Relativity and Cosmology


Information and Thermodynamic Entropy from the Standpoint of Local Observers in an Expanding Universe

Authors: Arturo Tozzi

We describe cosmic expansion from the standpoint of an observer’s comoving horizon. When the Universe is small, the observer detects a large amount of the total cosmic bits, which number is fixed. Indeed, information, such as energy, cannot be created or destroyed in our Universe, i.e., the total number of cosmic bits must be kept constant, despite the black hole paradox. When the Universe expands, the information gets ergodically “diluted” in our isotopic and homogeneous Cosmos. This means that the observer can perceive just a lower number of the total bits, due the decreased density of information in the cosmic volume (or its surrounding surface, according to the holographic principle) in which she is trapped by speed light’s constraints. Here we ask: how does the second law of thermodynamics enter in this framework? Could it be correlated with cosmic expansion? The correlation is at least partially feasible, because the decrease in the information detected by a local observer in an expanding Universe leads to an increase in detected cosmic thermodynamic entropy, via the Bekenstein bound and the Laudauer principle. Reversing the classical scheme from thermodynamic entropy to information entropy, we suggest that the quantum vacuum’s cosmological constant, that causes cosmic expansion, could be one of the sources of the increases in thermodynamic entropy detected by local observers.

Comments: 5 Pages.

Download: PDF

Submission history

[v1] 2018-04-23 12:39:31

Unique-IP document downloads: 17 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus