## Fermat's Last Theorem (Excluding the Case of N=2^t). Unified Method

**Authors:** Victor Sorokine

IN THE FIRST CASE every number (A) is replaced by the sum (A'+A°n) of the last digit and the remainder. After binomial expansion of the Fermat's equality, all the members are combined in two terms: E=A'^n+B'^n-C'^n with the third digit E''', which in one of the n-1 equivalent Fermat's equalities is equal to 2, and the remainder D with the third digit D''', which is equal either to 0, or to n-1, and therefore the third digit of the number A^n+B^n-C^n is different from 0.

IN THE SECOND CASE (for example A=A°n^k, but (BС)'≠0), after having transformed the 3kn-digit ending of the number B into 1 and having left only the last siginificant digits of the numbers A, В, С, simple calculations show that the (3kn-2)-th digit of the number A^n+B^n-C^n is not 0 and does not change after the restoration of all other digits in the numbers A, B, C, because it depends only on the last digit of the number A°.

**Comments:** 4 Pages. English version

**Download:** **PDF**

### Submission history

[v1] 2019-08-05 02:01:30

**Unique-IP document downloads:** 127 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*