Number Theory


On the Recurrence ((((P∙2-D)∙2-D)∙2-D)...) on Poulet Numbers P Having a Prime Factor D

Authors: Marius Coman

In this paper I note two sequences of Poulet numbers: the terms of the first sequence are the Poulet numbers which can be written as P*2 – d; the terms of the second sequence are the Poulet numbers which can be written as (P*2 – d)*2 - d, where P is another Poulet number and d one of the prime factors of P. I also conjecture that the both sequences are infinite and I observe that the recurrent relation ((((P*2 – d)*2 – d)*2 – d)...) conducts sometimes to more than one Poulet number (for instance, starting with P = 4369 and d = 257, the first, the second and the third numbers obtained are 8481, 16705 and 33153, all three Poulet numbers).

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2017-03-31 05:36:04

Unique-IP document downloads: 10 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus