**Authors:** Marius Coman

In this paper I conjecture that there exist an infinity of semiprimes n = p*q, where p = 30*k + m1 and q = 30*h + m2, m1 and m2 distinct, having one from the values 1, 7, 11, 13, 17, 19, 23, 29, such that the number of primes congruent to m1 (mod 30) up to n is equal to the number of primes congruent to m2 (mod 30) up to n. Example: for n = 91 = 7*13, there exist 3 primes of the form 30*k + 7 up to 91 (7, 37 and 67) and 3 primes of the form 30*k + 13 up to 91 (13, 43 and 73).

**Comments:** 2 Pages.

**Download:** **PDF**

[v1] 2016-12-15 10:18:33

**Unique-IP document downloads:** 12 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful. *