Quantum Gravity and String Theory


Two More the Type QVRs Groups

Authors: Sylwester Kornowski

Within the Scale-Symmetric Theory (SST), we described a method that leads to the groups containing a quantum, vector boson, and two high-mass narrow composite resonances with low standard deviation both with J = 0 and J = 2 (the Type QVRs groups). Previously we described four such groups whereas in this paper we present two more such groups. Among the SST 12 resonances, there are three resonances with masses close to the mass of resonance with a higher width that appears in the LHC data (its mass is about 2.250 TeV). Their masses are 1.951 TeV, 2.242 TeV, and 2.566 TeV - the arithmetic mean of expected values is 2.253 TeV but signal should be broadened more than for the other narrow resonances. Moreover, 4 other resonances appear in the combined LHC data. We predict existence of 5 other resonances - masses of 3 of them are higher than the present-day range of the LHC experiments whereas 2 of them overlap with the bump around about 190 - 300 GeV. But the most important task is to search for the predicted vector bosons - two of the 6 vector bosons that appear in the six SST QVRs groups are the W and Z bosons whereas the predicted 4 vector bosons should have following masses 25.4 GeV, 30.5 GeV (it is the Heister vector boson), 40.1 GeV, and 280.2 GeV.

Comments: 3 Pages.

Download: PDF

Submission history

[v1] 2016-10-30 16:27:14

Unique-IP document downloads: 25 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus