Quantum Physics

   

Long-Distance Silicon Quantum Bits

Authors: George Rajna

Now a team based at Princeton University has overcome this limitation and demonstrated that two quantum-computing components, known as silicon "spin" qubits, can interact even when spaced relatively far apart on a computer chip. [32] Scientists from the University of Bristol, in collaboration with the Technical University of Denmark (DTU), have successfully developed chip-scale devices that are able to harness the applications of quantum physics by generating and manipulating single particles of light within programmable nanoscale circuits. [31] Physicists in China and Austria have shown for the first time they can teleport multi-dimensional states of photons. [30] A workshop on exploring extreme-field QED and the physics phenomena it creates will be held at SLAC in late summer. [29] University of Toronto Engineering researchers have combined two emerging technologies for next-generation solar power-and discovered that each one helps stabilize the other. [28] Photoresponsive flash memories made from organic field-effect transistors (OFETs) that can be quickly erased using just light might find use in a host of applications, including flexible imaging circuits, infra-red sensing memories and multibit-storage memory cells. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22]

Comments: 45 Pages.

Download: PDF

Submission history

[v1] 2019-12-26 02:44:23

Unique-IP document downloads: 6 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus