On Proofs of the Poincare Conjecture

Authors: Dmitri Martila

On December 22, 2006, the journal Science honored Perelman's proof of the Poincare Conjecture as the scientific ``Breakthrough of the Year", the first time this honor was bestowed in the area of mathematics. However, I have critical questions about Perelman's proof of Poincare Conjecture. The conjecture states, that ``Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.'' The ``homeomorphic" means that by non-singular deformation one produces perfect sphere - the equivalent of initial space. However, pasting in foreign caps will not make such deformation. My short proofs are given.

Comments: 4 Pages.

Download: PDF

Submission history

[v1] 2019-12-18 08:45:02

Unique-IP document downloads: 131 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus