction. [50] The special feature of the Kiel system is its extremely high temporal resolution of 13 femtoseconds. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48] In a similar vein, scientists are working to create twisting helical electromagnetic waves whose curvature allows more accurate imaging of the magnetic properties of different materials at the atomic level and could possibly lead to the development of future devices. [47] In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46]
Category: Condensed Matter

[27] viXra:1812.0466 [pdf] submitted on 2018-12-28 08:32:59

Looking Molecules with Soft-X-Rays

Authors: George Rajna
Comments: 93 Pages.

Researchers at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) have now successfully combined a table-top laser-based extreme high-order harmonic source for short-pulse soft-X-ray absorption spectroscopy in the water window with novel flatjet technology. [53] Giacomo Bighin, a postdoc in the group of Mikhail Lemeshko at the Institute of Science and Technology Austria (IST Austria), has now extended the Feynman diagram technique. [52] When beams of ultra-short laser pulses running in the same direction intersect with each other at a noticeable angle, various interactions occur between the pulses. [51] In a recent publication in Science, researchers at the University of Paderborn and the Fritz Haber Institute Berlin demonstrated their ability to observe electrons' movements during a chemical reaction. [50] The special feature of the Kiel system is its extremely high temporal resolution of 13 femtoseconds. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48]
Category: Condensed Matter

[26] viXra:1812.0444 [pdf] submitted on 2018-12-27 09:18:39

Femtosecond Junctions

Authors: George Rajna
Comments: 91 Pages.

Femtosecond Junctions When beams of ultra-short laser pulses running in the same direction intersect with each other at a noticeable angle, various interactions occur between the pulses. [51] In a recent publication in Science, researchers at the University of Paderborn and the Fritz Haber Institute Berlin demonstrated their ability to observe electrons' movements during a chemical reaction. [50] The special feature of the Kiel system is its extremely high temporal resolution of 13 femtoseconds. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48] In a similar vein, scientists are working to create twisting helical electromagnetic waves whose curvature allows more accurate imaging of the magnetic properties of different materials at the atomic level and could possibly lead to the development of future devices. [47] In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz "could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates," Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42]
Category: Condensed Matter

[25] viXra:1812.0432 [pdf] submitted on 2018-12-26 12:49:51

Nanoparticle Growth with X-Rays

Authors: George Rajna
Comments: 26 Pages.

Hydrogen fuel cells are a promising technology for producing clean and renewable energy, but the cost and activity of their cathode materials is a major challenge for commercialization. [17] Rice University scientists have created a rubbery, shape-shifting material that morphs from one sophisticated form to another on demand. [16] Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences, together with collaborators from the Fu Foundation School of Engineering and Applied Science at Columbia University, have developed a system to convert one wavelength of light into another without the need to phase match. [15] Light, which travels at a speed of 300,000 km/sec in a vacuum, can be slowed down and even stopped completely by methods that involve trapping the light inside crystals or ultracold clouds of atoms. [14] A research team led by physicists at LMU Munich reports a significant advance in laser-driven particle acceleration. [13] And now, physicists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and their collaborators have demonstrated that computers are ready to tackle the universe's greatest mysteries. [12]
Category: Condensed Matter

[24] viXra:1812.0369 [pdf] submitted on 2018-12-20 08:58:27

3-D Neutron Polarization

Authors: George Rajna
Comments: 54 Pages.

The team then succeeded for the first time in analyzing neutron polarization in three dimensions at an extremely high pressure of several gigapascals using the cell. [34] A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3-D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date. [33] Hydrogen-powered electronics, travel, and more may be a step closer thanks to the work of a collaborative team of scientists in Japan. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality-a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27] A new experiment that tests the limit of how large an object can be before it ceases to behave quantum mechanically has been proposed by physicists in the UK and India. [26] Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. [25]
Category: Condensed Matter

[23] viXra:1812.0355 [pdf] submitted on 2018-12-21 04:45:53

Mighty Morphing Materials

Authors: George Rajna
Comments: 24 Pages.

Rice University scientists have created a rubbery, shape-shifting material that morphs from one sophisticated form to another on demand. [16] Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences, together with collaborators from the Fu Foundation School of Engineering and Applied Science at Columbia University, have developed a system to convert one wavelength of light into another without the need to phase match. [15] Light, which travels at a speed of 300,000 km/sec in a vacuum, can be slowed down and even stopped completely by methods that involve trapping the light inside crystals or ultracold clouds of atoms. [14] A research team led by physicists at LMU Munich reports a significant advance in laser-driven particle acceleration. [13]
Category: Condensed Matter

[22] viXra:1812.0349 [pdf] submitted on 2018-12-19 08:41:10

Insight into Exotic Matter State

Authors: George Rajna
Comments: 20 Pages.

The properties of matter are typically the result of complex interactions between electrons. [33] Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. [32] Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Condensed Matter

[21] viXra:1812.0329 [pdf] submitted on 2018-12-20 05:01:48

Casimir Torque

Authors: George Rajna
Comments: 20 Pages.

Researchers from the University of Maryland have for the first time measured an effect that was predicted more than 40 years ago, called the Casimir torque. [34] The properties of matter are typically the result of complex interactions between electrons. [33] Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. [32] Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Condensed Matter

[20] viXra:1812.0323 [pdf] submitted on 2018-12-20 05:17:55

Self-Healing Electroluminescent Devices

Authors: George Rajna
Comments: 79 Pages.

In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz “could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates,” Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42] A new instrument lets researchers use multiple laser beams and a microscope to trap and move cells and then analyze them in real-time with a sensitive analysis technique known as Raman spectroscopy. [41]
Category: Condensed Matter

[19] viXra:1812.0319 [pdf] submitted on 2018-12-18 13:11:13

Magnetoresistance Ratio Enhancement

Authors: George Rajna
Comments: 38 Pages.

Magnetoresistance-a variation of electrical resistance in response to an externally applied magnetic field-is important for all magnetic field sensor applications. [23] As a result of climate change, population growth, and rising expectations regarding quality of life, energy requirements for cooling processes are growing much faster worldwide than for heating. [22] Researchers at The Ohio State University have discovered how to control heat with a magnetic field. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon-the hypothetical agent that extracts work from a system by decreasing the system's entropy-in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13]
Category: Condensed Matter

[18] viXra:1812.0290 [pdf] submitted on 2018-12-18 05:03:32

Graphene Printed Electronics

Authors: George Rajna
Comments: 75 Pages.

A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz “could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates,” Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44]
Category: Condensed Matter

[17] viXra:1812.0274 [pdf] submitted on 2018-12-17 03:17:10

Generalized Ising Model, Approximate Calculation Method

Authors: Akira Saito
Comments: 5 Pages.

An approximate solution of the expected value of the direction of an arbitrary electron on the generalized Ising model (Ising model in which the energy with the external magnetic eld and the energy of the interaction between the electrons take an arbitrary value) was obtained. Actually, considering application to the information system, we calculated each electron spin state as 0or1 instead of -1or1. As a result, even if the number of each spin increased, the error did not increase and it fell within 2%. If the expected value of the spin state is 0.1 to 0.9, the expected value can be obtained within an error range of 2% regardless of whether the energy value is positive or negative. The calculation amount of the approximate solution is obtained by the calculation amount of the square of N multiplied by 10 times. It can be expected as application of network analysis and the like. We also posted python source code.
Category: Condensed Matter

[16] viXra:1812.0255 [pdf] replaced on 2019-02-17 07:59:37

Electromagnetic Control of the Gravitational Mass of a Ferrite Lamina, and the Gravity Acceleration Above It.

Authors: Fran De Aquino
Comments: 5 Pages.

Here we show that it is possible controlling the gravitational mass of a specific ferrite lamina, and the gravity acceleration above it, simply applying an extra-low frequency electromagnetic field through it.
Category: Condensed Matter

[15] viXra:1812.0253 [pdf] submitted on 2018-12-14 09:11:58

Ceramic Copper Oxide Superconductors

Authors: George Rajna
Comments: 32 Pages.

This electronic super fluidity is a quantum state of matter, so it behaves in a very exotic way that is different from classical physics, Comin says. [39] The Fermi-Hubbard model, which is believed to explain the basis for high-temperature superconductivity, is extremely simple to describe, and yet has so far proven impossible to solve, according to Zwierlein. [38] Researchers at Karlsruhe Institute of Technology (KIT) have carried out high-resolution inelastic X-ray scattering and have found that high uniaxial pressure induces a long-range charge order competing with superconductivity. [37] Scientists mapping out the quantum characteristics of superconductors-materials that conduct electricity with no energy loss-have entered a new regime. [36] Now, in independent studies reported in Science and Nature, scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity. [35] At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34] The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33] University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32] Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31]
Category: Condensed Matter

[14] viXra:1812.0246 [pdf] submitted on 2018-12-13 06:24:47

New Super-Resolution Microscopy

Authors: George Rajna
Comments: 62 Pages.

Scientists at the University of Würzburg have been able to boost current super-resolution microscopy by a novel tweak. [37] "We put the optical microscope under a microscope to achieve accuracy near the atomic scale," said NIST's Samuel Stavis, who served as the project leader for these efforts. [36] Researchers have designed an interferometer that works with magnetic quasiparticles called magnons, rather than photons as in conventional interferometers. [35] A technique to manipulate electrons with light could bring quantum computing up to room temperature. [34] The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31]
Category: Condensed Matter

[13] viXra:1812.0220 [pdf] submitted on 2018-12-12 10:58:38

New Type of Phase Transformation

Authors: George Rajna
Comments: 44 Pages.

National Laboratory (LLNL) researchers have discovered an unusual new type of phase transformation in the transition metal zirconium. [27] In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of electrons, beyond charge. [26] In the emerging field of magnon spintronics, researchers seek to transport and process information by means of so-called magnon spin currents. [25] Working together, Miller, Boehme, Vardeny and their colleagues have shown that an organic-based magnet can carry waves of quantum mechanical magnetization, called magnons, and convert those waves to electrical signals. [24] While standard quantum hardware entangles particles in two states, the team has found a way to generate and entangle pairs of particles that each has 15 states. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17]
Category: Condensed Matter

[12] viXra:1812.0172 [pdf] submitted on 2018-12-09 07:09:54

Ice Promote Formation of Radicals

Authors: George Rajna
Comments: 80 Pages.

Researchers at Ruhr-Universität Bochum, the University of Duisburg-Essen and Friedrich-Alexander-Universität Erlangen-Nürnberg have discovered a possible mechanism for this. [46] The pattern of arrangement of atoms in a crystal, called the crystal lattice, can have a huge effect on the properties of solid materials. [45] The first step of this experiment involves placing the super-tiny crystals on the tip of the glass fiber. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36]
Category: Condensed Matter

[11] viXra:1812.0169 [pdf] submitted on 2018-12-09 09:49:23

Materials Skip Energy Barrier

Authors: George Rajna
Comments: 82 Pages.

A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory, University of California, Los Angeles and the University of Washington could provide engineers new design rules for creating microelectronics, membranes and tissues, and open up better production methods for new materials. [47]Nürnberg have discovered a possible mechanism for this. [46] The pattern of arrangement of atoms in a crystal, called the crystal lattice, can have a huge effect on the properties of solid materials. [45] The first step of this experiment involves placing the super-tiny crystals on the tip of the glass fiber. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37]
Category: Condensed Matter

[10] viXra:1812.0167 [pdf] submitted on 2018-12-09 11:09:30

Traffic Rules in Graphene

Authors: George Rajna
Comments: 42 Pages.

In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of electrons, beyond charge. [26] In the emerging field of magnon spintronics, researchers seek to transport and process information by means of so-called magnon spin currents. [25] Working together, Miller, Boehme, Vardeny and their colleagues have shown that an organic-based magnet can carry waves of quantum mechanical magnetization, called magnons, and convert those waves to electrical signals. [24] While standard quantum hardware entangles particles in two states, the team has found a way to generate and entangle pairs of particles that each has 15 states. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16]
Category: Condensed Matter

[9] viXra:1812.0143 [pdf] submitted on 2018-12-09 05:05:27

Spin on Kagome Lattices

Authors: George Rajna
Comments: 90 Pages.

Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory. [51] A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability than commercial spintronic digital memories. [50] Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons. [49] Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. [48] Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet. [47] A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work one thousand times faster than current flash computer memory, while being significantly more durable with respect to the number of daily read-writes. [46] A new two-qubit quantum processor that is fully programmable and single electron spins that can be coherently coupled to individual microwave-frequency photons are two of the latest advances in the world of solid-state spin-based quantum computing. [45] Scientists at the National Institute of Standards and Technology (NIST) have now developed a highly efficient converter that enlarges the diameter of a HYPERLINK "https://phys.org/tags/light/" light beam by 400 times. [44]
Category: Condensed Matter

[8] viXra:1812.0111 [pdf] submitted on 2018-12-06 09:59:52

Artificial Photosynthesis

Authors: George Rajna
Comments: 51 Pages.

Hydrogen-powered electronics, travel, and more may be a step closer thanks to the work of a collaborative team of scientists in Japan. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality—a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27] A new experiment that tests the limit of how large an object can be before it ceases to behave quantum mechanically has been proposed by physicists in the UK and India. [26] Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. [25] This achievement is considered as an important landmark for the realization of practical application of photon upconversion technology. [24] Considerable interest in new single-photon detector technologies has been scaling in this past decade. [23] Engineers develop key mathematical formula for driving quantum experiments. [22]
Category: Condensed Matter

[7] viXra:1812.0110 [pdf] submitted on 2018-12-06 10:25:29

3-D Imaging of Perovskite Crystals

Authors: George Rajna
Comments: 53 Pages.

A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3-D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date. [33] Hydrogen-powered electronics, travel, and more may be a step closer thanks to the work of a collaborative team of scientists in Japan. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality—a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27] A new experiment that tests the limit of how large an object can be before it ceases to behave quantum mechanically has been proposed by physicists in the UK and India. [26] Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. [25] This achievement is considered as an important landmark for the realization of practical application of photon upconversion technology. [24] Considerable interest in new single-photon detector technologies has been scaling in this past decade. [23]
Category: Condensed Matter

[6] viXra:1812.0077 [pdf] submitted on 2018-12-04 11:03:14

Magnetism by Crystal Lattice

Authors: George Rajna
Comments: 78 Pages.

The pattern of arrangement of atoms in a crystal, called the crystal lattice, can have a huge effect on the properties of solid materials. [45] The first step of this experiment involves placing the super-tiny crystals on the tip of the glass fiber. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35]
Category: Condensed Matter

[5] viXra:1812.0056 [pdf] submitted on 2018-12-03 09:51:40

Atomic-Scale Pictures of Tiny Crystals

Authors: George Rajna
Comments: 78 Pages.

The first step of this experiment involves placing the super-tiny crystals on the tip of the glass fiber. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40]
Category: Condensed Matter

[4] viXra:1812.0005 [pdf] submitted on 2018-12-01 04:26:50

Microscopic Machines can Fail

Authors: George Rajna
Comments: 78 Pages.

By using this method for microscopic failure analysis, researchers and manufacturers could improve the reliability of the MEMS components that they are developing, ranging from miniature robots and drones to tiny forceps for eye surgery and sensors to detect trace amounts of toxic chemicals. [46] A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45] Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42]
Category: Condensed Matter

[3] viXra:1812.0004 [pdf] submitted on 2018-12-01 04:41:49

Understanding of Solutal Convection

Authors: George Rajna
Comments: 80 Pages.

The findings revealed that the primary driver of this type of fluid flow—called solutal convection— had been overlooked. What's more, once this driver is accounted for, it completely flips the expected flow outcomes. [47] By using this method for microscopic failure analysis, researchers and manufacturers could improve the reliability of the MEMS components that they are developing, ranging from miniature robots and drones to tiny forceps for eye surgery and sensors to detect trace amounts of toxic chemicals. [46] A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45] Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44] This research work by the UEx, which has been published in Scientific Reports, explored the electromagnetic properties of specific materials that can make certain objects invisible when they are introduced into its interior. [43] A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms."[42] Electron microscopy has allowed scientists to see individual atoms, but even at that resolution not everything is clear. [41] A half-century ago, the theorist Walter Henneberger wondered if it were possible to use a laser field to free an electron from its atom without removing it from the nucleus. [40] A new study by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) may explain this disparity. In the work, the OIST researchers measured electrical current across a two-dimensional plane. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38]
Category: Condensed Matter

[2] viXra:1812.0003 [pdf] submitted on 2018-12-01 04:56:58

Extracting Gas from Shale Formations

Authors: George Rajna
Comments: 81 Pages.

Extracting gas from new sources is vital in order to supplement dwindling conventional supplies. [48] The findings revealed that the primary driver of this type of fluid flow—called solutal convection— had been overlooked. What's more, once this driver is accounted for, it completely flips the expected flow outcomes. [47] By using this method for microscopic failure analysis, researchers and manufacturers could improve the reliability of the MEMS components that they are developing, ranging from miniature robots and drones to tiny forceps for eye surgery and sensors to detect trace amounts of toxic chemicals. [46] A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45] Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44]
Category: Condensed Matter

[1] viXra:1812.0001 [pdf] submitted on 2018-12-01 05:32:47

See Stress Using Supercomputers

Authors: George Rajna
Comments: 84 Pages.

Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically. [49] Extracting gas from new sources is vital in order to supplement dwindling conventional supplies. [48] The findings revealed that the primary driver of this type of fluid flow—called solutal convection — had been overlooked. What's more, once this driver is accounted for, it completely flips the expected flow outcomes. [47] By using this method for microscopic failure analysis, researchers and manufacturers could improve the reliability of the MEMS components that they are developing, ranging from miniature robots and drones to tiny forceps for eye surgery and sensors to detect trace amounts of toxic chemicals. [46] A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. [45] Researchers from the Structured Light group from the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, have found a way to use the full beam of a laser single cells in a human body, tiny particles in small volume chemistry, or working on future on-chip devices. [44]
Category: Condensed Matter