[1] **viXra:1505.0165 [pdf]**
*submitted on 2015-05-23 11:23:16*

**Authors:** Florentin Smarandache

**Comments:** 7 Pages.

This paper is an improvement of our paper “(t, i, f)-Neutrosophic Structures” [1], where we introduced for the first time a new type of structures, called (t, i, f)-Neutrosophic Structures, presented from a neutrosophic logic perspective, and we showed particular cases of such structures in geometry and in algebra.
In any field of knowledge, each structure is com-posed from two parts: a space, and a set of axioms (or laws) acting (governing) on it. If the space, or at least one of its axioms (laws), has some indeterminacy of the form (t, i, f) ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic Structure.
The (t, i, f)-Neutrosophic Structures [based on the components t = truth, i = numerical indeterminacy, f = falsehood] are different from the Neutrosophic Algebraic Structures [based on neutrosophic numbers of the form a + bI, where I = literal indeterminacy and In = I], that we rename as I-Neutrosophic Algebraic Structures (meaning algebraic structures based on indeterminacy “I” only). But we can combine both and obtain the (t, i, f)-I-Neutrosophic Algebraic Structures, i.e. algebraic struc-tures based on neutrosophic numbers of the form a+bI, but also having indeterminacy of the form (t, i, f) ≠ (1, 0, 0) related to the structure space (elements which only partially belong to the space, or elements we know noth-ing if they belong to the space or not) or indeterminacy of the form (t, i, f) ≠ (1, 0, 0) related to at least one axiom (or law) acting on the structure space. Then we extend them to Refined (t, i, f)- Refined I-Neutrosophic Algebra-ic Structures.

**Category:** Algebra