Relativity and Cosmology


Satellite Motion in a Non-Singular Potential

Authors: Ioannis Iraklis Haranas, Spiros Pagiatakis

We study the effects of a non-singular gravitational potential on satellite orbits by deriving the corresponding time rates of change of its orbital elements. This is achieved by expanding the non-singular potential into power series up to second order. This series contains three terms, the first been the Newtonian potential and the other two, here R1 (first order term) and R2 (second order term), express deviations of the singular potential from the Newtonian. These deviations from the Newtonian potential are taken as disturbing potential terms in the Lagrange planetary equations that provide the time rates of change of the orbital elements of a satellite in a non-singular gravitational field. We split these effects into secular, low and high frequency components and we evaluate them numerically using the low Earth orbiting mission Gravity Recovery and Climate Experiment (GRACE). We show that the secular effect of the second-order disturbing term R2 on the perigee and the mean anomaly are 4".307*10-9/a, and -2".533*10-15/a, respectively. These effects are far too small and most likely cannot easily be observed with today's technology. Numerical evaluation of the low and high frequency effects of the disturbing term R2 on low Earth orbiters like GRACE are very small and undetectable by current observational means.

Comments: 7 pages, Published: Astrophys Space Sci., Jan 22, 2010, DOI 10.1007/s10509-010-0274-5.

Download: PDF

Submission history

[v1] 14 Feb 2010

Unique-IP document downloads: 157 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus